]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm/kvm/coproc.c
Merge remote-tracking branch 'regulator/topic/palmas' into v3.9-rc8
[mirror_ubuntu-hirsute-kernel.git] / arch / arm / kvm / coproc.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19 #include <linux/mm.h>
20 #include <linux/kvm_host.h>
21 #include <linux/uaccess.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_host.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_coproc.h>
26 #include <asm/cacheflush.h>
27 #include <asm/cputype.h>
28 #include <trace/events/kvm.h>
29 #include <asm/vfp.h>
30 #include "../vfp/vfpinstr.h"
31
32 #include "trace.h"
33 #include "coproc.h"
34
35
36 /******************************************************************************
37 * Co-processor emulation
38 *****************************************************************************/
39
40 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
41 static u32 cache_levels;
42
43 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
44 #define CSSELR_MAX 12
45
46 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
47 {
48 kvm_inject_undefined(vcpu);
49 return 1;
50 }
51
52 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
53 {
54 /*
55 * We can get here, if the host has been built without VFPv3 support,
56 * but the guest attempted a floating point operation.
57 */
58 kvm_inject_undefined(vcpu);
59 return 1;
60 }
61
62 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
63 {
64 kvm_inject_undefined(vcpu);
65 return 1;
66 }
67
68 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
69 {
70 kvm_inject_undefined(vcpu);
71 return 1;
72 }
73
74 /* See note at ARM ARM B1.14.4 */
75 static bool access_dcsw(struct kvm_vcpu *vcpu,
76 const struct coproc_params *p,
77 const struct coproc_reg *r)
78 {
79 u32 val;
80 int cpu;
81
82 if (!p->is_write)
83 return read_from_write_only(vcpu, p);
84
85 cpu = get_cpu();
86
87 cpumask_setall(&vcpu->arch.require_dcache_flush);
88 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
89
90 /* If we were already preempted, take the long way around */
91 if (cpu != vcpu->arch.last_pcpu) {
92 flush_cache_all();
93 goto done;
94 }
95
96 val = *vcpu_reg(vcpu, p->Rt1);
97
98 switch (p->CRm) {
99 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
100 case 14: /* DCCISW */
101 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
102 break;
103
104 case 10: /* DCCSW */
105 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
106 break;
107 }
108
109 done:
110 put_cpu();
111
112 return true;
113 }
114
115 /*
116 * We could trap ID_DFR0 and tell the guest we don't support performance
117 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
118 * NAKed, so it will read the PMCR anyway.
119 *
120 * Therefore we tell the guest we have 0 counters. Unfortunately, we
121 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
122 * all PM registers, which doesn't crash the guest kernel at least.
123 */
124 static bool pm_fake(struct kvm_vcpu *vcpu,
125 const struct coproc_params *p,
126 const struct coproc_reg *r)
127 {
128 if (p->is_write)
129 return ignore_write(vcpu, p);
130 else
131 return read_zero(vcpu, p);
132 }
133
134 #define access_pmcr pm_fake
135 #define access_pmcntenset pm_fake
136 #define access_pmcntenclr pm_fake
137 #define access_pmovsr pm_fake
138 #define access_pmselr pm_fake
139 #define access_pmceid0 pm_fake
140 #define access_pmceid1 pm_fake
141 #define access_pmccntr pm_fake
142 #define access_pmxevtyper pm_fake
143 #define access_pmxevcntr pm_fake
144 #define access_pmuserenr pm_fake
145 #define access_pmintenset pm_fake
146 #define access_pmintenclr pm_fake
147
148 /* Architected CP15 registers.
