]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/kvm/mmu.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 static pgd_t *boot_hyp_pgd;
36 static pgd_t *hyp_pgd;
37 static pgd_t *merged_hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static unsigned long hyp_idmap_start;
41 static unsigned long hyp_idmap_end;
42 static phys_addr_t hyp_idmap_vector;
43
44 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
49
50 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51 {
52 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
53 }
54
55 /**
56 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57 * @kvm: pointer to kvm structure.
58 *
59 * Interface to HYP function to flush all VM TLB entries
60 */
61 void kvm_flush_remote_tlbs(struct kvm *kvm)
62 {
63 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
64 }
65
66 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
67 {
68 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
69 }
70
71 /*
72 * D-Cache management functions. They take the page table entries by
73 * value, as they are flushing the cache using the kernel mapping (or
74 * kmap on 32bit).
75 */
76 static void kvm_flush_dcache_pte(pte_t pte)
77 {
78 __kvm_flush_dcache_pte(pte);
79 }
80
81 static void kvm_flush_dcache_pmd(pmd_t pmd)
82 {
83 __kvm_flush_dcache_pmd(pmd);
84 }
85
86 static void kvm_flush_dcache_pud(pud_t pud)
87 {
88 __kvm_flush_dcache_pud(pud);
89 }
90
91 static bool kvm_is_device_pfn(unsigned long pfn)
92 {
93 return !pfn_valid(pfn);
94 }
95
96 /**
97 * stage2_dissolve_pmd() - clear and flush huge PMD entry
98 * @kvm: pointer to kvm structure.
99 * @addr: IPA
100 * @pmd: pmd pointer for IPA
101 *
102 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103 * pages in the range dirty.
104 */
105 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106 {
107 if (!pmd_thp_or_huge(*pmd))
108 return;
109
110 pmd_clear(pmd);
111 kvm_tlb_flush_vmid_ipa(kvm, addr);
112 put_page(virt_to_page(pmd));
113 }
114
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116 int min, int max)
117 {
118 void *page;
119
120 BUG_ON(max > KVM_NR_MEM_OBJS);
121 if (cache->nobjs >= min)
122 return 0;
123 while (cache->nobjs < max) {
124 page = (void *)__get_free_page(PGALLOC_GFP);
125 if (!page)
126 return -ENOMEM;
127 cache->objects[cache->nobjs++] = page;
128 }
129 return 0;
130 }
131
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133 {
134 while (mc->nobjs)
135 free_page((unsigned long)mc->objects[--mc->nobjs]);
136 }
137
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139 {
140 void *p;
141
142 BUG_ON(!mc || !mc->nobjs);
143 p = mc->objects[--mc->nobjs];
144 return p;
145 }
146
147 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
148 {
149 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150 stage2_pgd_clear(pgd);
151 kvm_tlb_flush_vmid_ipa(kvm, addr);
152 stage2_pud_free(pud_table);
153 put_page(virt_to_page(pgd));
154 }
155
156 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
157 {
158 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159 VM_BUG_ON(stage2_pud_huge(*pud));
160 stage2_pud_clear(pud);
161 kvm_tlb_flush_vmid_ipa(kvm, addr);
162 stage2_pmd_free(pmd_table);
163 put_page(virt_to_page(pud));
164 }
165
166 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
167 {
168 pte_t *pte_table = pte_offset_kernel(pmd, 0);
169 VM_BUG_ON(pmd_thp_or_huge(*pmd));
170 pmd_clear(pmd);
171 kvm_tlb_flush_vmid_ipa(kvm, addr);
172 pte_free_kernel(NULL, pte_table);
173 put_page(virt_to_page(pmd));
174 }
175
176 /*
177 * Unmapping vs dcache management:
178 *
179 * If a guest maps certain memory pages as uncached, all writes will
180 * bypass the data cache and go directly to RAM. However, the CPUs
181 * can still speculate reads (not writes) and fill cache lines with
182 * data.
183 *
184 * Those cache lines will be *clean* cache lines though, so a
185 * clean+invalidate operation is equivalent to an invalidate
186 * operation, because no cache lines are marked dirty.
187 *
188 * Those clean cache lines could be filled prior to an uncached write
189 * by the guest, and the cache coherent IO subsystem would therefore
190 * end up writing old data to disk.
191 *
192 * This is why right after unmapping a page/section and invalidating
193 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194 * the IO subsystem will never hit in the cache.
195 */
196 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197 phys_addr_t addr, phys_addr_t end)
198 {
199 phys_addr_t start_addr = addr;
200 pte_t *pte, *start_pte;
201
202 start_pte = pte = pte_offset_kernel(pmd, addr);
203 do {
204 if (!pte_none(*pte)) {
205 pte_t old_pte = *pte;
206
207 kvm_set_pte(pte, __pte(0));
208 kvm_tlb_flush_vmid_ipa(kvm, addr);
209
210 /* No need to invalidate the cache for device mappings */
211 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212 kvm_flush_dcache_pte(old_pte);
213
214 put_page(virt_to_page(pte));
215 }
216 } while (pte++, addr += PAGE_SIZE, addr != end);
217
218 if (stage2_pte_table_empty(start_pte))
219 clear_stage2_pmd_entry(kvm, pmd, start_addr);
220 }
221
222 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223 phys_addr_t addr, phys_addr_t end)
224 {
225 phys_addr_t next, start_addr = addr;
226 pmd_t *pmd, *start_pmd;
227
228 start_pmd = pmd = stage2_pmd_offset(pud, addr);
229 do {
230 next = stage2_pmd_addr_end(addr, end);
231 if (!pmd_none(*pmd)) {
232 if (pmd_thp_or_huge(*pmd)) {
233 pmd_t old_pmd = *pmd;
234
235 pmd_clear(pmd);
236 kvm_tlb_flush_vmid_ipa(kvm, addr);
237
238 kvm_flush_dcache_pmd(old_pmd);
239
240 put_page(virt_to_page(pmd));
241 } else {
242 unmap_stage2_ptes(kvm, pmd, addr, next);
243 }
244 }
245 } while (pmd++, addr = next, addr != end);
246
247 if (stage2_pmd_table_empty(start_pmd))
248 clear_stage2_pud_entry(kvm, pud, start_addr);
249 }
250
251 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252 phys_addr_t addr, phys_addr_t end)
253 {
254 phys_addr_t next, start_addr = addr;
255 pud_t *pud, *start_pud;
256
257 start_pud = pud = stage2_pud_offset(pgd, addr);
258 do {
259 next = stage2_pud_addr_end(addr, end);
260 if (!stage2_pud_none(*pud)) {
261 if (stage2_pud_huge(*pud)) {
262 pud_t old_pud = *pud;
263
264 stage2_pud_clear(pud);
265 kvm_tlb_flush_vmid_ipa(kvm, addr);
266 kvm_flush_dcache_pud(old_pud);
267 put_page(virt_to_page(pud));
268 } else {
269 unmap_stage2_pmds(kvm, pud, addr, next);
270 }
271 }
272 } while (pud++, addr = next, addr != end);
273
274 if (stage2_pud_table_empty(start_pud))
275 clear_stage2_pgd_entry(kvm, pgd, start_addr);
276 }
277
278 /**
279 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280 * @kvm: The VM pointer
281 * @start: The intermediate physical base address of the range to unmap
282 * @size: The size of the area to unmap
283 *
284 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
285 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286 * destroying the VM), otherwise another faulting VCPU may come in and mess
287 * with things behind our backs.
