]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/kvm/coproc.c
Merge tag 'edac_fix_for_4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[mirror_ubuntu-artful-kernel.git] / arch / arm / kvm / coproc.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 */
19
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34
35 #include "trace.h"
36 #include "coproc.h"
37
38
39 /******************************************************************************
40 * Co-processor emulation
41 *****************************************************************************/
42
43 static bool write_to_read_only(struct kvm_vcpu *vcpu,
44 const struct coproc_params *params)
45 {
46 WARN_ONCE(1, "CP15 write to read-only register\n");
47 print_cp_instr(params);
48 kvm_inject_undefined(vcpu);
49 return false;
50 }
51
52 static bool read_from_write_only(struct kvm_vcpu *vcpu,
53 const struct coproc_params *params)
54 {
55 WARN_ONCE(1, "CP15 read to write-only register\n");
56 print_cp_instr(params);
57 kvm_inject_undefined(vcpu);
58 return false;
59 }
60
61 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
62 static u32 cache_levels;
63
64 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
65 #define CSSELR_MAX 12
66
67 /*
68 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
69 * of cp15 registers can be viewed either as couple of two u32 registers
70 * or one u64 register. Current u64 register encoding is that least
71 * significant u32 word is followed by most significant u32 word.
72 */
73 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
74 const struct coproc_reg *r,
75 u64 val)
76 {
77 vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
78 vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
79 }
80
81 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
82 const struct coproc_reg *r)
83 {
84 u64 val;
85
86 val = vcpu_cp15(vcpu, r->reg + 1);
87 val = val << 32;
88 val = val | vcpu_cp15(vcpu, r->reg);
89 return val;
90 }
91
92 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
93 {
94 kvm_inject_undefined(vcpu);
95 return 1;
96 }
97
98 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
99 {
100 /*
101 * We can get here, if the host has been built without VFPv3 support,
102 * but the guest attempted a floating point operation.
103 */
104 kvm_inject_undefined(vcpu);
105 return 1;
106 }
107
108 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
109 {
110 kvm_inject_undefined(vcpu);
111 return 1;
112 }
113
114 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
115 {
116 kvm_inject_undefined(vcpu);
117 return 1;
118 }
119
120 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
121 {
122 /*
123 * Compute guest MPIDR. We build a virtual cluster out of the
124 * vcpu_id, but we read the 'U' bit from the underlying
125 * hardware directly.
126 */
127 vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
128 ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
129 (vcpu->vcpu_id & 3));
130 }
131
132 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
133 static bool access_actlr(struct kvm_vcpu *vcpu,
134 const struct coproc_params *p,
135 const struct coproc_reg *r)
136 {
137 if (p->is_write)
138 return ignore_write(vcpu, p);
139
140 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
141 return true;
142 }
143
144 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
145 static bool access_cbar(struct kvm_vcpu *vcpu,
146 const struct coproc_params *p,
147 const struct coproc_reg *r)
148 {
149 if (p->is_write)
150 return write_to_read_only(vcpu, p);
151 return read_zero(vcpu, p);
152 }
153
154 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
155 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
156 const struct coproc_params *p,
157 const struct coproc_reg *r)
158 {
159 if (p->is_write)
160 return ignore_write(vcpu, p);
161
162 *vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
163 return true;
164 }
165
166 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
167 {
168 u32 l2ctlr, ncores;
169
170 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
171 l2ctlr &= ~(3 << 24);
172 ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
173 /* How many cores in the current cluster and the next ones */
174 ncores -= (vcpu->vcpu_id & ~3);
175 /* Cap it to the maximum number of cores in a single cluster */
176 ncores = min(ncores, 3U);
177 l2ctlr |= (ncores & 3) << 24;
178
179 vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
180 }
181
182 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
183 {
184 u32 actlr;
185
186 /* ACTLR contains SMP bit: make sure you create all cpus first! */
187 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
188 /* Make the SMP bit consistent with the guest configuration */
189 if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
190 actlr |= 1U << 6;
191 else
192 actlr &= ~(1U << 6);
193
194 vcpu_cp15(vcpu, c1_ACTLR) = actlr;
195 }
196
197 /*
198 * TRM entries: A7:4.3.50, A15:4.3.49
199 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
200 */
201 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
202 const struct coproc_params *p,
203 const struct coproc_reg *r)
204 {
205 if (p->is_write)
206 return ignore_write(vcpu, p);
207
208 *vcpu_reg(vcpu, p->Rt1) = 0;
209 return true;
210 }
211
212 /*
213 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
214 */
215 static bool access_dcsw(struct kvm_vcpu *vcpu,
216 const struct coproc_params *p,
217 const struct coproc_reg *r)
218 {
219 if (!p->is_write)
220 return read_from_write_only(vcpu, p);
221
222 kvm_set_way_flush(vcpu);
223 return true;
224 }
225
226 /*
227 * Generic accessor for VM registers. Only called as long as HCR_TVM
228 * is set. If the guest enables the MMU, we stop trapping the VM
229 * sys_regs and leave it in complete control of the caches.