149 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2
150 */
151 static const struct coproc_reg cp15_regs[] = {
152 /* CSSELR: swapped by interrupt.S. */
153 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
154 NULL, reset_unknown, c0_CSSELR },
155
156 /* TTBR0/TTBR1: swapped by interrupt.S. */
157 { CRm( 2), Op1( 0), is64, NULL, reset_unknown64, c2_TTBR0 },
158 { CRm( 2), Op1( 1), is64, NULL, reset_unknown64, c2_TTBR1 },
159
160 /* TTBCR: swapped by interrupt.S. */
161 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
162 NULL, reset_val, c2_TTBCR, 0x00000000 },
163
164 /* DACR: swapped by interrupt.S. */
165 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
166 NULL, reset_unknown, c3_DACR },
167
168 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
169 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
170 NULL, reset_unknown, c5_DFSR },
171 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
172 NULL, reset_unknown, c5_IFSR },
173 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
174 NULL, reset_unknown, c5_ADFSR },
175 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
176 NULL, reset_unknown, c5_AIFSR },
177
178 /* DFAR/IFAR: swapped by interrupt.S. */
179 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
180 NULL, reset_unknown, c6_DFAR },
181 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
182 NULL, reset_unknown, c6_IFAR },
183 /*
184 * DC{C,I,CI}SW operations:
185 */
186 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
187 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
188 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
189 /*
190 * Dummy performance monitor implementation.
191 */
192 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
193 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
194 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
195 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
196 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
197 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
198 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
199 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
200 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
201 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
202 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
203 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
204 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
205
206 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
207 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
208 NULL, reset_unknown, c10_PRRR},
209 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
210 NULL, reset_unknown, c10_NMRR},
211
212 /* VBAR: swapped by interrupt.S. */
213 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
214 NULL, reset_val, c12_VBAR, 0x00000000 },
215
216 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
217 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
218 NULL, reset_val, c13_CID, 0x00000000 },
219 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
220 NULL, reset_unknown, c13_TID_URW },
221 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
222 NULL, reset_unknown, c13_TID_URO },
223 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
224 NULL, reset_unknown, c13_TID_PRIV },
225
226 /* CNTKCTL: swapped by interrupt.S. */
227 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
228 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
229 };
230
231 /* Target specific emulation tables */
232 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
233
234 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
235 {
236 target_tables[table->target] = table;
237 }
238
239 /* Get specific register table for this target. */
240 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
241 {
242 struct kvm_coproc_target_table *table;
243
244 table = target_tables[target];
245 *num = table->num;
246 return table->table;
247 }
248
249 static const struct coproc_reg *find_reg(const struct coproc_params *params,
250 const struct coproc_reg table[],
251 unsigned int num)
252 {
253 unsigned int i;
254
255 for (i = 0; i < num; i++) {
256 const struct coproc_reg *r = &table[i];
257
258 if (params->is_64bit != r->is_64)
259 continue;
260 if (params->CRn != r->CRn)
261 continue;
262 if (params->CRm != r->CRm)
263 continue;
264 if (params->Op1 != r->Op1)
265 continue;
266 if (params->Op2 != r->Op2)
267 continue;
268
269 return r;
270 }
271 return NULL;
272 }
273
274 static int emulate_cp15(struct kvm_vcpu *vcpu,
275 const struct coproc_params *params)
276 {
277 size_t num;
278 const struct coproc_reg *table, *r;
279
280 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