288 */
289 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
290 {
291 pgd_t *pgd;
292 phys_addr_t addr = start, end = start + size;
293 phys_addr_t next;
294
295 assert_spin_locked(&kvm->mmu_lock);
296 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
297 do {
298 next = stage2_pgd_addr_end(addr, end);
299 if (!stage2_pgd_none(*pgd))
300 unmap_stage2_puds(kvm, pgd, addr, next);
301 /*
302 * If the range is too large, release the kvm->mmu_lock
303 * to prevent starvation and lockup detector warnings.
304 */
305 if (next != end)
306 cond_resched_lock(&kvm->mmu_lock);
307 } while (pgd++, addr = next, addr != end);
308 }
309
310 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
311 phys_addr_t addr, phys_addr_t end)
312 {
313 pte_t *pte;
314
315 pte = pte_offset_kernel(pmd, addr);
316 do {
317 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
318 kvm_flush_dcache_pte(*pte);
319 } while (pte++, addr += PAGE_SIZE, addr != end);
320 }
321
322 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
323 phys_addr_t addr, phys_addr_t end)
324 {
325 pmd_t *pmd;
326 phys_addr_t next;
327
328 pmd = stage2_pmd_offset(pud, addr);
329 do {
330 next = stage2_pmd_addr_end(addr, end);
331 if (!pmd_none(*pmd)) {
332 if (pmd_thp_or_huge(*pmd))
333 kvm_flush_dcache_pmd(*pmd);
334 else
335 stage2_flush_ptes(kvm, pmd, addr, next);
336 }
337 } while (pmd++, addr = next, addr != end);
338 }
339
340 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
341 phys_addr_t addr, phys_addr_t end)
342 {
343 pud_t *pud;
344 phys_addr_t next;
345
346 pud = stage2_pud_offset(pgd, addr);
347 do {
348 next = stage2_pud_addr_end(addr, end);
349 if (!stage2_pud_none(*pud)) {
350 if (stage2_pud_huge(*pud))
351 kvm_flush_dcache_pud(*pud);
352 else
353 stage2_flush_pmds(kvm, pud, addr, next);
354 }
355 } while (pud++, addr = next, addr != end);
356 }
357
358 static void stage2_flush_memslot(struct kvm *kvm,
359 struct kvm_memory_slot *memslot)
360 {
361 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
362 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
363 phys_addr_t next;
364 pgd_t *pgd;
365
366 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
367 do {
368 next = stage2_pgd_addr_end(addr, end);
369 stage2_flush_puds(kvm, pgd, addr, next);
370 } while (pgd++, addr = next, addr != end);
371 }
372
373 /**
374 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
375 * @kvm: The struct kvm pointer
376 *
377 * Go through the stage 2 page tables and invalidate any cache lines
378 * backing memory already mapped to the VM.
379 */
380 static void stage2_flush_vm(struct kvm *kvm)
381 {
382 struct kvm_memslots *slots;
383 struct kvm_memory_slot *memslot;
384 int idx;
385
386 idx = srcu_read_lock(&kvm->srcu);
387 spin_lock(&kvm->mmu_lock);
388
389 slots = kvm_memslots(kvm);
390 kvm_for_each_memslot(memslot, slots)
391 stage2_flush_memslot(kvm, memslot);
392
393 spin_unlock(&kvm->mmu_lock);
394 srcu_read_unlock(&kvm->srcu, idx);
395 }
396
397 static void clear_hyp_pgd_entry(pgd_t *pgd)
398 {
399 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
400 pgd_clear(pgd);
401 pud_free(NULL, pud_table);
402 put_page(virt_to_page(pgd));
403 }
404
405 static void clear_hyp_pud_entry(pud_t *pud)
406 {
407 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
408 VM_BUG_ON(pud_huge(*pud));
409 pud_clear(pud);
410 pmd_free(NULL, pmd_table);
411 put_page(virt_to_page(pud));
412 }
413
414 static void clear_hyp_pmd_entry(pmd_t *pmd)
415 {
416 pte_t *pte_table = pte_offset_kernel(pmd, 0);
417 VM_BUG_ON(pmd_thp_or_huge(*pmd));
418 pmd_clear(pmd);
419 pte_free_kernel(NULL, pte_table);
420 put_page(virt_to_page(pmd));
421 }
422
423 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
424 {
425 pte_t *pte, *start_pte;
426
427 start_pte = pte = pte_offset_kernel(pmd, addr);
428 do {
429 if (!pte_none(*pte)) {
430 kvm_set_pte(pte, __pte(0));
431 put_page(virt_to_page(pte));
432 }
433 } while (pte++, addr += PAGE_SIZE, addr != end);
434
435 if (hyp_pte_table_empty(start_pte))
436 clear_hyp_pmd_entry(pmd);
437 }
438
439 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
440 {
441 phys_addr_t next;
442 pmd_t *pmd, *start_pmd;
443
444 start_pmd = pmd = pmd_offset(pud, addr);
445 do {
446 next = pmd_addr_end(addr, end);
447 /* Hyp doesn't use huge pmds */
448 if (!pmd_none(*pmd))
449 unmap_hyp_ptes(pmd, addr, next);
450 } while (pmd++, addr = next, addr != end);
451
452 if (hyp_pmd_table_empty(start_pmd))
453 clear_hyp_pud_entry(pud);
454 }
455
456 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
457 {
458 phys_addr_t next;
459 pud_t *pud, *start_pud;
460
461 start_pud = pud = pud_offset(pgd, addr);
462 do {
463 next = pud_addr_end(addr, end);
464 /* Hyp doesn't use huge puds */
465 if (!pud_none(*pud))
466 unmap_hyp_pmds(pud, addr, next);
467 } while (pud++, addr = next, addr != end);
468
469 if (hyp_pud_table_empty(start_pud))
470 clear_hyp_pgd_entry(pgd);
471 }
472
473 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
474 {
475 pgd_t *pgd;
476 phys_addr_t addr = start, end = start + size;
477 phys_addr_t next;
478
479 /*
480 * We don't unmap anything from HYP, except at the hyp tear down.
481 * Hence, we don't have to invalidate the TLBs here.
482 */
483 pgd = pgdp + pgd_index(addr);
484 do {
485 next = pgd_addr_end(addr, end);
486 if (!pgd_none(*pgd))
487 unmap_hyp_puds(pgd, addr, next);
488 } while (pgd++, addr = next, addr != end);
489 }
490
491 /**
492 * free_hyp_pgds - free Hyp-mode page tables
493 *
494 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
495 * therefore contains either mappings in the kernel memory area (above
496 * PAGE_OFFSET), or device mappings in the vmalloc range (from
497 * VMALLOC_START to VMALLOC_END).
498 *
499 * boot_hyp_pgd should only map two pages for the init code.