230 *
231 * Used by the cpu-specific code.
232 */
233 bool access_vm_reg(struct kvm_vcpu *vcpu,
234 const struct coproc_params *p,
235 const struct coproc_reg *r)
236 {
237 bool was_enabled = vcpu_has_cache_enabled(vcpu);
238
239 BUG_ON(!p->is_write);
240
241 vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
242 if (p->is_64bit)
243 vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
244
245 kvm_toggle_cache(vcpu, was_enabled);
246 return true;
247 }
248
249 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
250 const struct coproc_params *p,
251 const struct coproc_reg *r)
252 {
253 u64 reg;
254
255 if (!p->is_write)
256 return read_from_write_only(vcpu, p);
257
258 reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
259 reg |= *vcpu_reg(vcpu, p->Rt1) ;
260
261 vgic_v3_dispatch_sgi(vcpu, reg);
262
263 return true;
264 }
265
266 static bool access_gic_sre(struct kvm_vcpu *vcpu,
267 const struct coproc_params *p,
268 const struct coproc_reg *r)
269 {
270 if (p->is_write)
271 return ignore_write(vcpu, p);
272
273 *vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
274
275 return true;
276 }
277
278 /*
279 * We could trap ID_DFR0 and tell the guest we don't support performance
280 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
281 * NAKed, so it will read the PMCR anyway.
282 *
283 * Therefore we tell the guest we have 0 counters. Unfortunately, we
284 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
285 * all PM registers, which doesn't crash the guest kernel at least.
286 */
287 static bool pm_fake(struct kvm_vcpu *vcpu,
288 const struct coproc_params *p,
289 const struct coproc_reg *r)
290 {
291 if (p->is_write)
292 return ignore_write(vcpu, p);
293 else
294 return read_zero(vcpu, p);
295 }
296
297 #define access_pmcr pm_fake
298 #define access_pmcntenset pm_fake
299 #define access_pmcntenclr pm_fake
300 #define access_pmovsr pm_fake
301 #define access_pmselr pm_fake
302 #define access_pmceid0 pm_fake
303 #define access_pmceid1 pm_fake
304 #define access_pmccntr pm_fake
305 #define access_pmxevtyper pm_fake
306 #define access_pmxevcntr pm_fake
307 #define access_pmuserenr pm_fake
308 #define access_pmintenset pm_fake
309 #define access_pmintenclr pm_fake
310
311 /* Architected CP15 registers.
312 * CRn denotes the primary register number, but is copied to the CRm in the
313 * user space API for 64-bit register access in line with the terminology used
314 * in the ARM ARM.
315 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
316 * registers preceding 32-bit ones.
317 */
318 static const struct coproc_reg cp15_regs[] = {
319 /* MPIDR: we use VMPIDR for guest access. */
320 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
321 NULL, reset_mpidr, c0_MPIDR },
322
323 /* CSSELR: swapped by interrupt.S. */
324 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
325 NULL, reset_unknown, c0_CSSELR },
326
327 /* ACTLR: trapped by HCR.TAC bit. */
328 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
329 access_actlr, reset_actlr, c1_ACTLR },
330
331 /* CPACR: swapped by interrupt.S. */
332 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
333 NULL, reset_val, c1_CPACR, 0x00000000 },
334
335 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
336 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
337 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
338 access_vm_reg, reset_unknown, c2_TTBR0 },
339 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
340 access_vm_reg, reset_unknown, c2_TTBR1 },
341 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
342 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
343 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
344
345
346 /* DACR: swapped by interrupt.S. */
347 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
348 access_vm_reg, reset_unknown, c3_DACR },
349
350 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
351 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
352 access_vm_reg, reset_unknown, c5_DFSR },
353 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
354 access_vm_reg, reset_unknown, c5_IFSR },
355 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
356 access_vm_reg, reset_unknown, c5_ADFSR },
357 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
358 access_vm_reg, reset_unknown, c5_AIFSR },
359
360 /* DFAR/IFAR: swapped by interrupt.S. */
361 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
362 access_vm_reg, reset_unknown, c6_DFAR },
363 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
364 access_vm_reg, reset_unknown, c6_IFAR },
365
366 /* PAR swapped by interrupt.S */
367 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
368
369 /*
370 * DC{C,I,CI}SW operations:
371 */
372 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
373 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
374 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
375 /*
376 * L2CTLR access (guest wants to know #CPUs).