281 params->CRm, params->Op2, params->is_write);
282
283 table = get_target_table(vcpu->arch.target, &num);
284
285 /* Search target-specific then generic table. */
286 r = find_reg(params, table, num);
287 if (!r)
288 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
289
290 if (likely(r)) {
291 /* If we don't have an accessor, we should never get here! */
292 BUG_ON(!r->access);
293
294 if (likely(r->access(vcpu, params, r))) {
295 /* Skip instruction, since it was emulated */
296 kvm_skip_instr(vcpu, (vcpu->arch.hsr >> 25) & 1);
297 return 1;
298 }
299 /* If access function fails, it should complain. */
300 } else {
301 kvm_err("Unsupported guest CP15 access at: %08x\n",
302 *vcpu_pc(vcpu));
303 print_cp_instr(params);
304 }
305 kvm_inject_undefined(vcpu);
306 return 1;
307 }
308
309 /**
310 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
311 * @vcpu: The VCPU pointer
312 * @run: The kvm_run struct
313 */
314 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
315 {
316 struct coproc_params params;
317
318 params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
319 params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
320 params.is_write = ((vcpu->arch.hsr & 1) == 0);
321 params.is_64bit = true;
322
323 params.Op1 = (vcpu->arch.hsr >> 16) & 0xf;
324 params.Op2 = 0;
325 params.Rt2 = (vcpu->arch.hsr >> 10) & 0xf;
326 params.CRn = 0;
327
328 return emulate_cp15(vcpu, &params);
329 }
330
331 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
332 const struct coproc_reg *table, size_t num)
333 {
334 unsigned long i;
335
336 for (i = 0; i < num; i++)
337 if (table[i].reset)
338 table[i].reset(vcpu, &table[i]);
339 }
340
341 /**
342 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
343 * @vcpu: The VCPU pointer
344 * @run: The kvm_run struct
345 */
346 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
347 {
348 struct coproc_params params;
349
350 params.CRm = (vcpu->arch.hsr >> 1) & 0xf;
351 params.Rt1 = (vcpu->arch.hsr >> 5) & 0xf;
352 params.is_write = ((vcpu->arch.hsr & 1) == 0);
353 params.is_64bit = false;
354
355 params.CRn = (vcpu->arch.hsr >> 10) & 0xf;
356 params.Op1 = (vcpu->arch.hsr >> 14) & 0x7;
357 params.Op2 = (vcpu->arch.hsr >> 17) & 0x7;
358 params.Rt2 = 0;
359
360 return emulate_cp15(vcpu, &params);
361 }
362
363 /******************************************************************************
364 * Userspace API
365 *****************************************************************************/
366
367 static bool index_to_params(u64 id, struct coproc_params *params)
368 {
369 switch (id & KVM_REG_SIZE_MASK) {
370 case KVM_REG_SIZE_U32:
371 /* Any unused index bits means it's not valid. */
372 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
373 | KVM_REG_ARM_COPROC_MASK
374 | KVM_REG_ARM_32_CRN_MASK
375 | KVM_REG_ARM_CRM_MASK
376 | KVM_REG_ARM_OPC1_MASK
377 | KVM_REG_ARM_32_OPC2_MASK))
378 return false;
379
380 params->is_64bit = false;
381 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
382 >> KVM_REG_ARM_32_CRN_SHIFT);
383 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
384 >> KVM_REG_ARM_CRM_SHIFT);
385 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
386 >> KVM_REG_ARM_OPC1_SHIFT);
387 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
388 >> KVM_REG_ARM_32_OPC2_SHIFT);
389 return true;
390 case KVM_REG_SIZE_U64:
391 /* Any unused index bits means it's not valid. */
392 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
393 | KVM_REG_ARM_COPROC_MASK
394 | KVM_REG_ARM_CRM_MASK
395 | KVM_REG_ARM_OPC1_MASK))
396 return false;
397 params->is_64bit = true;
398 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
399 >> KVM_REG_ARM_CRM_SHIFT);
400 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
401 >> KVM_REG_ARM_OPC1_SHIFT);
402 params->Op2 = 0;
403 params->CRn = 0;
404 return true;
405 default:
406 return false;
407 }
408 }
409
410 /* Decode an index value, and find the cp15 coproc_reg entry. */
411 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
412 u64 id)
413 {
414 size_t num;
415 const struct coproc_reg *table, *r;
416 struct coproc_params params;
417
418 /* We only do cp15 for now. */
419 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
420 return NULL;
421
422 if (!index_to_params(id, &params))
423 return NULL;
424
425 table = get_target_table(vcpu->arch.target, &num);
426 r = find_reg(&params, table, num);
427 if (!r)
428 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
429
430 /* Not saved in the cp15 array? */
431 if (r && !r->reg)
432 r = NULL;
433
434 return r;
435 }
436
437 /*
438 * These are the invariant cp15 registers: we let the guest see the host
439 * versions of these, so they're part of the guest state.