500 */
501 void free_hyp_pgds(void)
502 {
503 unsigned long addr;
504
505 mutex_lock(&kvm_hyp_pgd_mutex);
506
507 if (boot_hyp_pgd) {
508 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
509 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
510 boot_hyp_pgd = NULL;
511 }
512
513 if (hyp_pgd) {
514 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
515 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
516 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
517 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
518 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
519
520 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
521 hyp_pgd = NULL;
522 }
523 if (merged_hyp_pgd) {
524 clear_page(merged_hyp_pgd);
525 free_page((unsigned long)merged_hyp_pgd);
526 merged_hyp_pgd = NULL;
527 }
528
529 mutex_unlock(&kvm_hyp_pgd_mutex);
530 }
531
532 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
533 unsigned long end, unsigned long pfn,
534 pgprot_t prot)
535 {
536 pte_t *pte;
537 unsigned long addr;
538
539 addr = start;
540 do {
541 pte = pte_offset_kernel(pmd, addr);
542 kvm_set_pte(pte, pfn_pte(pfn, prot));
543 get_page(virt_to_page(pte));
544 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
545 pfn++;
546 } while (addr += PAGE_SIZE, addr != end);
547 }
548
549 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
550 unsigned long end, unsigned long pfn,
551 pgprot_t prot)
552 {
553 pmd_t *pmd;
554 pte_t *pte;
555 unsigned long addr, next;
556
557 addr = start;
558 do {
559 pmd = pmd_offset(pud, addr);
560
561 BUG_ON(pmd_sect(*pmd));
562
563 if (pmd_none(*pmd)) {
564 pte = pte_alloc_one_kernel(NULL, addr);
565 if (!pte) {
566 kvm_err("Cannot allocate Hyp pte\n");
567 return -ENOMEM;
568 }
569 pmd_populate_kernel(NULL, pmd, pte);
570 get_page(virt_to_page(pmd));
571 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
572 }
573
574 next = pmd_addr_end(addr, end);
575
576 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
577 pfn += (next - addr) >> PAGE_SHIFT;
578 } while (addr = next, addr != end);
579
580 return 0;
581 }
582
583 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
584 unsigned long end, unsigned long pfn,
585 pgprot_t prot)
586 {
587 pud_t *pud;
588 pmd_t *pmd;
589 unsigned long addr, next;
590 int ret;
591
592 addr = start;
593 do {
594 pud = pud_offset(pgd, addr);
595
596 if (pud_none_or_clear_bad(pud)) {
597 pmd = pmd_alloc_one(NULL, addr);
598 if (!pmd) {
599 kvm_err("Cannot allocate Hyp pmd\n");
600 return -ENOMEM;
601 }
602 pud_populate(NULL, pud, pmd);
603 get_page(virt_to_page(pud));
604 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
605 }
606
607 next = pud_addr_end(addr, end);
608 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
609 if (ret)
610 return ret;
611 pfn += (next - addr) >> PAGE_SHIFT;
612 } while (addr = next, addr != end);
613
614 return 0;
615 }
616
617 static int __create_hyp_mappings(pgd_t *pgdp,
618 unsigned long start, unsigned long end,
619 unsigned long pfn, pgprot_t prot)
620 {
621 pgd_t *pgd;
622 pud_t *pud;
623 unsigned long addr, next;
624 int err = 0;
625
626 mutex_lock(&kvm_hyp_pgd_mutex);
627 addr = start & PAGE_MASK;
628 end = PAGE_ALIGN(end);
629 do {
630 pgd = pgdp + pgd_index(addr);
631
632 if (pgd_none(*pgd)) {
633 pud = pud_alloc_one(NULL, addr);
634 if (!pud) {
635 kvm_err("Cannot allocate Hyp pud\n");
636 err = -ENOMEM;
637 goto out;
638 }
639 pgd_populate(NULL, pgd, pud);
640 get_page(virt_to_page(pgd));
641 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
642 }
643
644 next = pgd_addr_end(addr, end);
645 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
646 if (err)
647 goto out;
648 pfn += (next - addr) >> PAGE_SHIFT;
649 } while (addr = next, addr != end);
650 out:
651 mutex_unlock(&kvm_hyp_pgd_mutex);
652 return err;
653 }
654
655 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
656 {
657 if (!is_vmalloc_addr(kaddr)) {
658 BUG_ON(!virt_addr_valid(kaddr));
659 return __pa(kaddr);
660 } else {
661 return page_to_phys(vmalloc_to_page(kaddr)) +
662 offset_in_page(kaddr);
663 }
664 }
665
666 /**
667 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
668 * @from: The virtual kernel start address of the range
669 * @to: The virtual kernel end address of the range (exclusive)
670 * @prot: The protection to be applied to this range
671 *
672 * The same virtual address as the kernel virtual address is also used
673 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
674 * physical pages.
675 */
676 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
677 {
678 phys_addr_t phys_addr;
679 unsigned long virt_addr;
680 unsigned long start = kern_hyp_va((unsigned long)from);
681 unsigned long end = kern_hyp_va((unsigned long)to);
682
683 if (is_kernel_in_hyp_mode())
684 return 0;
685
686 start = start & PAGE_MASK;
687 end = PAGE_ALIGN(end);
688
689 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
690 int err;
691
692 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
693 err = __create_hyp_mappings(hyp_pgd, virt_addr,
694 virt_addr + PAGE_SIZE,
695 __phys_to_pfn(phys_addr),
696 prot);
697 if (err)
698 return err;
699 }
700
701 return 0;
702 }
703
704 /**
705 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
706 * @from: The kernel start VA of the range
707 * @to: The kernel end VA of the range (exclusive)
708 * @phys_addr: The physical start address which gets mapped
709 *
710 * The resulting HYP VA is the same as the kernel VA, modulo
711 * HYP_PAGE_OFFSET.
712 */
713 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
714 {
715 unsigned long start = kern_hyp_va((unsigned long)from);
716 unsigned long end = kern_hyp_va((unsigned long)to);
717
718 if (is_kernel_in_hyp_mode())
719 return 0;
720
721 /* Check for a valid kernel IO mapping */
722 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
723 return -EINVAL;
724
725 return __create_hyp_mappings(hyp_pgd, start, end,
726 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
727 }
728
729 /**
730 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
731 * @kvm: The KVM struct pointer for the VM.
732 *
733 * Allocates only the stage-2 HW PGD level table(s) (can support either full
734 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
735 * allocated pages.
736 *
737 * Note we don't need locking here as this is only called when the VM is
738 * created, which can only be done once.
739 */
740 int kvm_alloc_stage2_pgd(struct kvm *kvm)
741 {
742 pgd_t *pgd;
743
744 if (kvm->arch.pgd != NULL) {
745 kvm_err("kvm_arch already initialized?\n");
746 return -EINVAL;
747 }
748
749 /* Allocate the HW PGD, making sure that each page gets its own refcount */
750 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
751 if (!pgd)
752 return -ENOMEM;
753
754 kvm->arch.pgd = pgd;
755 return 0;
756 }
757
758 static void stage2_unmap_memslot(struct kvm *kvm,
759 struct kvm_memory_slot *memslot)
760 {
761 hva_t hva = memslot->userspace_addr;
762 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
763 phys_addr_t size = PAGE_SIZE * memslot->npages;
764 hva_t reg_end = hva + size;
765
766 /*
767 * A memory region could potentially cover multiple VMAs, and any holes
768 * between them, so iterate over all of them to find out if we should
769 * unmap any of them.