377 */
378 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
379 access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
380 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
381
382 /*
383 * Dummy performance monitor implementation.
384 */
385 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
386 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
387 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
388 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
389 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
390 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
391 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
392 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
393 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
394 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
395 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
396 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
397 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
398
399 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
400 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
401 access_vm_reg, reset_unknown, c10_PRRR},
402 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
403 access_vm_reg, reset_unknown, c10_NMRR},
404
405 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
406 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
407 access_vm_reg, reset_unknown, c10_AMAIR0},
408 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
409 access_vm_reg, reset_unknown, c10_AMAIR1},
410
411 /* ICC_SGI1R */
412 { CRm64(12), Op1( 0), is64, access_gic_sgi},
413
414 /* VBAR: swapped by interrupt.S. */
415 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
416 NULL, reset_val, c12_VBAR, 0x00000000 },
417
418 /* ICC_SRE */
419 { CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
420
421 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
422 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
423 access_vm_reg, reset_val, c13_CID, 0x00000000 },
424 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
425 NULL, reset_unknown, c13_TID_URW },
426 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
427 NULL, reset_unknown, c13_TID_URO },
428 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
429 NULL, reset_unknown, c13_TID_PRIV },
430
431 /* CNTKCTL: swapped by interrupt.S. */
432 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
433 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
434
435 /* The Configuration Base Address Register. */
436 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
437 };
438
439 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
440 {
441 unsigned int i;
442
443 for (i = 1; i < n; i++) {
444 if (cmp_reg(&table[i-1], &table[i]) >= 0) {
445 kvm_err("reg table %p out of order (%d)\n", table, i - 1);
446 return 1;
447 }
448 }
449
450 return 0;
451 }
452
453 /* Target specific emulation tables */
454 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
455
456 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
457 {
458 BUG_ON(check_reg_table(table->table, table->num));
459 target_tables[table->target] = table;
460 }
461
462 /* Get specific register table for this target. */
463 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
464 {
465 struct kvm_coproc_target_table *table;
466
467 table = target_tables[target];
468 *num = table->num;
469 return table->table;
470 }
471
472 #define reg_to_match_value(x) \
473 ({ \
474 unsigned long val; \
475 val = (x)->CRn << 11; \
476 val |= (x)->CRm << 7; \
477 val |= (x)->Op1 << 4; \
478 val |= (x)->Op2 << 1; \
479 val |= !(x)->is_64bit; \
480 val; \
481 })
482
483 static int match_reg(const void *key, const void *elt)
484 {
485 const unsigned long pval = (unsigned long)key;
486 const struct coproc_reg *r = elt;
487
488 return pval - reg_to_match_value(r);
489 }
490
491 static const struct coproc_reg *find_reg(const struct coproc_params *params,
492 const struct coproc_reg table[],
493 unsigned int num)
494 {
495 unsigned long pval = reg_to_match_value(params);
496
497 return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
498 }
499
500 static int emulate_cp15(struct kvm_vcpu *vcpu,
501 const struct coproc_params *params)
502 {
503 size_t num;
504 const struct coproc_reg *table, *r;
505
506 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
507 params->CRm, params->Op2, params->is_write);
508
509 table = get_target_table(vcpu->arch.target, &num);
510
511 /* Search target-specific then generic table. */
512 r = find_reg(params, table, num);
513 if (!r)
514 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
515
516 if (likely(r)) {
