]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/kvm/mmu.c
Merge git://git.infradead.org/intel-iommu
[mirror_ubuntu-bionic-kernel.git] / arch / arm / kvm / mmu.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 static pgd_t *boot_hyp_pgd;
36 static pgd_t *hyp_pgd;
37 static pgd_t *merged_hyp_pgd;
38 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
40 static unsigned long hyp_idmap_start;
41 static unsigned long hyp_idmap_end;
42 static phys_addr_t hyp_idmap_vector;
43
44 #define S2_PGD_SIZE (PTRS_PER_S2_PGD * sizeof(pgd_t))
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
46
47 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
48 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
49
50 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
51 {
52 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
53 }
54
55 /**
56 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
57 * @kvm: pointer to kvm structure.
58 *
59 * Interface to HYP function to flush all VM TLB entries
60 */
61 void kvm_flush_remote_tlbs(struct kvm *kvm)
62 {
63 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
64 }
65
66 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
67 {
68 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
69 }
70
71 /*
72 * D-Cache management functions. They take the page table entries by
73 * value, as they are flushing the cache using the kernel mapping (or
74 * kmap on 32bit).
75 */
76 static void kvm_flush_dcache_pte(pte_t pte)
77 {
78 __kvm_flush_dcache_pte(pte);
79 }
80
81 static void kvm_flush_dcache_pmd(pmd_t pmd)
82 {
83 __kvm_flush_dcache_pmd(pmd);
84 }
85
86 static void kvm_flush_dcache_pud(pud_t pud)
87 {
88 __kvm_flush_dcache_pud(pud);
89 }
90
91 static bool kvm_is_device_pfn(unsigned long pfn)
92 {
93 return !pfn_valid(pfn);
94 }
95
96 /**
97 * stage2_dissolve_pmd() - clear and flush huge PMD entry
98 * @kvm: pointer to kvm structure.
99 * @addr: IPA
100 * @pmd: pmd pointer for IPA
101 *
102 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
103 * pages in the range dirty.
104 */
105 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
106 {
107 if (!pmd_thp_or_huge(*pmd))
108 return;
109
110 pmd_clear(pmd);
111 kvm_tlb_flush_vmid_ipa(kvm, addr);
112 put_page(virt_to_page(pmd));
113 }
114
115 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
116 int min, int max)
117 {
118 void *page;
119
120 BUG_ON(max > KVM_NR_MEM_OBJS);
121 if (cache->nobjs >= min)
122 return 0;
123 while (cache->nobjs < max) {
124 page = (void *)__get_free_page(PGALLOC_GFP);
125 if (!page)
126 return -ENOMEM;
127 cache->objects[cache->nobjs++] = page;
128 }
129 return 0;
130 }
131
132 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
133 {
134 while (mc->nobjs)
135 free_page((unsigned long)mc->objects[--mc->nobjs]);
136 }
137
138 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
139 {
140 void *p;
141
142 BUG_ON(!mc || !mc->nobjs);
143 p = mc->objects[--mc->nobjs];
144 return p;
145 }
146
147 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
148 {
149 pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
150 stage2_pgd_clear(pgd);
151 kvm_tlb_flush_vmid_ipa(kvm, addr);
152 stage2_pud_free(pud_table);
153 put_page(virt_to_page(pgd));
154 }
155
156 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
157 {
158 pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
159 VM_BUG_ON(stage2_pud_huge(*pud));
160 stage2_pud_clear(pud);
161 kvm_tlb_flush_vmid_ipa(kvm, addr);
162 stage2_pmd_free(pmd_table);
163 put_page(virt_to_page(pud));
164 }
165
166 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
167 {
168 pte_t *pte_table = pte_offset_kernel(pmd, 0);
169 VM_BUG_ON(pmd_thp_or_huge(*pmd));
170 pmd_clear(pmd);
171 kvm_tlb_flush_vmid_ipa(kvm, addr);
172 pte_free_kernel(NULL, pte_table);
173 put_page(virt_to_page(pmd));
174 }
175
176 /*
177 * Unmapping vs dcache management:
178 *
179 * If a guest maps certain memory pages as uncached, all writes will
180 * bypass the data cache and go directly to RAM. However, the CPUs
181 * can still speculate reads (not writes) and fill cache lines with
182 * data.
183 *
184 * Those cache lines will be *clean* cache lines though, so a
185 * clean+invalidate operation is equivalent to an invalidate
186 * operation, because no cache lines are marked dirty.
187 *
188 * Those clean cache lines could be filled prior to an uncached write
189 * by the guest, and the cache coherent IO subsystem would therefore
190 * end up writing old data to disk.