770 *
771 * +--------------------------------------------+
772 * +---------------+----------------+ +----------------+
773 * | : VMA 1 | VMA 2 | | VMA 3 : |
774 * +---------------+----------------+ +----------------+
775 * | memory region |
776 * +--------------------------------------------+
777 */
778 do {
779 struct vm_area_struct *vma = find_vma(current->mm, hva);
780 hva_t vm_start, vm_end;
781
782 if (!vma || vma->vm_start >= reg_end)
783 break;
784
785 /*
786 * Take the intersection of this VMA with the memory region
787 */
788 vm_start = max(hva, vma->vm_start);
789 vm_end = min(reg_end, vma->vm_end);
790
791 if (!(vma->vm_flags & VM_PFNMAP)) {
792 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
793 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
794 }
795 hva = vm_end;
796 } while (hva < reg_end);
797 }
798
799 /**
800 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
801 * @kvm: The struct kvm pointer
802 *
803 * Go through the memregions and unmap any reguler RAM
804 * backing memory already mapped to the VM.
805 */
806 void stage2_unmap_vm(struct kvm *kvm)
807 {
808 struct kvm_memslots *slots;
809 struct kvm_memory_slot *memslot;
810 int idx;
811
812 idx = srcu_read_lock(&kvm->srcu);
813 down_read(&current->mm->mmap_sem);
814 spin_lock(&kvm->mmu_lock);
815
816 slots = kvm_memslots(kvm);
817 kvm_for_each_memslot(memslot, slots)
818 stage2_unmap_memslot(kvm, memslot);
819
820 spin_unlock(&kvm->mmu_lock);
821 up_read(&current->mm->mmap_sem);
822 srcu_read_unlock(&kvm->srcu, idx);
823 }
824
825 /**
826 * kvm_free_stage2_pgd - free all stage-2 tables
827 * @kvm: The KVM struct pointer for the VM.
828 *
829 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
830 * underlying level-2 and level-3 tables before freeing the actual level-1 table
831 * and setting the struct pointer to NULL.
832 *
833 * Note we don't need locking here as this is only called when the VM is
834 * destroyed, which can only be done once.
835 */
836 void kvm_free_stage2_pgd(struct kvm *kvm)
837 {
838 if (kvm->arch.pgd == NULL)
839 return;
840
841 spin_lock(&kvm->mmu_lock);
842 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
843 spin_unlock(&kvm->mmu_lock);
844
845 /* Free the HW pgd, one page at a time */
846 free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
847 kvm->arch.pgd = NULL;
848 }
849
850 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
851 phys_addr_t addr)
852 {
853 pgd_t *pgd;
854 pud_t *pud;
855
856 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
857 if (WARN_ON(stage2_pgd_none(*pgd))) {
858 if (!cache)
859 return NULL;
860 pud = mmu_memory_cache_alloc(cache);
861 stage2_pgd_populate(pgd, pud);
862 get_page(virt_to_page(pgd));
863 }
864
865 return stage2_pud_offset(pgd, addr);
866 }
867
868 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
869 phys_addr_t addr)
870 {
871 pud_t *pud;
872 pmd_t *pmd;
873
874 pud = stage2_get_pud(kvm, cache, addr);
875 if (stage2_pud_none(*pud)) {
876 if (!cache)
877 return NULL;
878 pmd = mmu_memory_cache_alloc(cache);
879 stage2_pud_populate(pud, pmd);
880 get_page(virt_to_page(pud));
881 }
882
883 return stage2_pmd_offset(pud, addr);
884 }
885
886 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
887 *cache, phys_addr_t addr, const pmd_t *new_pmd)
888 {
889 pmd_t *pmd, old_pmd;
890
891 pmd = stage2_get_pmd(kvm, cache, addr);
892 VM_BUG_ON(!pmd);
893
894 /*
895 * Mapping in huge pages should only happen through a fault. If a
896 * page is merged into a transparent huge page, the individual
897 * subpages of that huge page should be unmapped through MMU
898 * notifiers before we get here.
899 *
900 * Merging of CompoundPages is not supported; they should become
901 * splitting first, unmapped, merged, and mapped back in on-demand.
902 */
903 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
904
905 old_pmd = *pmd;
906 if (pmd_present(old_pmd)) {
907 pmd_clear(pmd);
908 kvm_tlb_flush_vmid_ipa(kvm, addr);
909 } else {
910 get_page(virt_to_page(pmd));
911 }
912
913 kvm_set_pmd(pmd, *new_pmd);
914 return 0;
915 }
916
917 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
918 phys_addr_t addr, const pte_t *new_pte,
919 unsigned long flags)
920 {
921 pmd_t *pmd;
922 pte_t *pte, old_pte;
923 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
924 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
925
926 VM_BUG_ON(logging_active && !cache);
927
928 /* Create stage-2 page table mapping - Levels 0 and 1 */
929 pmd = stage2_get_pmd(kvm, cache, addr);
930 if (!pmd) {
931 /*
932 * Ignore calls from kvm_set_spte_hva for unallocated
933 * address ranges.
934 */
935 return 0;
936 }
937
938 /*
939 * While dirty page logging - dissolve huge PMD, then continue on to
940 * allocate page.
941 */
942 if (logging_active)
943 stage2_dissolve_pmd(kvm, addr, pmd);
944
945 /* Create stage-2 page mappings - Level 2 */
946 if (pmd_none(*pmd)) {
947 if (!cache)
948 return 0; /* ignore calls from kvm_set_spte_hva */
949 pte = mmu_memory_cache_alloc(cache);
950 pmd_populate_kernel(NULL, pmd, pte);
951 get_page(virt_to_page(pmd));
952 }
953
954 pte = pte_offset_kernel(pmd, addr);
955
956 if (iomap && pte_present(*pte))
957 return -EFAULT;
958
959 /* Create 2nd stage page table mapping - Level 3 */
960 old_pte = *pte;
961 if (pte_present(old_pte)) {
962 kvm_set_pte(pte, __pte(0));
963 kvm_tlb_flush_vmid_ipa(kvm, addr);
964 } else {
965 get_page(virt_to_page(pte));
966 }
967
968 kvm_set_pte(pte, *new_pte);
969 return 0;
970 }
971
972 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
973 static int stage2_ptep_test_and_clear_young(pte_t *pte)
974 {
975 if (pte_young(*pte)) {
976 *pte = pte_mkold(*pte);
977 return 1;
978 }
979 return 0;
980 }
981 #else
982 static int stage2_ptep_test_and_clear_young(pte_t *pte)
983 {
984 return __ptep_test_and_clear_young(pte);
985 }
986 #endif
987
988 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
989 {
990 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
991 }
992
993 /**
994 * kvm_phys_addr_ioremap - map a device range to guest IPA
995 *
996 * @kvm: The KVM pointer
997 * @guest_ipa: The IPA at which to insert the mapping
998 * @pa: The physical address of the device
999 * @size: The size of the mapping
1000 */
1001 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1002 phys_addr_t pa, unsigned long size, bool writable)
1003 {
1004 phys_addr_t addr, end;
1005 int ret = 0;
1006 unsigned long pfn;
1007 struct kvm_mmu_memory_cache cache = { 0, };
1008
1009 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
1010 pfn = __phys_to_pfn(pa);
1011
1012 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1013 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1014
1015 if (writable)
1016 pte = kvm_s2pte_mkwrite(pte);
1017
1018 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1019 KVM_NR_MEM_OBJS);
1020 if (ret)
1021 goto out;
1022 spin_lock(&kvm->mmu_lock);
1023 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1024 KVM_S2PTE_FLAG_IS_IOMAP);
1025 spin_unlock(&kvm->mmu_lock);
1026 if (ret)
1027 goto out;
1028
1029 pfn++;
1030 }
1031
1032 out:
1033 mmu_free_memory_cache(&cache);
1034 return ret;
1035 }
1036
1037 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1038 {
1039 kvm_pfn_t pfn = *pfnp;
1040 gfn_t gfn = *ipap >> PAGE_SHIFT;
1041
1042 if (PageTransCompoundMap(pfn_to_page(pfn))) {
1043 unsigned long mask;
1044 /*
1045 * The address we faulted on is backed by a transparent huge
1046 * page. However, because we map the compound huge page and
1047 * not the individual tail page, we need to transfer the
1048 * refcount to the head page. We have to be careful that the
1049 * THP doesn't start to split while we are adjusting the
1050 * refcounts.