517 /* If we don't have an accessor, we should never get here! */
518 BUG_ON(!r->access);
519
520 if (likely(r->access(vcpu, params, r))) {
521 /* Skip instruction, since it was emulated */
522 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
523 }
524 } else {
525 /* If access function fails, it should complain. */
526 kvm_err("Unsupported guest CP15 access at: %08lx\n",
527 *vcpu_pc(vcpu));
528 print_cp_instr(params);
529 kvm_inject_undefined(vcpu);
530 }
531
532 return 1;
533 }
534
535 /**
536 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
537 * @vcpu: The VCPU pointer
538 * @run: The kvm_run struct
539 */
540 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
541 {
542 struct coproc_params params;
543
544 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
545 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
546 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
547 params.is_64bit = true;
548
549 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
550 params.Op2 = 0;
551 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
552 params.CRm = 0;
553
554 return emulate_cp15(vcpu, &params);
555 }
556
557 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
558 const struct coproc_reg *table, size_t num)
559 {
560 unsigned long i;
561
562 for (i = 0; i < num; i++)
563 if (table[i].reset)
564 table[i].reset(vcpu, &table[i]);
565 }
566
567 /**
568 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
569 * @vcpu: The VCPU pointer
570 * @run: The kvm_run struct
571 */
572 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
573 {
574 struct coproc_params params;
575
576 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
577 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
578 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
579 params.is_64bit = false;
580
581 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
582 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
583 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
584 params.Rt2 = 0;
585
586 return emulate_cp15(vcpu, &params);
587 }
588
589 /******************************************************************************
590 * Userspace API
591 *****************************************************************************/
592
593 static bool index_to_params(u64 id, struct coproc_params *params)
594 {
595 switch (id & KVM_REG_SIZE_MASK) {
596 case KVM_REG_SIZE_U32:
597 /* Any unused index bits means it's not valid. */
598 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
599 | KVM_REG_ARM_COPROC_MASK
600 | KVM_REG_ARM_32_CRN_MASK
601 | KVM_REG_ARM_CRM_MASK
602 | KVM_REG_ARM_OPC1_MASK
603 | KVM_REG_ARM_32_OPC2_MASK))
604 return false;
605
606 params->is_64bit = false;
607 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
608 >> KVM_REG_ARM_32_CRN_SHIFT);
609 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
610 >> KVM_REG_ARM_CRM_SHIFT);
611 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
612 >> KVM_REG_ARM_OPC1_SHIFT);
613 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
614 >> KVM_REG_ARM_32_OPC2_SHIFT);
615 return true;
616 case KVM_REG_SIZE_U64:
617 /* Any unused index bits means it's not valid. */
618 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
619 | KVM_REG_ARM_COPROC_MASK
620 | KVM_REG_ARM_CRM_MASK
621 | KVM_REG_ARM_OPC1_MASK))
622 return false;
623 params->is_64bit = true;
624 /* CRm to CRn: see cp15_to_index for details */
625 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
626 >> KVM_REG_ARM_CRM_SHIFT);
627 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
628 >> KVM_REG_ARM_OPC1_SHIFT);
629 params->Op2 = 0;
630 params->CRm = 0;
631 return true;
632 default:
633 return false;
634 }
635 }
636
637 /* Decode an index value, and find the cp15 coproc_reg entry. */
638 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
639 u64 id)
640 {
641 size_t num;
642 const struct coproc_reg *table, *r;
643 struct coproc_params params;
644
645 /* We only do cp15 for now. */
646 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
647 return NULL;
648
649 if (!index_to_params(id, &params))
650 return NULL;
651
652 table = get_target_table(vcpu->arch.target, &num);
653 r = find_reg(&params, table, num);
654 if (!r)
655 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
656
657 /* Not saved in the cp15 array? */
658 if (r && !r->reg)
659 r = NULL;
660
661 return r;
662 }
663
664 /*
665 * These are the invariant cp15 registers: we let the guest see the host
666 * versions of these, so they're part of the guest state.
667 *
668 * A future CPU may provide a mechanism to present different values to
669 * the guest, or a future kvm may trap them.