440 *
441 * A future CPU may provide a mechanism to present different values to
442 * the guest, or a future kvm may trap them.
443 */
444 /* Unfortunately, there's no register-argument for mrc, so generate. */
445 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
446 static void get_##name(struct kvm_vcpu *v, \
447 const struct coproc_reg *r) \
448 { \
449 u32 val; \
450 \
451 asm volatile("mrc p15, " __stringify(op1) \
452 ", %0, c" __stringify(crn) \
453 ", c" __stringify(crm) \
454 ", " __stringify(op2) "\n" : "=r" (val)); \
455 ((struct coproc_reg *)r)->val = val; \
456 }
457
458 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
459 FUNCTION_FOR32(0, 0, 0, 1, CTR)
460 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
461 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
462 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
463 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
464 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
465 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
466 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
467 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
468 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
469 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
470 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
471 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
472 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
473 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
474 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
475 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
476 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
477 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
478 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
479
480 /* ->val is filled in by kvm_invariant_coproc_table_init() */
481 static struct coproc_reg invariant_cp15[] = {
482 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
483 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
484 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
485 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
486 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
487
488 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
489 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
490 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
491 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
492 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
493 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
494 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
495 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
496
497 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
498 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
499 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
500 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
501 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
502 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
503
504 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
505 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
506 };
507
508 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
509 {
510 /* This Just Works because we are little endian. */
511 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
512 return -EFAULT;
513 return 0;
514 }
515
516 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
517 {
518 /* This Just Works because we are little endian. */
519 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
520 return -EFAULT;
521 return 0;
522 }
523
524 static int get_invariant_cp15(u64 id, void __user *uaddr)
525 {
526 struct coproc_params params;
527 const struct coproc_reg *r;
528
529 if (!index_to_params(id, &params))
530 return -ENOENT;
531
532 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
533 if (!r)
534 return -ENOENT;
535
536 return reg_to_user(uaddr, &r->val, id);
537 }
538
539 static int set_invariant_cp15(u64 id, void __user *uaddr)
540 {
541 struct coproc_params params;
542 const struct coproc_reg *r;
543 int err;
544 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
545
546 if (!index_to_params(id, &params))
547 return -ENOENT;
548 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
549 if (!r)
550 return -ENOENT;
551
552 err = reg_from_user(&val, uaddr, id);
553 if (err)
554 return err;
555
556 /* This is what we mean by invariant: you can't change it. */
557 if (r->val != val)
558 return -EINVAL;
559
560 return 0;
561 }
