]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kvm/coproc.c
Merge ath-next from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / coproc.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34
35 #include "trace.h"
36 #include "coproc.h"
37
38
39 /******************************************************************************
40 * Co-processor emulation
41 *****************************************************************************/
42
43 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
44 static u32 cache_levels;
45
46 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
47 #define CSSELR_MAX 12
48
49 /*
50 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
51 * of cp15 registers can be viewed either as couple of two u32 registers
52 * or one u64 register. Current u64 register encoding is that least
53 * significant u32 word is followed by most significant u32 word.
54 */
55 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
56 const struct coproc_reg *r,
57 u64 val)
58 {
59 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
60 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
61 }
62
63 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
64 const struct coproc_reg *r)
65 {
66 u64 val;
67
68 val = vcpu_cp15(vcpu, r->reg + 1);
69 val = val << 32;
70 val = val | vcpu_cp15(vcpu, r->reg);
71 return val;
72 }
73
74 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
75 {
76 kvm_inject_undefined(vcpu);
77 return 1;
78 }
79
80 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
81 {
82 /*
83 * We can get here, if the host has been built without VFPv3 support,
84 * but the guest attempted a floating point operation.
85 */
86 kvm_inject_undefined(vcpu);
87 return 1;
88 }
89
90 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
91 {
92 kvm_inject_undefined(vcpu);
93 return 1;
94 }
95
96 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
97 {
98 kvm_inject_undefined(vcpu);
99 return 1;
100 }
101
102 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
103 {
104 /*
105 * Compute guest MPIDR. We build a virtual cluster out of the
106 * vcpu_id, but we read the 'U' bit from the underlying
107 * hardware directly.
108 */
109 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
110 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
111 (vcpu->vcpu_id & 3));
112 }
113
114 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
115 static bool access_actlr(struct kvm_vcpu *vcpu,
116 const struct coproc_params *p,
117 const struct coproc_reg *r)
118 {
119 if (p->is_write)
120 return ignore_write(vcpu, p);
121
122 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
123 return true;
124 }
125
126 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
127 static bool access_cbar(struct kvm_vcpu *vcpu,
128 const struct coproc_params *p,
129 const struct coproc_reg *r)
130 {
131 if (p->is_write)
132 return write_to_read_only(vcpu, p);
133 return read_zero(vcpu, p);
134 }
135
136 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
137 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
138 const struct coproc_params *p,
139 const struct coproc_reg *r)
140 {
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143
144 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
145 return true;
146 }
147
148 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
149 {
150 u32 l2ctlr, ncores;
151
152 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
153 l2ctlr &= ~(3 << 24);
154 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
155 /* How many cores in the current cluster and the next ones */
156 ncores -= (vcpu->vcpu_id & ~3);
157 /* Cap it to the maximum number of cores in a single cluster */
158 ncores = min(ncores, 3U);
159 l2ctlr |= (ncores & 3) << 24;
160
161 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
162 }
163
164 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
165 {
166 u32 actlr;
167
168 /* ACTLR contains SMP bit: make sure you create all cpus first! */
169 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
170 /* Make the SMP bit consistent with the guest configuration */
171 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
172 actlr |= 1U << 6;
173 else
174 actlr &= ~(1U << 6);
175
176 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
177 }
178
179 /*
180 * TRM entries: A7:4.3.50, A15:4.3.49
181 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
182 */
183 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
184 const struct coproc_params *p,
185 const struct coproc_reg *r)
186 {
187 if (p->is_write)
188 return ignore_write(vcpu, p);
189
190 *vcpu_reg(vcpu, p->Rt1) = 0;
191 return true;
192 }
193
194 /*
195 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
196 */
197 static bool access_dcsw(struct kvm_vcpu *vcpu,
198 const struct coproc_params *p,
199 const struct coproc_reg *r)
200 {
201 if (!p->is_write)
202 return read_from_write_only(vcpu, p);
203
204 kvm_set_way_flush(vcpu);
205 return true;
206 }
207
208 /*
209 * Generic accessor for VM registers. Only called as long as HCR_TVM
210 * is set. If the guest enables the MMU, we stop trapping the VM
211 * sys_regs and leave it in complete control of the caches.