670 */
671 /* Unfortunately, there's no register-argument for mrc, so generate. */
672 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
673 static void get_##name(struct kvm_vcpu *v, \
674 const struct coproc_reg *r) \
675 { \
676 u32 val; \
677 \
678 asm volatile("mrc p15, " __stringify(op1) \
679 ", %0, c" __stringify(crn) \
680 ", c" __stringify(crm) \
681 ", " __stringify(op2) "\n" : "=r" (val)); \
682 ((struct coproc_reg *)r)->val = val; \
683 }
684
685 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
686 FUNCTION_FOR32(0, 0, 0, 1, CTR)
687 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
688 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
689 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
690 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
691 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
692 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
693 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
694 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
695 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
696 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
697 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
698 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
699 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
700 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
701 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
702 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
703 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
704 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
705 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
706
707 /* ->val is filled in by kvm_invariant_coproc_table_init() */
708 static struct coproc_reg invariant_cp15[] = {
709 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
710 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
711 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
712 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
713 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
714
715 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
716 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
717
718 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
719 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
720 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
721 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
722 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
723 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
724 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
725 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
726
727 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
728 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
729 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
730 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
731 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
732 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
733 };
734
735 /*
736 * Reads a register value from a userspace address to a kernel
737 * variable. Make sure that register size matches sizeof(*__val).
738 */
739 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
740 {
741 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
742 return -EFAULT;
743 return 0;
744 }
745
746 /*
747 * Writes a register value to a userspace address from a kernel variable.
748 * Make sure that register size matches sizeof(*__val).
749 */
750 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
751 {
752 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
753 return -EFAULT;
754 return 0;
755 }
756
757 static int get_invariant_cp15(u64 id, void __user *uaddr)
758 {
759 struct coproc_params params;
760 const struct coproc_reg *r;
761 int ret;
762
763 if (!index_to_params(id, &params))
764 return -ENOENT;
765
766 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
767 if (!r)
768 return -ENOENT;
769
770 ret = -ENOENT;
771 if (KVM_REG_SIZE(id) == 4) {
772 u32 val = r->val;
773
774 ret = reg_to_user(uaddr, &val, id);
775 } else if (KVM_REG_SIZE(id) == 8) {
776 ret = reg_to_user(uaddr, &r->val, id);
777 }
778 return ret;
779 }
780
781 static int set_invariant_cp15(u64 id, void __user *uaddr)
782 {
783 struct coproc_params params;
784 const struct coproc_reg *r;
785 int err;
786 u64 val;
787
788 if (!index_to_params(id, &params))
789 return -ENOENT;
790 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
791 if (!r)
792 return -ENOENT;
793
794 err = -ENOENT;
795 if (KVM_REG_SIZE(id) == 4) {
796 u32 val32;
797
798 err = reg_from_user(&val32, uaddr, id);
799 if (!err)
800 val = val32;
801 } else if (KVM_REG_SIZE(id) == 8) {
802 err = reg_from_user(&val, uaddr, id);
803 }
804 if (err)
805 return err;
806
807 /* This is what we mean by invariant: you can't change it. */