562
563 static bool is_valid_cache(u32 val)
564 {
565 u32 level, ctype;
566
567 if (val >= CSSELR_MAX)
568 return -ENOENT;
569
570 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
571 level = (val >> 1);
572 ctype = (cache_levels >> (level * 3)) & 7;
573
574 switch (ctype) {
575 case 0: /* No cache */
576 return false;
577 case 1: /* Instruction cache only */
578 return (val & 1);
579 case 2: /* Data cache only */
580 case 4: /* Unified cache */
581 return !(val & 1);
582 case 3: /* Separate instruction and data caches */
583 return true;
584 default: /* Reserved: we can't know instruction or data. */
585 return false;
586 }
587 }
588
589 /* Which cache CCSIDR represents depends on CSSELR value. */
590 static u32 get_ccsidr(u32 csselr)
591 {
592 u32 ccsidr;
593
594 /* Make sure noone else changes CSSELR during this! */
595 local_irq_disable();
596 /* Put value into CSSELR */
597 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
598 isb();
599 /* Read result out of CCSIDR */
600 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
601 local_irq_enable();
602
603 return ccsidr;
604 }
605
606 static int demux_c15_get(u64 id, void __user *uaddr)
607 {
608 u32 val;
609 u32 __user *uval = uaddr;
610
611 /* Fail if we have unknown bits set. */
612 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
613 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
614 return -ENOENT;
615
616 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
617 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
618 if (KVM_REG_SIZE(id) != 4)
619 return -ENOENT;
620 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
621 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
622 if (!is_valid_cache(val))
623 return -ENOENT;
624
625 return put_user(get_ccsidr(val), uval);
626 default:
627 return -ENOENT;
628 }
629 }
630
631 static int demux_c15_set(u64 id, void __user *uaddr)
632 {
633 u32 val, newval;
634 u32 __user *uval = uaddr;
635
636 /* Fail if we have unknown bits set. */
637 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
638 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
639 return -ENOENT;
640
641 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
642 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
643 if (KVM_REG_SIZE(id) != 4)
644 return -ENOENT;
645 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
646 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
647 if (!is_valid_cache(val))
648 return -ENOENT;
649
650 if (get_user(newval, uval))
651 return -EFAULT;
652
653 /* This is also invariant: you can't change it. */
654 if (newval != get_ccsidr(val))
655 return -EINVAL;
656 return 0;
657 default:
658 return -ENOENT;
659 }
660 }
661
662 #ifdef CONFIG_VFPv3
663 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
664 KVM_REG_ARM_VFP_FPSCR,
665 KVM_REG_ARM_VFP_FPINST,
666 KVM_REG_ARM_VFP_FPINST2,
667 KVM_REG_ARM_VFP_MVFR0,
668 KVM_REG_ARM_VFP_MVFR1,
669 KVM_REG_ARM_VFP_FPSID };
670
671 static unsigned int num_fp_regs(void)
672 {
673 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
674 return 32;
675 else
676 return 16;
677 }
678
679 static unsigned int num_vfp_regs(void)
680 {
681 /* Normal FP regs + control regs. */
682 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
683 }
684
685 static int copy_vfp_regids(u64 __user *uindices)
686 {
687 unsigned int i;
688 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
689 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
690
691 for (i = 0; i < num_fp_regs(); i++) {
692 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
693 uindices))
694 return -EFAULT;
695 uindices++;
696 }
697
698 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
699 if (put_user(u32reg | vfp_sysregs[i], uindices))
700 return -EFAULT;
701 uindices++;
702 }
703
704 return num_vfp_regs();
705 }
706
707 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
708 {
709 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
710 u32 val;
711
712 /* Fail if we have unknown bits set. */
713 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
714 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
715 return -ENOENT;
716
717 if (vfpid < num_fp_regs()) {
718 if (KVM_REG_SIZE(id) != 8)
719 return -ENOENT;
720 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
721 id);
722 }
723
724 /* FP control registers are all 32 bit. */
725 if (KVM_REG_SIZE(id) != 4)
726 return -ENOENT;
727
728 switch (vfpid) {
729 case KVM_REG_ARM_VFP_FPEXC:
730 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