212 *
213 * Used by the cpu-specific code.
214 */
215 bool access_vm_reg(struct kvm_vcpu *vcpu,
216 const struct coproc_params *p,
217 const struct coproc_reg *r)
218 {
219 bool was_enabled = vcpu_has_cache_enabled(vcpu);
220
221 BUG_ON(!p->is_write);
222
223 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
224 if (p->is_64bit)
225 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
226
227 kvm_toggle_cache(vcpu, was_enabled);
228 return true;
229 }
230
231 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
232 const struct coproc_params *p,
233 const struct coproc_reg *r)
234 {
235 u64 reg;
236
237 if (!p->is_write)
238 return read_from_write_only(vcpu, p);
239
240 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
241 reg |= *vcpu_reg(vcpu, p->Rt1) ;
242
243 vgic_v3_dispatch_sgi(vcpu, reg);
244
245 return true;
246 }
247
248 static bool access_gic_sre(struct kvm_vcpu *vcpu,
249 const struct coproc_params *p,
250 const struct coproc_reg *r)
251 {
252 if (p->is_write)
253 return ignore_write(vcpu, p);
254
255 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
256
257 return true;
258 }
259
260 /*
261 * We could trap ID_DFR0 and tell the guest we don't support performance
262 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
263 * NAKed, so it will read the PMCR anyway.
264 *
265 * Therefore we tell the guest we have 0 counters. Unfortunately, we
266 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
267 * all PM registers, which doesn't crash the guest kernel at least.
268 */
269 static bool pm_fake(struct kvm_vcpu *vcpu,
270 const struct coproc_params *p,
271 const struct coproc_reg *r)
272 {
273 if (p->is_write)
274 return ignore_write(vcpu, p);
275 else
276 return read_zero(vcpu, p);
277 }
278
279 #define access_pmcr pm_fake
280 #define access_pmcntenset pm_fake
281 #define access_pmcntenclr pm_fake
282 #define access_pmovsr pm_fake
283 #define access_pmselr pm_fake
284 #define access_pmceid0 pm_fake
285 #define access_pmceid1 pm_fake
286 #define access_pmccntr pm_fake
287 #define access_pmxevtyper pm_fake
288 #define access_pmxevcntr pm_fake
289 #define access_pmuserenr pm_fake
290 #define access_pmintenset pm_fake
291 #define access_pmintenclr pm_fake
292
293 /* Architected CP15 registers.
294 * CRn denotes the primary register number, but is copied to the CRm in the
295 * user space API for 64-bit register access in line with the terminology used
296 * in the ARM ARM.
297 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
298 * registers preceding 32-bit ones.
299 */
300 static const struct coproc_reg cp15_regs[] = {
301 /* MPIDR: we use VMPIDR for guest access. */
302 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
303 NULL, reset_mpidr, c0_MPIDR },
304
305 /* CSSELR: swapped by interrupt.S. */
306 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
307 NULL, reset_unknown, c0_CSSELR },
308
309 /* ACTLR: trapped by HCR.TAC bit. */
310 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
311 access_actlr, reset_actlr, c1_ACTLR },
312
313 /* CPACR: swapped by interrupt.S. */
314 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
315 NULL, reset_val, c1_CPACR, 0x00000000 },
316
317 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
318 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
319 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
320 access_vm_reg, reset_unknown, c2_TTBR0 },
321 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
322 access_vm_reg, reset_unknown, c2_TTBR1 },
323 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
324 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
325 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
326
327
328 /* DACR: swapped by interrupt.S. */
329 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
330 access_vm_reg, reset_unknown, c3_DACR },
331
332 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
333 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
334 access_vm_reg, reset_unknown, c5_DFSR },
335 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
336 access_vm_reg, reset_unknown, c5_IFSR },
337 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
338 access_vm_reg, reset_unknown, c5_ADFSR },
339 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
340 access_vm_reg, reset_unknown, c5_AIFSR },
341
342 /* DFAR/IFAR: swapped by interrupt.S. */
343 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
344 access_vm_reg, reset_unknown, c6_DFAR },
345 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
346 access_vm_reg, reset_unknown, c6_IFAR },
347
348 /* PAR swapped by interrupt.S */
349 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
350
351 /*
352 * DC{C,I,CI}SW operations:
353 */
354 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
355 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
356 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
357 /*
358 * L2CTLR access (guest wants to know #CPUs).