1051 *
1052 * We are sure this doesn't happen, because mmu_notifier_retry
1053 * was successful and we are holding the mmu_lock, so if this
1054 * THP is trying to split, it will be blocked in the mmu
1055 * notifier before touching any of the pages, specifically
1056 * before being able to call __split_huge_page_refcount().
1057 *
1058 * We can therefore safely transfer the refcount from PG_tail
1059 * to PG_head and switch the pfn from a tail page to the head
1060 * page accordingly.
1061 */
1062 mask = PTRS_PER_PMD - 1;
1063 VM_BUG_ON((gfn & mask) != (pfn & mask));
1064 if (pfn & mask) {
1065 *ipap &= PMD_MASK;
1066 kvm_release_pfn_clean(pfn);
1067 pfn &= ~mask;
1068 kvm_get_pfn(pfn);
1069 *pfnp = pfn;
1070 }
1071
1072 return true;
1073 }
1074
1075 return false;
1076 }
1077
1078 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1079 {
1080 if (kvm_vcpu_trap_is_iabt(vcpu))
1081 return false;
1082
1083 return kvm_vcpu_dabt_iswrite(vcpu);
1084 }
1085
1086 /**
1087 * stage2_wp_ptes - write protect PMD range
1088 * @pmd: pointer to pmd entry
1089 * @addr: range start address
1090 * @end: range end address
1091 */
1092 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1093 {
1094 pte_t *pte;
1095
1096 pte = pte_offset_kernel(pmd, addr);
1097 do {
1098 if (!pte_none(*pte)) {
1099 if (!kvm_s2pte_readonly(pte))
1100 kvm_set_s2pte_readonly(pte);
1101 }
1102 } while (pte++, addr += PAGE_SIZE, addr != end);
1103 }
1104
1105 /**
1106 * stage2_wp_pmds - write protect PUD range
1107 * @pud: pointer to pud entry
1108 * @addr: range start address
1109 * @end: range end address
1110 */
1111 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1112 {
1113 pmd_t *pmd;
1114 phys_addr_t next;
1115
1116 pmd = stage2_pmd_offset(pud, addr);
1117
1118 do {
1119 next = stage2_pmd_addr_end(addr, end);
1120 if (!pmd_none(*pmd)) {
1121 if (pmd_thp_or_huge(*pmd)) {
1122 if (!kvm_s2pmd_readonly(pmd))
1123 kvm_set_s2pmd_readonly(pmd);
1124 } else {
1125 stage2_wp_ptes(pmd, addr, next);
1126 }
1127 }
1128 } while (pmd++, addr = next, addr != end);
1129 }
1130
1131 /**
1132 * stage2_wp_puds - write protect PGD range
1133 * @pgd: pointer to pgd entry
1134 * @addr: range start address
1135 * @end: range end address
1136 *
1137 * Process PUD entries, for a huge PUD we cause a panic.
1138 */
1139 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1140 {
1141 pud_t *pud;
1142 phys_addr_t next;
1143
1144 pud = stage2_pud_offset(pgd, addr);
1145 do {
1146 next = stage2_pud_addr_end(addr, end);
1147 if (!stage2_pud_none(*pud)) {
1148 /* TODO:PUD not supported, revisit later if supported */
1149 BUG_ON(stage2_pud_huge(*pud));
1150 stage2_wp_pmds(pud, addr, next);
1151 }
1152 } while (pud++, addr = next, addr != end);
1153 }
1154
1155 /**
1156 * stage2_wp_range() - write protect stage2 memory region range
1157 * @kvm: The KVM pointer
1158 * @addr: Start address of range
1159 * @end: End address of range
1160 */
1161 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1162 {
1163 pgd_t *pgd;
1164 phys_addr_t next;
1165
1166 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1167 do {
1168 /*
1169 * Release kvm_mmu_lock periodically if the memory region is
1170 * large. Otherwise, we may see kernel panics with
1171 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1172 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1173 * will also starve other vCPUs.
1174 */
1175 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1176 cond_resched_lock(&kvm->mmu_lock);
1177
1178 next = stage2_pgd_addr_end(addr, end);
1179 if (stage2_pgd_present(*pgd))
1180 stage2_wp_puds(pgd, addr, next);
1181 } while (pgd++, addr = next, addr != end);
1182 }
1183
1184 /**
1185 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1186 * @kvm: The KVM pointer
1187 * @slot: The memory slot to write protect
1188 *
1189 * Called to start logging dirty pages after memory region
1190 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1191 * all present PMD and PTEs are write protected in the memory region.
1192 * Afterwards read of dirty page log can be called.
1193 *
1194 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1195 * serializing operations for VM memory regions.
1196 */
1197 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1198 {
1199 struct kvm_memslots *slots = kvm_memslots(kvm);
1200 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1201 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1202 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1203
1204 spin_lock(&kvm->mmu_lock);
1205 stage2_wp_range(kvm, start, end);
1206 spin_unlock(&kvm->mmu_lock);
1207 kvm_flush_remote_tlbs(kvm);
1208 }
1209
1210 /**
1211 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1212 * @kvm: The KVM pointer
1213 * @slot: The memory slot associated with mask
1214 * @gfn_offset: The gfn offset in memory slot
1215 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1216 * slot to be write protected
1217 *
1218 * Walks bits set in mask write protects the associated pte's. Caller must
1219 * acquire kvm_mmu_lock.
1220 */
1221 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1222 struct kvm_memory_slot *slot,
1223 gfn_t gfn_offset, unsigned long mask)
1224 {
1225 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1226 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1227 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1228
1229 stage2_wp_range(kvm, start, end);
1230 }
1231
1232 /*
1233 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1234 * dirty pages.
1235 *
1236 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1237 * enable dirty logging for them.