731 case KVM_REG_ARM_VFP_FPSCR:
732 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
733 case KVM_REG_ARM_VFP_FPINST:
734 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
735 case KVM_REG_ARM_VFP_FPINST2:
736 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
737 case KVM_REG_ARM_VFP_MVFR0:
738 val = fmrx(MVFR0);
739 return reg_to_user(uaddr, &val, id);
740 case KVM_REG_ARM_VFP_MVFR1:
741 val = fmrx(MVFR1);
742 return reg_to_user(uaddr, &val, id);
743 case KVM_REG_ARM_VFP_FPSID:
744 val = fmrx(FPSID);
745 return reg_to_user(uaddr, &val, id);
746 default:
747 return -ENOENT;
748 }
749 }
750
751 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
752 {
753 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
754 u32 val;
755
756 /* Fail if we have unknown bits set. */
757 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
758 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
759 return -ENOENT;
760
761 if (vfpid < num_fp_regs()) {
762 if (KVM_REG_SIZE(id) != 8)
763 return -ENOENT;
764 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
765 uaddr, id);
766 }
767
768 /* FP control registers are all 32 bit. */
769 if (KVM_REG_SIZE(id) != 4)
770 return -ENOENT;
771
772 switch (vfpid) {
773 case KVM_REG_ARM_VFP_FPEXC:
774 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
775 case KVM_REG_ARM_VFP_FPSCR:
776 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
777 case KVM_REG_ARM_VFP_FPINST:
778 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
779 case KVM_REG_ARM_VFP_FPINST2:
780 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
781 /* These are invariant. */
782 case KVM_REG_ARM_VFP_MVFR0:
783 if (reg_from_user(&val, uaddr, id))
784 return -EFAULT;
785 if (val != fmrx(MVFR0))
786 return -EINVAL;
787 return 0;
788 case KVM_REG_ARM_VFP_MVFR1:
789 if (reg_from_user(&val, uaddr, id))
790 return -EFAULT;
791 if (val != fmrx(MVFR1))
792 return -EINVAL;
793 return 0;
794 case KVM_REG_ARM_VFP_FPSID:
795 if (reg_from_user(&val, uaddr, id))
796 return -EFAULT;
797 if (val != fmrx(FPSID))
798 return -EINVAL;
799 return 0;
800 default:
801 return -ENOENT;
802 }
803 }
804 #else /* !CONFIG_VFPv3 */
805 static unsigned int num_vfp_regs(void)
806 {
807 return 0;
808 }
809
810 static int copy_vfp_regids(u64 __user *uindices)
811 {
812 return 0;
813 }
814
815 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
816 {
817 return -ENOENT;
818 }
819
820 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
821 {
822 return -ENOENT;
823 }
824 #endif /* !CONFIG_VFPv3 */
825
826 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
827 {
828 const struct coproc_reg *r;
829 void __user *uaddr = (void __user *)(long)reg->addr;
830
831 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
832 return demux_c15_get(reg->id, uaddr);
833
834 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
835 return vfp_get_reg(vcpu, reg->id, uaddr);
836
837 r = index_to_coproc_reg(vcpu, reg->id);
838 if (!r)
839 return get_invariant_cp15(reg->id, uaddr);
840
841 /* Note: copies two regs if size is 64 bit. */
842 return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
843 }
844
845 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
846 {
847 const struct coproc_reg *r;
848 void __user *uaddr = (void __user *)(long)reg->addr;
849
850 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
851 return demux_c15_set(reg->id, uaddr);
852
853 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
854 return vfp_set_reg(vcpu, reg->id, uaddr);
855
856 r = index_to_coproc_reg(vcpu, reg->id);
857 if (!r)
858 return set_invariant_cp15(reg->id, uaddr);
859
860 /* Note: copies two regs if size is 64 bit */
861 return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
862 }
863
864 static unsigned int num_demux_regs(void)
865 {
866 unsigned int i, count = 0;
867
868 for (i = 0; i < CSSELR_MAX; i++)
869 if (is_valid_cache(i))
870 count++;
871
872 return count;
873 }
874
875 static int write_demux_regids(u64 __user *uindices)
876 {
877 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
878 unsigned int i;
879
880 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
881 for (i = 0; i < CSSELR_MAX; i++) {
882 if (!is_valid_cache(i))
883 continue;
884 if (put_user(val | i, uindices))
885 return -EFAULT;
886 uindices++;
887 }
888 return 0;
889 }
890
891 static u64 cp15_to_index(const struct coproc_reg *reg)
892 {
893 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
894 if (reg->is_64) {
895 val |= KVM_REG_SIZE_U64;