359 */
360 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
361 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
362 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
363
364 /*
365 * Dummy performance monitor implementation.
366 */
367 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
368 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
369 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
370 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
371 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
372 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
373 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
374 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
375 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
376 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
377 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
378 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
379 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
380
381 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
382 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
383 access_vm_reg, reset_unknown, c10_PRRR},
384 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
385 access_vm_reg, reset_unknown, c10_NMRR},
386
387 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
388 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
389 access_vm_reg, reset_unknown, c10_AMAIR0},
390 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
391 access_vm_reg, reset_unknown, c10_AMAIR1},
392
393 /* ICC_SGI1R */
394 { CRm64(12), Op1( 0), is64, access_gic_sgi},
395
396 /* VBAR: swapped by interrupt.S. */
397 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
398 NULL, reset_val, c12_VBAR, 0x00000000 },
399
400 /* ICC_SRE */
401 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
402
403 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
404 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
405 access_vm_reg, reset_val, c13_CID, 0x00000000 },
406 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
407 NULL, reset_unknown, c13_TID_URW },
408 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
409 NULL, reset_unknown, c13_TID_URO },
410 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
411 NULL, reset_unknown, c13_TID_PRIV },
412
413 /* CNTKCTL: swapped by interrupt.S. */
414 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
415 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
416
417 /* The Configuration Base Address Register. */
418 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
419 };
420
421 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
422 {
423 unsigned int i;
424
425 for (i = 1; i < n; i++) {
426 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
427 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
428 return 1;
429 }
430 }
431
432 return 0;
433 }
434
435 /* Target specific emulation tables */
436 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
437
438 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
439 {
440 BUG_ON(check_reg_table(table->table, table->num));
441 target_tables[table->target] = table;
442 }
443
444 /* Get specific register table for this target. */
445 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
446 {
447 struct kvm_coproc_target_table *table;
448
449 table = target_tables[target];
450 *num = table->num;
451 return table->table;
452 }
453
454 #define reg_to_match_value(x) \
455 ({ \
456 unsigned long val; \
457 val = (x)->CRn << 11; \
458 val |= (x)->CRm << 7; \
459 val |= (x)->Op1 << 4; \
460 val |= (x)->Op2 << 1; \
461 val |= !(x)->is_64bit; \
462 val; \
463 })
464
465 static int match_reg(const void *key, const void *elt)
466 {
467 const unsigned long pval = (unsigned long)key;
468 const struct coproc_reg *r = elt;
469
470 return pval - reg_to_match_value(r);
471 }
472
473 static const struct coproc_reg *find_reg(const struct coproc_params *params,
474 const struct coproc_reg table[],
475 unsigned int num)
476 {
477 unsigned long pval = reg_to_match_value(params);
478
479 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
480 }
481
482 static int emulate_cp15(struct kvm_vcpu *vcpu,
483 const struct coproc_params *params)
484 {
485 size_t num;
486 const struct coproc_reg *table, *r;
487
488 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
489 params->CRm, params->Op2, params->is_write);
490
491 table = get_target_table(vcpu->arch.target, &num);
492
493 /* Search target-specific then generic table. */
494 r = find_reg(params, table, num);
495 if (!r)
496 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
497
498 if (likely(r)) {
499 /* If we don't have an accessor, we should never get here! */
500 BUG_ON(!r->access);
501
502 if (likely(r->access(vcpu, params, r))) {
503 /* Skip instruction, since it was emulated */
504 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
505 return 1;
506 }
507 /* If access function fails, it should complain. */
508 } else {
509 kvm_err("Unsupported guest CP15 access at: %08lx\n",
510 *vcpu_pc(vcpu));
511 print_cp_instr(params);
512 }
513 kvm_inject_undefined(vcpu);
514 return 1;
515 }
516
517 /**
518 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
519 * @vcpu: The VCPU pointer
520 * @run: The kvm_run struct
521 */
522 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
523 {
524 struct coproc_params params;
525
526 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
527 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
528 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
529 params.is_64bit = true;
530
531 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
532 params.Op2 = 0;
533 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
534 params.CRm = 0;
535
536 return emulate_cp15(vcpu, &params);
537 }
538
539 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
540 const struct coproc_reg *table, size_t num)
541 {
542 unsigned long i;
543
544 for (i = 0; i < num; i++)
545 if (table[i].reset)
546 table[i].reset(vcpu, &table[i]);
547 }
548
549 /**
550 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
551 * @vcpu: The VCPU pointer
552 * @run: The kvm_run struct
553 */
554 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
555 {