1238 */
1239 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1240 struct kvm_memory_slot *slot,
1241 gfn_t gfn_offset, unsigned long mask)
1242 {
1243 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1244 }
1245
1246 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1247 unsigned long size)
1248 {
1249 __coherent_cache_guest_page(vcpu, pfn, size);
1250 }
1251
1252 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1253 struct kvm_memory_slot *memslot, unsigned long hva,
1254 unsigned long fault_status)
1255 {
1256 int ret;
1257 bool write_fault, writable, hugetlb = false, force_pte = false;
1258 unsigned long mmu_seq;
1259 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1260 struct kvm *kvm = vcpu->kvm;
1261 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1262 struct vm_area_struct *vma;
1263 kvm_pfn_t pfn;
1264 pgprot_t mem_type = PAGE_S2;
1265 bool logging_active = memslot_is_logging(memslot);
1266 unsigned long flags = 0;
1267
1268 write_fault = kvm_is_write_fault(vcpu);
1269 if (fault_status == FSC_PERM && !write_fault) {
1270 kvm_err("Unexpected L2 read permission error\n");
1271 return -EFAULT;
1272 }
1273
1274 /* Let's check if we will get back a huge page backed by hugetlbfs */
1275 down_read(&current->mm->mmap_sem);
1276 vma = find_vma_intersection(current->mm, hva, hva + 1);
1277 if (unlikely(!vma)) {
1278 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1279 up_read(&current->mm->mmap_sem);
1280 return -EFAULT;
1281 }
1282
1283 if (is_vm_hugetlb_page(vma) && !logging_active) {
1284 hugetlb = true;
1285 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1286 } else {
1287 /*
1288 * Pages belonging to memslots that don't have the same
1289 * alignment for userspace and IPA cannot be mapped using
1290 * block descriptors even if the pages belong to a THP for
1291 * the process, because the stage-2 block descriptor will
1292 * cover more than a single THP and we loose atomicity for
1293 * unmapping, updates, and splits of the THP or other pages
1294 * in the stage-2 block range.
1295 */
1296 if ((memslot->userspace_addr & ~PMD_MASK) !=
1297 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1298 force_pte = true;
1299 }
1300 up_read(&current->mm->mmap_sem);
1301
1302 /* We need minimum second+third level pages */
1303 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1304 KVM_NR_MEM_OBJS);
1305 if (ret)
1306 return ret;
1307
1308 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1309 /*
1310 * Ensure the read of mmu_notifier_seq happens before we call
1311 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1312 * the page we just got a reference to gets unmapped before we have a
1313 * chance to grab the mmu_lock, which ensure that if the page gets
1314 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1315 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1316 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1317 */
1318 smp_rmb();
1319
1320 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1321 if (is_error_noslot_pfn(pfn))
1322 return -EFAULT;
1323
1324 if (kvm_is_device_pfn(pfn)) {
1325 mem_type = PAGE_S2_DEVICE;
1326 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1327 } else if (logging_active) {
1328 /*
1329 * Faults on pages in a memslot with logging enabled
1330 * should not be mapped with huge pages (it introduces churn
1331 * and performance degradation), so force a pte mapping.
1332 */
1333 force_pte = true;
1334 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1335
1336 /*
1337 * Only actually map the page as writable if this was a write
1338 * fault.
1339 */
1340 if (!write_fault)
1341 writable = false;
1342 }
1343
1344 spin_lock(&kvm->mmu_lock);
1345 if (mmu_notifier_retry(kvm, mmu_seq))
1346 goto out_unlock;
1347
1348 if (!hugetlb && !force_pte)
1349 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1350
1351 if (hugetlb) {
1352 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1353 new_pmd = pmd_mkhuge(new_pmd);
1354 if (writable) {
1355 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1356 kvm_set_pfn_dirty(pfn);
1357 }
1358 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE);
1359 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1360 } else {
1361 pte_t new_pte = pfn_pte(pfn, mem_type);
1362
1363 if (writable) {
1364 new_pte = kvm_s2pte_mkwrite(new_pte);
1365 kvm_set_pfn_dirty(pfn);
1366 mark_page_dirty(kvm, gfn);
1367 }
1368 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE);
1369 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1370 }
1371
1372 out_unlock:
1373 spin_unlock(&kvm->mmu_lock);
1374 kvm_set_pfn_accessed(pfn);
1375 kvm_release_pfn_clean(pfn);
1376 return ret;
1377 }
1378
1379 /*
1380 * Resolve the access fault by making the page young again.
1381 * Note that because the faulting entry is guaranteed not to be
1382 * cached in the TLB, we don't need to invalidate anything.
1383 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1384 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1385 */
1386 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1387 {
1388 pmd_t *pmd;
1389 pte_t *pte;
1390 kvm_pfn_t pfn;
1391 bool pfn_valid = false;
1392
1393 trace_kvm_access_fault(fault_ipa);
1394
1395 spin_lock(&vcpu->kvm->mmu_lock);
1396
1397 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1398 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1399 goto out;
1400
1401 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
1402 *pmd = pmd_mkyoung(*pmd);
1403 pfn = pmd_pfn(*pmd);
1404 pfn_valid = true;
1405 goto out;
1406 }
1407
1408 pte = pte_offset_kernel(pmd, fault_ipa);
1409 if (pte_none(*pte)) /* Nothing there either */
1410 goto out;
1411
1412 *pte = pte_mkyoung(*pte); /* Just a page... */
1413 pfn = pte_pfn(*pte);
1414 pfn_valid = true;
1415 out:
1416 spin_unlock(&vcpu->kvm->mmu_lock);
1417 if (pfn_valid)
1418 kvm_set_pfn_accessed(pfn);
1419 }
1420
1421 /**
1422 * kvm_handle_guest_abort - handles all 2nd stage aborts
1423 * @vcpu: the VCPU pointer
1424 * @run: the kvm_run structure
1425 *
1426 * Any abort that gets to the host is almost guaranteed to be caused by a
1427 * missing second stage translation table entry, which can mean that either the
1428 * guest simply needs more memory and we must allocate an appropriate page or it
1429 * can mean that the guest tried to access I/O memory, which is emulated by user
1430 * space. The distinction is based on the IPA causing the fault and whether this
1431 * memory region has been registered as standard RAM by user space.
1432 */
1433 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1434 {
1435 unsigned long fault_status;
1436 phys_addr_t fault_ipa;
1437 struct kvm_memory_slot *memslot;
1438 unsigned long hva;
1439 bool is_iabt, write_fault, writable;
1440 gfn_t gfn;
1441 int ret, idx;
1442
1443 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1444 if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1445 kvm_inject_vabt(vcpu);
1446 return 1;
1447 }
1448
1449 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1450
1451 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1452 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1453
1454 /* Check the stage-2 fault is trans. fault or write fault */
1455 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1456 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1457 fault_status != FSC_ACCESS) {
1458 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1459 kvm_vcpu_trap_get_class(vcpu),
1460 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1461 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1462 return -EFAULT;
1463 }
1464
1465 idx = srcu_read_lock(&vcpu->kvm->srcu);
1466
1467 gfn = fault_ipa >> PAGE_SHIFT;
1468 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1469 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1470 write_fault = kvm_is_write_fault(vcpu);
1471 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1472 if (is_iabt) {
1473 /* Prefetch Abort on I/O address */
1474 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1475 ret = 1;
1476 goto out_unlock;
1477 }
1478
1479 /*
1480 * Check for a cache maintenance operation. Since we
1481 * ended-up here, we know it is outside of any memory
1482 * slot. But we can't find out if that is for a device,
1483 * or if the guest is just being stupid. The only thing
1484 * we know for sure is that this range cannot be cached.