191 *
192 * This is why right after unmapping a page/section and invalidating
193 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
194 * the IO subsystem will never hit in the cache.
195 */
196 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
197 phys_addr_t addr, phys_addr_t end)
198 {
199 phys_addr_t start_addr = addr;
200 pte_t *pte, *start_pte;
201
202 start_pte = pte = pte_offset_kernel(pmd, addr);
203 do {
204 if (!pte_none(*pte)) {
205 pte_t old_pte = *pte;
206
207 kvm_set_pte(pte, __pte(0));
208 kvm_tlb_flush_vmid_ipa(kvm, addr);
209
210 /* No need to invalidate the cache for device mappings */
211 if (!kvm_is_device_pfn(pte_pfn(old_pte)))
212 kvm_flush_dcache_pte(old_pte);
213
214 put_page(virt_to_page(pte));
215 }
216 } while (pte++, addr += PAGE_SIZE, addr != end);
217
218 if (stage2_pte_table_empty(start_pte))
219 clear_stage2_pmd_entry(kvm, pmd, start_addr);
220 }
221
222 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
223 phys_addr_t addr, phys_addr_t end)
224 {
225 phys_addr_t next, start_addr = addr;
226 pmd_t *pmd, *start_pmd;
227
228 start_pmd = pmd = stage2_pmd_offset(pud, addr);
229 do {
230 next = stage2_pmd_addr_end(addr, end);
231 if (!pmd_none(*pmd)) {
232 if (pmd_thp_or_huge(*pmd)) {
233 pmd_t old_pmd = *pmd;
234
235 pmd_clear(pmd);
236 kvm_tlb_flush_vmid_ipa(kvm, addr);
237
238 kvm_flush_dcache_pmd(old_pmd);
239
240 put_page(virt_to_page(pmd));
241 } else {
242 unmap_stage2_ptes(kvm, pmd, addr, next);
243 }
244 }
245 } while (pmd++, addr = next, addr != end);
246
247 if (stage2_pmd_table_empty(start_pmd))
248 clear_stage2_pud_entry(kvm, pud, start_addr);
249 }
250
251 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
252 phys_addr_t addr, phys_addr_t end)
253 {
254 phys_addr_t next, start_addr = addr;
255 pud_t *pud, *start_pud;
256
257 start_pud = pud = stage2_pud_offset(pgd, addr);
258 do {
259 next = stage2_pud_addr_end(addr, end);
260 if (!stage2_pud_none(*pud)) {
261 if (stage2_pud_huge(*pud)) {
262 pud_t old_pud = *pud;
263
264 stage2_pud_clear(pud);
265 kvm_tlb_flush_vmid_ipa(kvm, addr);
266 kvm_flush_dcache_pud(old_pud);
267 put_page(virt_to_page(pud));
268 } else {
269 unmap_stage2_pmds(kvm, pud, addr, next);
270 }
271 }
272 } while (pud++, addr = next, addr != end);
273
274 if (stage2_pud_table_empty(start_pud))
275 clear_stage2_pgd_entry(kvm, pgd, start_addr);
276 }
277
278 /**
279 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
280 * @kvm: The VM pointer
281 * @start: The intermediate physical base address of the range to unmap
282 * @size: The size of the area to unmap
283 *
284 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
285 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
286 * destroying the VM), otherwise another faulting VCPU may come in and mess
287 * with things behind our backs.