556 struct coproc_params params;
557
558 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
559 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
560 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
561 params.is_64bit = false;
562
563 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
564 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
565 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
566 params.Rt2 = 0;
567
568 return emulate_cp15(vcpu, &params);
569 }
570
571 /******************************************************************************
572 * Userspace API
573 *****************************************************************************/
574
575 static bool index_to_params(u64 id, struct coproc_params *params)
576 {
577 switch (id & KVM_REG_SIZE_MASK) {
578 case KVM_REG_SIZE_U32:
579 /* Any unused index bits means it's not valid. */
580 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
581 | KVM_REG_ARM_COPROC_MASK
582 | KVM_REG_ARM_32_CRN_MASK
583 | KVM_REG_ARM_CRM_MASK
584 | KVM_REG_ARM_OPC1_MASK
585 | KVM_REG_ARM_32_OPC2_MASK))
586 return false;
587
588 params->is_64bit = false;
589 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
590 >> KVM_REG_ARM_32_CRN_SHIFT);
591 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
592 >> KVM_REG_ARM_CRM_SHIFT);
593 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
594 >> KVM_REG_ARM_OPC1_SHIFT);
595 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
596 >> KVM_REG_ARM_32_OPC2_SHIFT);
597 return true;
598 case KVM_REG_SIZE_U64:
599 /* Any unused index bits means it's not valid. */
600 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
601 | KVM_REG_ARM_COPROC_MASK
602 | KVM_REG_ARM_CRM_MASK
603 | KVM_REG_ARM_OPC1_MASK))
604 return false;
605 params->is_64bit = true;
606 /* CRm to CRn: see cp15_to_index for details */
607 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
608 >> KVM_REG_ARM_CRM_SHIFT);
609 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
610 >> KVM_REG_ARM_OPC1_SHIFT);
611 params->Op2 = 0;
612 params->CRm = 0;
613 return true;
614 default:
615 return false;
616 }
617 }
618
619 /* Decode an index value, and find the cp15 coproc_reg entry. */
620 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
621 u64 id)
622 {
623 size_t num;
624 const struct coproc_reg *table, *r;
625 struct coproc_params params;
626
627 /* We only do cp15 for now. */
628 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
629 return NULL;
630
631 if (!index_to_params(id, &params))
632 return NULL;
633
634 table = get_target_table(vcpu->arch.target, &num);
635 r = find_reg(&params, table, num);
636 if (!r)
637 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
638
639 /* Not saved in the cp15 array? */
640 if (r && !r->reg)
641 r = NULL;
642
643 return r;
644 }
645
646 /*
647 * These are the invariant cp15 registers: we let the guest see the host
648 * versions of these, so they're part of the guest state.
649 *
650 * A future CPU may provide a mechanism to present different values to
651 * the guest, or a future kvm may trap them.
652 */
653 /* Unfortunately, there's no register-argument for mrc, so generate. */
654 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
655 static void get_##name(struct kvm_vcpu *v, \
656 const struct coproc_reg *r) \
657 { \
658 u32 val; \
659 \
660 asm volatile("mrc p15, " __stringify(op1) \
661 ", %0, c" __stringify(crn) \
662 ", c" __stringify(crm) \
663 ", " __stringify(op2) "\n" : "=r" (val)); \
664 ((struct coproc_reg *)r)->val = val; \
665 }
666
667 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
668 FUNCTION_FOR32(0, 0, 0, 1, CTR)
669 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
670 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
671 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
672 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
673 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
674 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
675 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
676 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
677 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
678 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
679 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
680 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
681 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
682 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
683 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
684 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
685 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
686 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
687 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
688
689 /* ->val is filled in by kvm_invariant_coproc_table_init() */
690 static struct coproc_reg invariant_cp15[] = {
691 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
692 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
693 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
694 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
695 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
696
697 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
698 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
699
700 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
701 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
702 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
703 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
704 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
705 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
706 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
707 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
708
709 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
710 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
711 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
712 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
713 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
714 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
715 };
716
717 /*
718 * Reads a register value from a userspace address to a kernel
719 * variable. Make sure that register size matches sizeof(*__val).