1485 *
1486 * So let's assume that the guest is just being
1487 * cautious, and skip the instruction.
1488 */
1489 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1490 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1491 ret = 1;
1492 goto out_unlock;
1493 }
1494
1495 /*
1496 * The IPA is reported as [MAX:12], so we need to
1497 * complement it with the bottom 12 bits from the
1498 * faulting VA. This is always 12 bits, irrespective
1499 * of the page size.
1500 */
1501 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1502 ret = io_mem_abort(vcpu, run, fault_ipa);
1503 goto out_unlock;
1504 }
1505
1506 /* Userspace should not be able to register out-of-bounds IPAs */
1507 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1508
1509 if (fault_status == FSC_ACCESS) {
1510 handle_access_fault(vcpu, fault_ipa);
1511 ret = 1;
1512 goto out_unlock;
1513 }
1514
1515 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1516 if (ret == 0)
1517 ret = 1;
1518 out_unlock:
1519 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1520 return ret;
1521 }
1522
1523 static int handle_hva_to_gpa(struct kvm *kvm,
1524 unsigned long start,
1525 unsigned long end,
1526 int (*handler)(struct kvm *kvm,
1527 gpa_t gpa, void *data),
1528 void *data)
1529 {
1530 struct kvm_memslots *slots;
1531 struct kvm_memory_slot *memslot;
1532 int ret = 0;
1533
1534 slots = kvm_memslots(kvm);
1535
1536 /* we only care about the pages that the guest sees */
1537 kvm_for_each_memslot(memslot, slots) {
1538 unsigned long hva_start, hva_end;
1539 gfn_t gfn, gfn_end;
1540
1541 hva_start = max(start, memslot->userspace_addr);
1542 hva_end = min(end, memslot->userspace_addr +
1543 (memslot->npages << PAGE_SHIFT));
1544 if (hva_start >= hva_end)
1545 continue;
1546
1547 /*
1548 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1549 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1550 */
1551 gfn = hva_to_gfn_memslot(hva_start, memslot);
1552 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1553
1554 for (; gfn < gfn_end; ++gfn) {
1555 gpa_t gpa = gfn << PAGE_SHIFT;
1556 ret |= handler(kvm, gpa, data);
1557 }
1558 }
1559
1560 return ret;
1561 }
1562
1563 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1564 {
1565 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1566 return 0;
1567 }
1568
1569 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1570 {
1571 unsigned long end = hva + PAGE_SIZE;
1572
1573 if (!kvm->arch.pgd)
1574 return 0;
1575
1576 trace_kvm_unmap_hva(hva);
1577 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1578 return 0;
1579 }
1580
1581 int kvm_unmap_hva_range(struct kvm *kvm,
1582 unsigned long start, unsigned long end)
1583 {
1584 if (!kvm->arch.pgd)
1585 return 0;
1586
1587 trace_kvm_unmap_hva_range(start, end);
1588 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1589 return 0;
1590 }
1591
1592 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1593 {
1594 pte_t *pte = (pte_t *)data;
1595
1596 /*
1597 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1598 * flag clear because MMU notifiers will have unmapped a huge PMD before
1599 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1600 * therefore stage2_set_pte() never needs to clear out a huge PMD
1601 * through this calling path.
1602 */
1603 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1604 return 0;
1605 }
1606
1607
1608 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1609 {
1610 unsigned long end = hva + PAGE_SIZE;
1611 pte_t stage2_pte;
1612
1613 if (!kvm->arch.pgd)
1614 return;
1615
1616 trace_kvm_set_spte_hva(hva);
1617 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1618 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1619 }
1620
1621 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1622 {
1623 pmd_t *pmd;
1624 pte_t *pte;
1625
1626 pmd = stage2_get_pmd(kvm, NULL, gpa);
1627 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1628 return 0;
1629
1630 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1631 return stage2_pmdp_test_and_clear_young(pmd);
1632
1633 pte = pte_offset_kernel(pmd, gpa);
1634 if (pte_none(*pte))
1635 return 0;
1636
1637 return stage2_ptep_test_and_clear_young(pte);
1638 }
1639
1640 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1641 {
1642 pmd_t *pmd;
1643 pte_t *pte;
1644
1645 pmd = stage2_get_pmd(kvm, NULL, gpa);
1646 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1647 return 0;
1648
1649 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1650 return pmd_young(*pmd);
1651
1652 pte = pte_offset_kernel(pmd, gpa);
1653 if (!pte_none(*pte)) /* Just a page... */
1654 return pte_young(*pte);
1655
1656 return 0;
1657 }
1658
1659 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1660 {
1661 trace_kvm_age_hva(start, end);
1662 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1663 }
1664
1665 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1666 {
1667 trace_kvm_test_age_hva(hva);
1668 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1669 }
1670
1671 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1672 {
1673 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1674 }
1675
1676 phys_addr_t kvm_mmu_get_httbr(void)
1677 {
1678 if (__kvm_cpu_uses_extended_idmap())
1679 return virt_to_phys(merged_hyp_pgd);
1680 else
1681 return virt_to_phys(hyp_pgd);
1682 }
1683
1684 phys_addr_t kvm_get_idmap_vector(void)
1685 {
1686 return hyp_idmap_vector;
1687 }
1688
1689 phys_addr_t kvm_get_idmap_start(void)
1690 {
1691 return hyp_idmap_start;
1692 }
1693
1694 static int kvm_map_idmap_text(pgd_t *pgd)
1695 {
1696 int err;
1697
1698 /* Create the idmap in the boot page tables */
1699 err = __create_hyp_mappings(pgd,
1700 hyp_idmap_start, hyp_idmap_end,
1701 __phys_to_pfn(hyp_idmap_start),
1702 PAGE_HYP_EXEC);
1703 if (err)
1704 kvm_err("Failed to idmap %lx-%lx\n",
1705 hyp_idmap_start, hyp_idmap_end);
1706
1707 return err;
1708 }
1709
1710 int kvm_mmu_init(void)
1711 {
1712 int err;
1713
1714 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1715 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1716 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1717
1718 /*
1719 * We rely on the linker script to ensure at build time that the HYP
1720 * init code does not cross a page boundary.
1721 */
1722 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1723
1724 kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1725 kvm_info("HYP VA range: %lx:%lx\n",
1726 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1727
1728 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1729 hyp_idmap_start < kern_hyp_va(~0UL) &&
1730 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1731 /*
1732 * The idmap page is intersecting with the VA space,
1733 * it is not safe to continue further.