808 if (r->val != val)
809 return -EINVAL;
810
811 return 0;
812 }
813
814 static bool is_valid_cache(u32 val)
815 {
816 u32 level, ctype;
817
818 if (val >= CSSELR_MAX)
819 return false;
820
821 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
822 level = (val >> 1);
823 ctype = (cache_levels >> (level * 3)) & 7;
824
825 switch (ctype) {
826 case 0: /* No cache */
827 return false;
828 case 1: /* Instruction cache only */
829 return (val & 1);
830 case 2: /* Data cache only */
831 case 4: /* Unified cache */
832 return !(val & 1);
833 case 3: /* Separate instruction and data caches */
834 return true;
835 default: /* Reserved: we can't know instruction or data. */
836 return false;
837 }
838 }
839
840 /* Which cache CCSIDR represents depends on CSSELR value. */
841 static u32 get_ccsidr(u32 csselr)
842 {
843 u32 ccsidr;
844
845 /* Make sure noone else changes CSSELR during this! */
846 local_irq_disable();
847 /* Put value into CSSELR */
848 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
849 isb();
850 /* Read result out of CCSIDR */
851 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
852 local_irq_enable();
853
854 return ccsidr;
855 }
856
857 static int demux_c15_get(u64 id, void __user *uaddr)
858 {
859 u32 val;
860 u32 __user *uval = uaddr;
861
862 /* Fail if we have unknown bits set. */
863 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
864 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
865 return -ENOENT;
866
867 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
868 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
869 if (KVM_REG_SIZE(id) != 4)
870 return -ENOENT;
871 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
872 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
873 if (!is_valid_cache(val))
874 return -ENOENT;
875
876 return put_user(get_ccsidr(val), uval);
877 default:
878 return -ENOENT;
879 }
880 }
881
882 static int demux_c15_set(u64 id, void __user *uaddr)
883 {
884 u32 val, newval;
885 u32 __user *uval = uaddr;
886
887 /* Fail if we have unknown bits set. */
888 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
889 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
890 return -ENOENT;
891
892 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
893 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
894 if (KVM_REG_SIZE(id) != 4)
895 return -ENOENT;
896 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
897 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
898 if (!is_valid_cache(val))
899 return -ENOENT;
900
901 if (get_user(newval, uval))
902 return -EFAULT;
903
904 /* This is also invariant: you can't change it. */
905 if (newval != get_ccsidr(val))
906 return -EINVAL;
907 return 0;
908 default:
909 return -ENOENT;
910 }
911 }
912
913 #ifdef CONFIG_VFPv3
914 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
915 KVM_REG_ARM_VFP_FPSCR,
916 KVM_REG_ARM_VFP_FPINST,
917 KVM_REG_ARM_VFP_FPINST2,
918 KVM_REG_ARM_VFP_MVFR0,
919 KVM_REG_ARM_VFP_MVFR1,
920 KVM_REG_ARM_VFP_FPSID };
921
922 static unsigned int num_fp_regs(void)
923 {
924 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
925 return 32;
926 else
927 return 16;
928 }
929
930 static unsigned int num_vfp_regs(void)
931 {
932 /* Normal FP regs + control regs. */
933 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
934 }
935
936 static int copy_vfp_regids(u64 __user *uindices)
937 {
938 unsigned int i;
939 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
940 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
941
942 for (i = 0; i < num_fp_regs(); i++) {
943 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
944 uindices))
945 return -EFAULT;
946 uindices++;
947 }
948
949 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
950 if (put_user(u32reg | vfp_sysregs[i], uindices))
951 return -EFAULT;
952 uindices++;
953 }
954
955 return num_vfp_regs();
956 }
957
958 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
959 {
960 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
961 u32 val;
962
963 /* Fail if we have unknown bits set. */
964 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
965 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
966 return -ENOENT;
967
968 if (vfpid < num_fp_regs()) {
969 if (KVM_REG_SIZE(id) != 8)
970 return -ENOENT;
971 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
972 id);
973 }
974
975 /* FP control registers are all 32 bit. */
976 if (KVM_REG_SIZE(id) != 4)
977 return -ENOENT;
978
979 switch (vfpid) {
980 case KVM_REG_ARM_VFP_FPEXC:
981 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
982 case KVM_REG_ARM_VFP_FPSCR:
983 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
984 case KVM_REG_ARM_VFP_FPINST:
985 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
986 case KVM_REG_ARM_VFP_FPINST2:
987 return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