288 */
289 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
290 {
291 pgd_t *pgd;
292 phys_addr_t addr = start, end = start + size;
293 phys_addr_t next;
294
295 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
296 do {
297 next = stage2_pgd_addr_end(addr, end);
298 if (!stage2_pgd_none(*pgd))
299 unmap_stage2_puds(kvm, pgd, addr, next);
300 } while (pgd++, addr = next, addr != end);
301 }
302
303 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
304 phys_addr_t addr, phys_addr_t end)
305 {
306 pte_t *pte;
307
308 pte = pte_offset_kernel(pmd, addr);
309 do {
310 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
311 kvm_flush_dcache_pte(*pte);
312 } while (pte++, addr += PAGE_SIZE, addr != end);
313 }
314
315 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
316 phys_addr_t addr, phys_addr_t end)
317 {
318 pmd_t *pmd;
319 phys_addr_t next;
320
321 pmd = stage2_pmd_offset(pud, addr);
322 do {
323 next = stage2_pmd_addr_end(addr, end);
324 if (!pmd_none(*pmd)) {
325 if (pmd_thp_or_huge(*pmd))
326 kvm_flush_dcache_pmd(*pmd);
327 else
328 stage2_flush_ptes(kvm, pmd, addr, next);
329 }
330 } while (pmd++, addr = next, addr != end);
331 }
332
333 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
334 phys_addr_t addr, phys_addr_t end)
335 {
336 pud_t *pud;
337 phys_addr_t next;
338
339 pud = stage2_pud_offset(pgd, addr);
340 do {
341 next = stage2_pud_addr_end(addr, end);
342 if (!stage2_pud_none(*pud)) {
343 if (stage2_pud_huge(*pud))
344 kvm_flush_dcache_pud(*pud);
345 else
346 stage2_flush_pmds(kvm, pud, addr, next);
347 }
348 } while (pud++, addr = next, addr != end);
349 }
350
351 static void stage2_flush_memslot(struct kvm *kvm,
352 struct kvm_memory_slot *memslot)
353 {
354 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
355 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
356 phys_addr_t next;
357 pgd_t *pgd;
358
359 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
360 do {
361 next = stage2_pgd_addr_end(addr, end);
362 stage2_flush_puds(kvm, pgd, addr, next);
363 } while (pgd++, addr = next, addr != end);
364 }
365
366 /**
367 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
368 * @kvm: The struct kvm pointer
369 *
370 * Go through the stage 2 page tables and invalidate any cache lines
371 * backing memory already mapped to the VM.
372 */
373 static void stage2_flush_vm(struct kvm *kvm)
374 {
375 struct kvm_memslots *slots;
376 struct kvm_memory_slot *memslot;
377 int idx;
378
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
381
382 slots = kvm_memslots(kvm);
383 kvm_for_each_memslot(memslot, slots)
384 stage2_flush_memslot(kvm, memslot);
385
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
388 }
389
390 static void clear_hyp_pgd_entry(pgd_t *pgd)
391 {
392 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
393 pgd_clear(pgd);
394 pud_free(NULL, pud_table);
395 put_page(virt_to_page(pgd));
396 }
397
398 static void clear_hyp_pud_entry(pud_t *pud)
399 {
400 pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
401 VM_BUG_ON(pud_huge(*pud));
402 pud_clear(pud);
403 pmd_free(NULL, pmd_table);
404 put_page(virt_to_page(pud));
405 }
406
407 static void clear_hyp_pmd_entry(pmd_t *pmd)
408 {
409 pte_t *pte_table = pte_offset_kernel(pmd, 0);
410 VM_BUG_ON(pmd_thp_or_huge(*pmd));
411 pmd_clear(pmd);
412 pte_free_kernel(NULL, pte_table);
413 put_page(virt_to_page(pmd));
414 }
415
416 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
417 {
418 pte_t *pte, *start_pte;
419
420 start_pte = pte = pte_offset_kernel(pmd, addr);
421 do {
422 if (!pte_none(*pte)) {
423 kvm_set_pte(pte, __pte(0));
424 put_page(virt_to_page(pte));
425 }
426 } while (pte++, addr += PAGE_SIZE, addr != end);
427
428 if (hyp_pte_table_empty(start_pte))
429 clear_hyp_pmd_entry(pmd);
430 }
431
432 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
433 {
434 phys_addr_t next;
435 pmd_t *pmd, *start_pmd;
436
437 start_pmd = pmd = pmd_offset(pud, addr);
438 do {
439 next = pmd_addr_end(addr, end);
440 /* Hyp doesn't use huge pmds */
441 if (!pmd_none(*pmd))
442 unmap_hyp_ptes(pmd, addr, next);
443 } while (pmd++, addr = next, addr != end);
444
445 if (hyp_pmd_table_empty(start_pmd))
446 clear_hyp_pud_entry(pud);
447 }
448
449 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
450 {
451 phys_addr_t next;
452 pud_t *pud, *start_pud;
453
454 start_pud = pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 /* Hyp doesn't use huge puds */
458 if (!pud_none(*pud))
459 unmap_hyp_pmds(pud, addr, next);
460 } while (pud++, addr = next, addr != end);
461
462 if (hyp_pud_table_empty(start_pud))
463 clear_hyp_pgd_entry(pgd);
464 }
465
466 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
467 {
468 pgd_t *pgd;
469 phys_addr_t addr = start, end = start + size;
470 phys_addr_t next;
471
472 /*
473 * We don't unmap anything from HYP, except at the hyp tear down.
474 * Hence, we don't have to invalidate the TLBs here.