1734 */
1735 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1736 err = -EINVAL;
1737 goto out;
1738 }
1739
1740 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1741 if (!hyp_pgd) {
1742 kvm_err("Hyp mode PGD not allocated\n");
1743 err = -ENOMEM;
1744 goto out;
1745 }
1746
1747 if (__kvm_cpu_uses_extended_idmap()) {
1748 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1749 hyp_pgd_order);
1750 if (!boot_hyp_pgd) {
1751 kvm_err("Hyp boot PGD not allocated\n");
1752 err = -ENOMEM;
1753 goto out;
1754 }
1755
1756 err = kvm_map_idmap_text(boot_hyp_pgd);
1757 if (err)
1758 goto out;
1759
1760 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1761 if (!merged_hyp_pgd) {
1762 kvm_err("Failed to allocate extra HYP pgd\n");
1763 goto out;
1764 }
1765 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1766 hyp_idmap_start);
1767 } else {
1768 err = kvm_map_idmap_text(hyp_pgd);
1769 if (err)
1770 goto out;
1771 }
1772
1773 return 0;
1774 out:
1775 free_hyp_pgds();
1776 return err;
1777 }
1778
1779 void kvm_arch_commit_memory_region(struct kvm *kvm,
1780 const struct kvm_userspace_memory_region *mem,
1781 const struct kvm_memory_slot *old,
1782 const struct kvm_memory_slot *new,
1783 enum kvm_mr_change change)
1784 {
1785 /*
1786 * At this point memslot has been committed and there is an
1787 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1788 * memory slot is write protected.
1789 */
1790 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1791 kvm_mmu_wp_memory_region(kvm, mem->slot);
1792 }
1793
1794 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1795 struct kvm_memory_slot *memslot,
1796 const struct kvm_userspace_memory_region *mem,
1797 enum kvm_mr_change change)
1798 {
1799 hva_t hva = mem->userspace_addr;
1800 hva_t reg_end = hva + mem->memory_size;
1801 bool writable = !(mem->flags & KVM_MEM_READONLY);
1802 int ret = 0;
1803
1804 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1805 change != KVM_MR_FLAGS_ONLY)
1806 return 0;
1807
1808 /*
1809 * Prevent userspace from creating a memory region outside of the IPA
1810 * space addressable by the KVM guest IPA space.
1811 */
1812 if (memslot->base_gfn + memslot->npages >=
1813 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1814 return -EFAULT;
1815
1816 down_read(&current->mm->mmap_sem);
1817 /*
1818 * A memory region could potentially cover multiple VMAs, and any holes
1819 * between them, so iterate over all of them to find out if we can map
1820 * any of them right now.
1821 *
1822 * +--------------------------------------------+
1823 * +---------------+----------------+ +----------------+
1824 * | : VMA 1 | VMA 2 | | VMA 3 : |
1825 * +---------------+----------------+ +----------------+
1826 * | memory region |
1827 * +--------------------------------------------+
1828 */
1829 do {
1830 struct vm_area_struct *vma = find_vma(current->mm, hva);
1831 hva_t vm_start, vm_end;
1832
1833 if (!vma || vma->vm_start >= reg_end)
1834 break;
1835
1836 /*
1837 * Mapping a read-only VMA is only allowed if the
1838 * memory region is configured as read-only.
1839 */
1840 if (writable && !(vma->vm_flags & VM_WRITE)) {
1841 ret = -EPERM;
1842 break;
1843 }
1844
1845 /*
1846 * Take the intersection of this VMA with the memory region
1847 */
1848 vm_start = max(hva, vma->vm_start);
1849 vm_end = min(reg_end, vma->vm_end);
1850
1851 if (vma->vm_flags & VM_PFNMAP) {
1852 gpa_t gpa = mem->guest_phys_addr +
1853 (vm_start - mem->userspace_addr);
1854 phys_addr_t pa;
1855
1856 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1857 pa += vm_start - vma->vm_start;
1858
1859 /* IO region dirty page logging not allowed */
1860 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1861 ret = -EINVAL;
1862 goto out;
1863 }
1864
1865 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1866 vm_end - vm_start,
1867 writable);
1868 if (ret)
1869 break;
1870 }
1871 hva = vm_end;
1872 } while (hva < reg_end);
1873
1874 if (change == KVM_MR_FLAGS_ONLY)
1875 goto out;
1876
1877 spin_lock(&kvm->mmu_lock);
1878 if (ret)
1879 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1880 else
1881 stage2_flush_memslot(kvm, memslot);
1882 spin_unlock(&kvm->mmu_lock);
1883 out:
1884 up_read(&current->mm->mmap_sem);
1885 return ret;
1886 }
1887
1888 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1889 struct kvm_memory_slot *dont)
1890 {
1891 }
1892
1893 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1894 unsigned long npages)
1895 {
1896 return 0;
1897 }
1898
1899 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1900 {
1901 }
1902
1903 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1904 {
1905 kvm_free_stage2_pgd(kvm);
1906 }
1907
1908 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1909 struct kvm_memory_slot *slot)
1910 {
1911 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1912 phys_addr_t size = slot->npages << PAGE_SHIFT;
1913
1914 spin_lock(&kvm->mmu_lock);
1915 unmap_stage2_range(kvm, gpa, size);
1916 spin_unlock(&kvm->mmu_lock);
1917 }
1918
1919 /*
1920 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1921 *
1922 * Main problems:
1923 * - S/W ops are local to a CPU (not broadcast)
1924 * - We have line migration behind our back (speculation)
1925 * - System caches don't support S/W at all (damn!)
1926 *
1927 * In the face of the above, the best we can do is to try and convert
1928 * S/W ops to VA ops. Because the guest is not allowed to infer the
1929 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1930 * which is a rather good thing for us.
1931 *
1932 * Also, it is only used when turning caches on/off ("The expected
1933 * usage of the cache maintenance instructions that operate by set/way
1934 * is associated with the cache maintenance instructions associated
1935 * with the powerdown and powerup of caches, if this is required by
1936 * the implementation.").
1937 *
1938 * We use the following policy:
1939 *
1940 * - If we trap a S/W operation, we enable VM trapping to detect
1941 * caches being turned on/off, and do a full clean.
1942 *
1943 * - We flush the caches on both caches being turned on and off.
1944 *
1945 * - Once the caches are enabled, we stop trapping VM ops.
1946 */
1947 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1948 {
1949 unsigned long hcr = vcpu_get_hcr(vcpu);
1950
1951 /*
1952 * If this is the first time we do a S/W operation
1953 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1954 * VM trapping.
1955 *
1956 * Otherwise, rely on the VM trapping to wait for the MMU +
1957 * Caches to be turned off. At that point, we'll be able to
1958 * clean the caches again.
1959 */
1960 if (!(hcr & HCR_TVM)) {
1961 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1962 vcpu_has_cache_enabled(vcpu));
1963 stage2_flush_vm(vcpu->kvm);
1964 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1965 }
1966 }
1967
1968 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1969 {
1970 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1971
1972 /*
1973 * If switching the MMU+caches on, need to invalidate the caches.
1974 * If switching it off, need to clean the caches.
1975 * Clean + invalidate does the trick always.
1976 */
1977 if (now_enabled != was_enabled)
1978 stage2_flush_vm(vcpu->kvm);
1979
1980 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1981 if (now_enabled)
1982 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1983
1984 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1985 }