720 */
721 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
722 {
723 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
724 return -EFAULT;
725 return 0;
726 }
727
728 /*
729 * Writes a register value to a userspace address from a kernel variable.
730 * Make sure that register size matches sizeof(*__val).
731 */
732 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
733 {
734 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
735 return -EFAULT;
736 return 0;
737 }
738
739 static int get_invariant_cp15(u64 id, void __user *uaddr)
740 {
741 struct coproc_params params;
742 const struct coproc_reg *r;
743 int ret;
744
745 if (!index_to_params(id, &params))
746 return -ENOENT;
747
748 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
749 if (!r)
750 return -ENOENT;
751
752 ret = -ENOENT;
753 if (KVM_REG_SIZE(id) == 4) {
754 u32 val = r->val;
755
756 ret = reg_to_user(uaddr, &val, id);
757 } else if (KVM_REG_SIZE(id) == 8) {
758 ret = reg_to_user(uaddr, &r->val, id);
759 }
760 return ret;
761 }
762
763 static int set_invariant_cp15(u64 id, void __user *uaddr)
764 {
765 struct coproc_params params;
766 const struct coproc_reg *r;
767 int err;
768 u64 val;
769
770 if (!index_to_params(id, &params))
771 return -ENOENT;
772 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
773 if (!r)
774 return -ENOENT;
775
776 err = -ENOENT;
777 if (KVM_REG_SIZE(id) == 4) {
778 u32 val32;
779
780 err = reg_from_user(&val32, uaddr, id);
781 if (!err)
782 val = val32;
783 } else if (KVM_REG_SIZE(id) == 8) {
784 err = reg_from_user(&val, uaddr, id);
785 }
786 if (err)
787 return err;
788
789 /* This is what we mean by invariant: you can't change it. */
790 if (r->val != val)
791 return -EINVAL;
792
793 return 0;
794 }
795
796 static bool is_valid_cache(u32 val)
797 {
798 u32 level, ctype;
799
800 if (val >= CSSELR_MAX)
801 return false;
802
803 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
804 level = (val >> 1);
805 ctype = (cache_levels >> (level * 3)) & 7;
806
807 switch (ctype) {
808 case 0: /* No cache */
809 return false;
810 case 1: /* Instruction cache only */
811 return (val & 1);
812 case 2: /* Data cache only */
813 case 4: /* Unified cache */
814 return !(val & 1);
815 case 3: /* Separate instruction and data caches */
816 return true;
817 default: /* Reserved: we can't know instruction or data. */
818 return false;
819 }
820 }
821
822 /* Which cache CCSIDR represents depends on CSSELR value. */
823 static u32 get_ccsidr(u32 csselr)
824 {
825 u32 ccsidr;
826
827 /* Make sure noone else changes CSSELR during this! */
828 local_irq_disable();
829 /* Put value into CSSELR */
830 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
831 isb();
832 /* Read result out of CCSIDR */
833 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
834 local_irq_enable();
835
836 return ccsidr;
837 }
838
839 static int demux_c15_get(u64 id, void __user *uaddr)
840 {
841 u32 val;
842 u32 __user *uval = uaddr;
843
844 /* Fail if we have unknown bits set. */
845 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
846 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
847 return -ENOENT;
848
849 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
850 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
851 if (KVM_REG_SIZE(id) != 4)
852 return -ENOENT;
853 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
854 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
855 if (!is_valid_cache(val))
856 return -ENOENT;
857
858 return put_user(get_ccsidr(val), uval);
859 default:
860 return -ENOENT;
861 }
862 }
863
864 static int demux_c15_set(u64 id, void __user *uaddr)
865 {
866 u32 val, newval;
867 u32 __user *uval = uaddr;
868
869 /* Fail if we have unknown bits set. */
870 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
871 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
872 return -ENOENT;
873
874 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
875 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
876 if (KVM_REG_SIZE(id) != 4)
877 return -ENOENT;