988 case KVM_REG_ARM_VFP_MVFR0:
989 val = fmrx(MVFR0);
990 return reg_to_user(uaddr, &val, id);
991 case KVM_REG_ARM_VFP_MVFR1:
992 val = fmrx(MVFR1);
993 return reg_to_user(uaddr, &val, id);
994 case KVM_REG_ARM_VFP_FPSID:
995 val = fmrx(FPSID);
996 return reg_to_user(uaddr, &val, id);
997 default:
998 return -ENOENT;
999 }
1000 }
1001
1002 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1003 {
1004 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1005 u32 val;
1006
1007 /* Fail if we have unknown bits set. */
1008 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1009 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1010 return -ENOENT;
1011
1012 if (vfpid < num_fp_regs()) {
1013 if (KVM_REG_SIZE(id) != 8)
1014 return -ENOENT;
1015 return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1016 uaddr, id);
1017 }
1018
1019 /* FP control registers are all 32 bit. */
1020 if (KVM_REG_SIZE(id) != 4)
1021 return -ENOENT;
1022
1023 switch (vfpid) {
1024 case KVM_REG_ARM_VFP_FPEXC:
1025 return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1026 case KVM_REG_ARM_VFP_FPSCR:
1027 return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1028 case KVM_REG_ARM_VFP_FPINST:
1029 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1030 case KVM_REG_ARM_VFP_FPINST2:
1031 return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1032 /* These are invariant. */
1033 case KVM_REG_ARM_VFP_MVFR0:
1034 if (reg_from_user(&val, uaddr, id))
1035 return -EFAULT;
1036 if (val != fmrx(MVFR0))
1037 return -EINVAL;
1038 return 0;
1039 case KVM_REG_ARM_VFP_MVFR1:
1040 if (reg_from_user(&val, uaddr, id))
1041 return -EFAULT;
1042 if (val != fmrx(MVFR1))
1043 return -EINVAL;
1044 return 0;
1045 case KVM_REG_ARM_VFP_FPSID:
1046 if (reg_from_user(&val, uaddr, id))
1047 return -EFAULT;
1048 if (val != fmrx(FPSID))
1049 return -EINVAL;
1050 return 0;
1051 default:
1052 return -ENOENT;
1053 }
1054 }
1055 #else /* !CONFIG_VFPv3 */
1056 static unsigned int num_vfp_regs(void)
1057 {
1058 return 0;
1059 }
1060
1061 static int copy_vfp_regids(u64 __user *uindices)
1062 {
1063 return 0;
1064 }
1065
1066 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1067 {
1068 return -ENOENT;
1069 }
1070
1071 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1072 {
1073 return -ENOENT;
1074 }
1075 #endif /* !CONFIG_VFPv3 */
1076
1077 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1078 {
1079 const struct coproc_reg *r;
1080 void __user *uaddr = (void __user *)(long)reg->addr;
1081 int ret;
1082
1083 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1084 return demux_c15_get(reg->id, uaddr);
1085
1086 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1087 return vfp_get_reg(vcpu, reg->id, uaddr);
1088
1089 r = index_to_coproc_reg(vcpu, reg->id);
1090 if (!r)
1091 return get_invariant_cp15(reg->id, uaddr);
1092
1093 ret = -ENOENT;
1094 if (KVM_REG_SIZE(reg->id) == 8) {
1095 u64 val;
1096
1097 val = vcpu_cp15_reg64_get(vcpu, r);
1098 ret = reg_to_user(uaddr, &val, reg->id);
1099 } else if (KVM_REG_SIZE(reg->id) == 4) {
1100 ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1101 }
1102
1103 return ret;
1104 }
1105
1106 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1107 {
1108 const struct coproc_reg *r;
1109 void __user *uaddr = (void __user *)(long)reg->addr;
1110 int ret;
1111
1112 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1113 return demux_c15_set(reg->id, uaddr);
1114
1115 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1116 return vfp_set_reg(vcpu, reg->id, uaddr);
1117
1118 r = index_to_coproc_reg(vcpu, reg->id);
1119 if (!r)
1120 return set_invariant_cp15(reg->id, uaddr);
1121
1122 ret = -ENOENT;
1123 if (KVM_REG_SIZE(reg->id) == 8) {
1124 u64 val;
1125
1126 ret = reg_from_user(&val, uaddr, reg->id);
1127 if (!ret)
1128 vcpu_cp15_reg64_set(vcpu, r, val);
1129 } else if (KVM_REG_SIZE(reg->id) == 4) {
1130 ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1131 }
1132
1133 return ret;
1134 }
1135
1136 static unsigned int num_demux_regs(void)
1137 {
1138 unsigned int i, count = 0;
1139
1140 for (i = 0; i < CSSELR_MAX; i++)
1141 if (is_valid_cache(i))
1142 count++;
1143
1144 return count;
1145 }
1146
1147 static int write_demux_regids(u64 __user *uindices)
1148 {
1149 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1150 unsigned int i;
1151
1152 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1153 for (i = 0; i < CSSELR_MAX; i++) {
1154 if (!is_valid_cache(i))
1155 continue;
1156 if (put_user(val | i, uindices))
1157 return -EFAULT;
1158 uindices++;
1159 }
1160 return 0;
1161 }
1162
1163 static u64 cp15_to_index(const struct coproc_reg *reg)
1164 {
1165 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1166 if (reg->is_64bit) {
1167 val |= KVM_REG_SIZE_U64;
1168 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1169 /*