896 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
897 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
898 } else {
899 val |= KVM_REG_SIZE_U32;
900 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
901 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
902 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
903 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
904 }
905 return val;
906 }
907
908 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
909 {
910 if (!*uind)
911 return true;
912
913 if (put_user(cp15_to_index(reg), *uind))
914 return false;
915
916 (*uind)++;
917 return true;
918 }
919
920 /* Assumed ordered tables, see kvm_coproc_table_init. */
921 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
922 {
923 const struct coproc_reg *i1, *i2, *end1, *end2;
924 unsigned int total = 0;
925 size_t num;
926
927 /* We check for duplicates here, to allow arch-specific overrides. */
928 i1 = get_target_table(vcpu->arch.target, &num);
929 end1 = i1 + num;
930 i2 = cp15_regs;
931 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
932
933 BUG_ON(i1 == end1 || i2 == end2);
934
935 /* Walk carefully, as both tables may refer to the same register. */
936 while (i1 || i2) {
937 int cmp = cmp_reg(i1, i2);
938 /* target-specific overrides generic entry. */
939 if (cmp <= 0) {
940 /* Ignore registers we trap but don't save. */
941 if (i1->reg) {
942 if (!copy_reg_to_user(i1, &uind))
943 return -EFAULT;
944 total++;
945 }
946 } else {
947 /* Ignore registers we trap but don't save. */
948 if (i2->reg) {
949 if (!copy_reg_to_user(i2, &uind))
950 return -EFAULT;
951 total++;
952 }
953 }
954
955 if (cmp <= 0 && ++i1 == end1)
956 i1 = NULL;
957 if (cmp >= 0 && ++i2 == end2)
958 i2 = NULL;
959 }
960 return total;
961 }
962
963 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
964 {
965 return ARRAY_SIZE(invariant_cp15)
966 + num_demux_regs()
967 + num_vfp_regs()
968 + walk_cp15(vcpu, (u64 __user *)NULL);
969 }
970
971 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
972 {
973 unsigned int i;
974 int err;
975
976 /* Then give them all the invariant registers' indices. */
977 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
978 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
979 return -EFAULT;
980 uindices++;
981 }
982
983 err = walk_cp15(vcpu, uindices);
984 if (err < 0)
985 return err;
986 uindices += err;
987
988 err = copy_vfp_regids(uindices);
989 if (err < 0)
990 return err;
991 uindices += err;
992
993 return write_demux_regids(uindices);
994 }
995
996 void kvm_coproc_table_init(void)
997 {
998 unsigned int i;
999
1000 /* Make sure tables are unique and in order. */
1001 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1002 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1003
1004 /* We abuse the reset function to overwrite the table itself. */
1005 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1006 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1007
1008 /*
1009 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1010 *
1011 * If software reads the Cache Type fields from Ctype1
1012 * upwards, once it has seen a value of 0b000, no caches
1013 * exist at further-out levels of the hierarchy. So, for
1014 * example, if Ctype3 is the first Cache Type field with a
1015 * value of 0b000, the values of Ctype4 to Ctype7 must be
1016 * ignored.
1017 */
1018 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1019 for (i = 0; i < 7; i++)
1020 if (((cache_levels >> (i*3)) & 7) == 0)
1021 break;
1022 /* Clear all higher bits. */
1023 cache_levels &= (1 << (i*3))-1;
1024 }
1025
1026 /**
1027 * kvm_reset_coprocs - sets cp15 registers to reset value
1028 * @vcpu: The VCPU pointer
1029 *
1030 * This function finds the right table above and sets the registers on the
1031 * virtual CPU struct to their architecturally defined reset values.
1032 */
1033 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1034 {
1035 size_t num;
1036 const struct coproc_reg *table;
1037
1038 /* Catch someone adding a register without putting in reset entry. */
1039 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1040
1041 /* Generic chip reset first (so target could override). */
1042 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1043
1044 table = get_target_table(vcpu->arch.target, &num);
1045 reset_coproc_regs(vcpu, table, num);
1046
1047 for (num = 1; num < NR_CP15_REGS; num++)
1048 if (vcpu->arch.cp15[num] == 0x42424242)
1049 panic("Didn't reset vcpu->arch.cp15[%zi]", num);
1050 }