878 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
879 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
880 if (!is_valid_cache(val))
881 return -ENOENT;
882
883 if (get_user(newval, uval))
884 return -EFAULT;
885
886 /* This is also invariant: you can't change it. */
887 if (newval != get_ccsidr(val))
888 return -EINVAL;
889 return 0;
890 default:
891 return -ENOENT;
892 }
893 }
894
895 #ifdef CONFIG_VFPv3
896 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
897 KVM_REG_ARM_VFP_FPSCR,
898 KVM_REG_ARM_VFP_FPINST,
899 KVM_REG_ARM_VFP_FPINST2,
900 KVM_REG_ARM_VFP_MVFR0,
901 KVM_REG_ARM_VFP_MVFR1,
902 KVM_REG_ARM_VFP_FPSID };
903
904 static unsigned int num_fp_regs(void)
905 {
906 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
907 return 32;
908 else
909 return 16;
910 }
911
912 static unsigned int num_vfp_regs(void)
913 {
914 /* Normal FP regs + control regs. */
915 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
916 }
917
918 static int copy_vfp_regids(u64 __user *uindices)
919 {
920 unsigned int i;
921 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
922 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
923
924 for (i = 0; i < num_fp_regs(); i++) {
925 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
926 uindices))
927 return -EFAULT;
928 uindices++;
929 }
930
931 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
932 if (put_user(u32reg | vfp_sysregs[i], uindices))
933 return -EFAULT;
934 uindices++;
935 }
936
937 return num_vfp_regs();
938 }
939
940 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
941 {
942 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
943 u32 val;
944
945 /* Fail if we have unknown bits set. */
946 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
947 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
948 return -ENOENT;
949
950 if (vfpid < num_fp_regs()) {
951 if (KVM_REG_SIZE(id) != 8)
952 return -ENOENT;
953 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
954 id);
955 }
956
957 /* FP control registers are all 32 bit. */
958 if (KVM_REG_SIZE(id) != 4)
959 return -ENOENT;
960
961 switch (vfpid) {
962 case KVM_REG_ARM_VFP_FPEXC:
963 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
964 case KVM_REG_ARM_VFP_FPSCR:
965 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
966 case KVM_REG_ARM_VFP_FPINST:
967 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
968 case KVM_REG_ARM_VFP_FPINST2:
969 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
970 case KVM_REG_ARM_VFP_MVFR0:
971 val = fmrx(MVFR0);
972 return reg_to_user(uaddr, &val, id);
973 case KVM_REG_ARM_VFP_MVFR1:
974 val = fmrx(MVFR1);
975 return reg_to_user(uaddr, &val, id);
976 case KVM_REG_ARM_VFP_FPSID:
977 val = fmrx(FPSID);
978 return reg_to_user(uaddr, &val, id);
979 default:
980 return -ENOENT;
981 }
982 }
983
984 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
985 {
986 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
987 u32 val;
988
989 /* Fail if we have unknown bits set. */
990 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
991 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
992 return -ENOENT;
993
994 if (vfpid < num_fp_regs()) {
995 if (KVM_REG_SIZE(id) != 8)
996 return -ENOENT;
997 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
998 uaddr, id);
999 }
1000
1001 /* FP control registers are all 32 bit. */
1002 if (KVM_REG_SIZE(id) != 4)
1003 return -ENOENT;
1004
1005 switch (vfpid) {
1006 case KVM_REG_ARM_VFP_FPEXC:
1007 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1008 case KVM_REG_ARM_VFP_FPSCR:
1009 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1010 case KVM_REG_ARM_VFP_FPINST:
1011 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1012 case KVM_REG_ARM_VFP_FPINST2:
1013 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1014 /* These are invariant. */
1015 case KVM_REG_ARM_VFP_MVFR0:
1016 if (reg_from_user(&val, uaddr, id))
1017 return -EFAULT;
1018 if (val != fmrx(MVFR0))
1019 return -EINVAL;
1020 return 0;
1021 case KVM_REG_ARM_VFP_MVFR1:
1022 if (reg_from_user(&val, uaddr, id))
1023 return -EFAULT;
1024 if (val != fmrx(MVFR1))
1025 return -EINVAL;
1026 return 0;
1027 case KVM_REG_ARM_VFP_FPSID:
1028 if (reg_from_user(&val, uaddr, id))
1029 return -EFAULT;
1030 if (val != fmrx(FPSID))
1031 return -EINVAL;
1032 return 0;
1033 default:
1034 return -ENOENT;
1035 }
1036 }
1037 #else /* !CONFIG_VFPv3 */
1038 static unsigned int num_vfp_regs(void)
1039 {
1040 return 0;
1041 }
1042
1043 static int copy_vfp_regids(u64 __user *uindices)
1044 {
1045 return 0;
1046 }
1047
1048 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1049 {
1050 return -ENOENT;
1051 }
1052
1053 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1054 {
1055 return -ENOENT;
1056 }
1057 #endif /* !CONFIG_VFPv3 */
1058
1059 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1060 {
1061 const struct coproc_reg *r;
1062 void __user *uaddr = (void __user *)(long)reg->addr;
1063 int ret;
1064
1065 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1066 return demux_c15_get(reg->id, uaddr);
1067
1068 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1069 return vfp_get_reg(vcpu, reg->id, uaddr);
1070
1071 r = index_to_coproc_reg(vcpu, reg->id);
1072 if (!r)
1073 return get_invariant_cp15(reg->id, uaddr);
1074
1075 ret = -ENOENT;
1076 if (KVM_REG_SIZE(reg->id) == 8) {
1077 u64 val;
1078
1079 val = vcpu_cp15_reg64_get(vcpu, r);
1080 ret = reg_to_user(uaddr, &val, reg->id);
1081 } else if (KVM_REG_SIZE(reg->id) == 4) {
1082 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1083 }
1084
1085 return ret;
1086 }
1087
1088 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1089 {
1090 const struct coproc_reg *r;
1091 void __user *uaddr = (void __user *)(long)reg->addr;
1092 int ret;
1093
1094 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1095 return demux_c15_set(reg->id, uaddr);
1096
1097 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1098 return vfp_set_reg(vcpu, reg->id, uaddr);
1099
1100 r = index_to_coproc_reg(vcpu, reg->id);
1101 if (!r)
1102 return set_invariant_cp15(reg->id, uaddr);
1103
1104 ret = -ENOENT;
1105 if (KVM_REG_SIZE(reg->id) == 8) {
1106 u64 val;
1107
1108 ret = reg_from_user(&val, uaddr, reg->id);
1109 if (!ret)
1110 vcpu_cp15_reg64_set(vcpu, r, val);
1111 } else if (KVM_REG_SIZE(reg->id) == 4) {
1112 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1113 }
1114
1115 return ret;
1116 }
1117
1118 static unsigned int num_demux_regs(void)
1119 {
1120 unsigned int i, count = 0;
1121
1122 for (i = 0; i < CSSELR_MAX; i++)
1123 if (is_valid_cache(i))
1124 count++;
1125
1126 return count;
1127 }
1128
1129 static int write_demux_regids(u64 __user *uindices)
1130 {
1131 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1132 unsigned int i;
1133
1134 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1135 for (i = 0; i < CSSELR_MAX; i++) {
1136 if (!is_valid_cache(i))
1137 continue;
1138 if (put_user(val | i, uindices))
1139 return -EFAULT;
1140 uindices++;
1141 }
1142 return 0;
1143 }
1144
1145 static u64 cp15_to_index(const struct coproc_reg *reg)
1146 {
1147 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1148 if (reg->is_64bit) {
1149 val |= KVM_REG_SIZE_U64;
1150 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1151 /*
1152 * CRn always denotes the primary coproc. reg. nr. for the
1153 * in-kernel representation, but the user space API uses the
1154 * CRm for the encoding, because it is modelled after the
1155 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1156 * B3-1445
1157 */
1158 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1159 } else {
1160 val |= KVM_REG_SIZE_U32;
1161 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1162 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1163 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1164 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1165 }
1166 return val;
1167 }
1168
1169 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1170 {
1171 if (!*uind)
1172 return true;
1173
1174 if (put_user(cp15_to_index(reg), *uind))