1170 * CRn always denotes the primary coproc. reg. nr. for the
1171 * in-kernel representation, but the user space API uses the
1172 * CRm for the encoding, because it is modelled after the
1173 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1174 * B3-1445
1175 */
1176 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1177 } else {
1178 val |= KVM_REG_SIZE_U32;
1179 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1180 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1181 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1182 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1183 }
1184 return val;
1185 }
1186
1187 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1188 {
1189 if (!*uind)
1190 return true;
1191
1192 if (put_user(cp15_to_index(reg), *uind))
1193 return false;
1194
1195 (*uind)++;
1196 return true;
1197 }
1198
1199 /* Assumed ordered tables, see kvm_coproc_table_init. */
1200 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1201 {
1202 const struct coproc_reg *i1, *i2, *end1, *end2;
1203 unsigned int total = 0;
1204 size_t num;
1205
1206 /* We check for duplicates here, to allow arch-specific overrides. */
1207 i1 = get_target_table(vcpu->arch.target, &num);
1208 end1 = i1 + num;
1209 i2 = cp15_regs;
1210 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1211
1212 BUG_ON(i1 == end1 || i2 == end2);
1213
1214 /* Walk carefully, as both tables may refer to the same register. */
1215 while (i1 || i2) {
1216 int cmp = cmp_reg(i1, i2);
1217 /* target-specific overrides generic entry. */
1218 if (cmp <= 0) {
1219 /* Ignore registers we trap but don't save. */
1220 if (i1->reg) {
1221 if (!copy_reg_to_user(i1, &uind))
1222 return -EFAULT;
1223 total++;
1224 }
1225 } else {
1226 /* Ignore registers we trap but don't save. */
1227 if (i2->reg) {
1228 if (!copy_reg_to_user(i2, &uind))
1229 return -EFAULT;
1230 total++;
1231 }
1232 }
1233
1234 if (cmp <= 0 && ++i1 == end1)
1235 i1 = NULL;
1236 if (cmp >= 0 && ++i2 == end2)
1237 i2 = NULL;
1238 }
1239 return total;
1240 }
1241
1242 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1243 {
1244 return ARRAY_SIZE(invariant_cp15)
1245 + num_demux_regs()
1246 + num_vfp_regs()
1247 + walk_cp15(vcpu, (u64 __user *)NULL);
1248 }
1249
1250 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1251 {
1252 unsigned int i;
1253 int err;
1254
1255 /* Then give them all the invariant registers' indices. */
1256 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1257 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1258 return -EFAULT;
1259 uindices++;
1260 }
1261
1262 err = walk_cp15(vcpu, uindices);
1263 if (err < 0)
1264 return err;
1265 uindices += err;
1266
1267 err = copy_vfp_regids(uindices);
1268 if (err < 0)
1269 return err;
1270 uindices += err;
1271
1272 return write_demux_regids(uindices);
1273 }
1274
1275 void kvm_coproc_table_init(void)
1276 {
1277 unsigned int i;
1278
1279 /* Make sure tables are unique and in order. */
1280 BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1281 BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1282
1283 /* We abuse the reset function to overwrite the table itself. */
1284 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1285 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1286
1287 /*
1288 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1289 *
1290 * If software reads the Cache Type fields from Ctype1
1291 * upwards, once it has seen a value of 0b000, no caches
1292 * exist at further-out levels of the hierarchy. So, for
1293 * example, if Ctype3 is the first Cache Type field with a
1294 * value of 0b000, the values of Ctype4 to Ctype7 must be
1295 * ignored.
1296 */
1297 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1298 for (i = 0; i < 7; i++)
1299 if (((cache_levels >> (i*3)) & 7) == 0)
1300 break;
1301 /* Clear all higher bits. */
1302 cache_levels &= (1 << (i*3))-1;
1303 }
1304
1305 /**
1306 * kvm_reset_coprocs - sets cp15 registers to reset value
1307 * @vcpu: The VCPU pointer
1308 *
1309 * This function finds the right table above and sets the registers on the
1310 * virtual CPU struct to their architecturally defined reset values.
1311 */
1312 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1313 {
1314 size_t num;
1315 const struct coproc_reg *table;
1316
1317 /* Catch someone adding a register without putting in reset entry. */
1318 memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1319
1320 /* Generic chip reset first (so target could override). */
1321 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1322
1323 table = get_target_table(vcpu->arch.target, &num);
1324 reset_coproc_regs(vcpu, table, num);
1325
1326 for (num = 1; num < NR_CP15_REGS; num++)
1327 if (vcpu_cp15(vcpu, num) == 0x42424242)
1328 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1329 }