1175 return false;
1176
1177 (*uind)++;
1178 return true;
1179 }
1180
1181 /* Assumed ordered tables, see kvm_coproc_table_init. */
1182 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1183 {
1184 const struct coproc_reg *i1, *i2, *end1, *end2;
1185 unsigned int total = 0;
1186 size_t num;
1187
1188 /* We check for duplicates here, to allow arch-specific overrides. */
1189 i1 = get_target_table(vcpu->arch.target, &num);
1190 end1 = i1 + num;
1191 i2 = cp15_regs;
1192 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1193
1194 BUG_ON(i1 == end1 || i2 == end2);
1195
1196 /* Walk carefully, as both tables may refer to the same register. */
1197 while (i1 || i2) {
1198 int cmp = cmp_reg(i1, i2);
1199 /* target-specific overrides generic entry. */
1200 if (cmp <= 0) {
1201 /* Ignore registers we trap but don't save. */
1202 if (i1->reg) {
1203 if (!copy_reg_to_user(i1, &uind))
1204 return -EFAULT;
1205 total++;
1206 }
1207 } else {
1208 /* Ignore registers we trap but don't save. */
1209 if (i2->reg) {
1210 if (!copy_reg_to_user(i2, &uind))
1211 return -EFAULT;
1212 total++;
1213 }
1214 }
1215
1216 if (cmp <= 0 && ++i1 == end1)
1217 i1 = NULL;
1218 if (cmp >= 0 && ++i2 == end2)
1219 i2 = NULL;
1220 }
1221 return total;
1222 }
1223
1224 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1225 {
1226 return ARRAY_SIZE(invariant_cp15)
1227 + num_demux_regs()
1228 + num_vfp_regs()
1229 + walk_cp15(vcpu, (u64 __user *)NULL);
1230 }
1231
1232 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1233 {
1234 unsigned int i;
1235 int err;
1236
1237 /* Then give them all the invariant registers' indices. */
1238 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1239 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1240 return -EFAULT;
1241 uindices++;
1242 }
1243
1244 err = walk_cp15(vcpu, uindices);
1245 if (err < 0)
1246 return err;
1247 uindices += err;
1248
1249 err = copy_vfp_regids(uindices);
1250 if (err < 0)
1251 return err;
1252 uindices += err;
1253
1254 return write_demux_regids(uindices);
1255 }
1256
1257 void kvm_coproc_table_init(void)
1258 {
1259 unsigned int i;
1260
1261 /* Make sure tables are unique and in order. */
1262 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1263 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1264
1265 /* We abuse the reset function to overwrite the table itself. */
1266 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1267 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1268
1269 /*
1270 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1271 *
1272 * If software reads the Cache Type fields from Ctype1
1273 * upwards, once it has seen a value of 0b000, no caches
1274 * exist at further-out levels of the hierarchy. So, for
1275 * example, if Ctype3 is the first Cache Type field with a
1276 * value of 0b000, the values of Ctype4 to Ctype7 must be
1277 * ignored.
1278 */
1279 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1280 for (i = 0; i < 7; i++)
1281 if (((cache_levels >> (i*3)) & 7) == 0)
1282 break;
1283 /* Clear all higher bits. */
1284 cache_levels &= (1 << (i*3))-1;
1285 }
1286
1287 /**
1288 * kvm_reset_coprocs - sets cp15 registers to reset value
1289 * @vcpu: The VCPU pointer
1290 *
1291 * This function finds the right table above and sets the registers on the
1292 * virtual CPU struct to their architecturally defined reset values.
1293 */
1294 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1295 {
1296 size_t num;
1297 const struct coproc_reg *table;
1298
1299 /* Catch someone adding a register without putting in reset entry. */
1300 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1301
1302 /* Generic chip reset first (so target could override). */
1303 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1304
1305 table = get_target_table(vcpu->arch.target, &num);
1306 reset_coproc_regs(vcpu, table, num);
1307
1308 for (num = 1; num < NR_CP15_REGS; num++)
1309 if (vcpu_cp15(vcpu, num) == 0x42424242)
1310 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1311 }