475 */
476 pgd = pgdp + pgd_index(addr);
477 do {
478 next = pgd_addr_end(addr, end);
479 if (!pgd_none(*pgd))
480 unmap_hyp_puds(pgd, addr, next);
481 } while (pgd++, addr = next, addr != end);
482 }
483
484 /**
485 * free_hyp_pgds - free Hyp-mode page tables
486 *
487 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
488 * therefore contains either mappings in the kernel memory area (above
489 * PAGE_OFFSET), or device mappings in the vmalloc range (from
490 * VMALLOC_START to VMALLOC_END).
491 *
492 * boot_hyp_pgd should only map two pages for the init code.
493 */
494 void free_hyp_pgds(void)
495 {
496 unsigned long addr;
497
498 mutex_lock(&kvm_hyp_pgd_mutex);
499
500 if (boot_hyp_pgd) {
501 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
502 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
503 boot_hyp_pgd = NULL;
504 }
505
506 if (hyp_pgd) {
507 unmap_hyp_range(hyp_pgd, hyp_idmap_start, PAGE_SIZE);
508 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
509 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
510 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
511 unmap_hyp_range(hyp_pgd, kern_hyp_va(addr), PGDIR_SIZE);
512
513 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
514 hyp_pgd = NULL;
515 }
516 if (merged_hyp_pgd) {
517 clear_page(merged_hyp_pgd);
518 free_page((unsigned long)merged_hyp_pgd);
519 merged_hyp_pgd = NULL;
520 }
521
522 mutex_unlock(&kvm_hyp_pgd_mutex);
523 }
524
525 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
526 unsigned long end, unsigned long pfn,
527 pgprot_t prot)
528 {
529 pte_t *pte;
530 unsigned long addr;
531
532 addr = start;
533 do {
534 pte = pte_offset_kernel(pmd, addr);
535 kvm_set_pte(pte, pfn_pte(pfn, prot));
536 get_page(virt_to_page(pte));
537 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
538 pfn++;
539 } while (addr += PAGE_SIZE, addr != end);
540 }
541
542 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
543 unsigned long end, unsigned long pfn,
544 pgprot_t prot)
545 {
546 pmd_t *pmd;
547 pte_t *pte;
548 unsigned long addr, next;
549
550 addr = start;
551 do {
552 pmd = pmd_offset(pud, addr);
553
554 BUG_ON(pmd_sect(*pmd));
555
556 if (pmd_none(*pmd)) {
557 pte = pte_alloc_one_kernel(NULL, addr);
558 if (!pte) {
559 kvm_err("Cannot allocate Hyp pte\n");
560 return -ENOMEM;
561 }
562 pmd_populate_kernel(NULL, pmd, pte);
563 get_page(virt_to_page(pmd));
564 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
565 }
566
567 next = pmd_addr_end(addr, end);
568
569 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
570 pfn += (next - addr) >> PAGE_SHIFT;
571 } while (addr = next, addr != end);
572
573 return 0;
574 }
575
576 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
577 unsigned long end, unsigned long pfn,
578 pgprot_t prot)
579 {
580 pud_t *pud;
581 pmd_t *pmd;
582 unsigned long addr, next;
583 int ret;
584
585 addr = start;
586 do {
587 pud = pud_offset(pgd, addr);
588
589 if (pud_none_or_clear_bad(pud)) {
590 pmd = pmd_alloc_one(NULL, addr);
591 if (!pmd) {
592 kvm_err("Cannot allocate Hyp pmd\n");
593 return -ENOMEM;
594 }
595 pud_populate(NULL, pud, pmd);
596 get_page(virt_to_page(pud));
597 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
598 }
599
600 next = pud_addr_end(addr, end);
601 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
602 if (ret)
603 return ret;
604 pfn += (next - addr) >> PAGE_SHIFT;
605 } while (addr = next, addr != end);
606
607 return 0;
608 }
609
610 static int __create_hyp_mappings(pgd_t *pgdp,
611 unsigned long start, unsigned long end,
612 unsigned long pfn, pgprot_t prot)
613 {
614 pgd_t *pgd;
615 pud_t *pud;
616 unsigned long addr, next;
617 int err = 0;
618
619 mutex_lock(&kvm_hyp_pgd_mutex);
620 addr = start & PAGE_MASK;
621 end = PAGE_ALIGN(end);
622 do {
623 pgd = pgdp + pgd_index(addr);
624
625 if (pgd_none(*pgd)) {
626 pud = pud_alloc_one(NULL, addr);
627 if (!pud) {
628 kvm_err("Cannot allocate Hyp pud\n");
629 err = -ENOMEM;
630 goto out;
631 }
632 pgd_populate(NULL, pgd, pud);
633 get_page(virt_to_page(pgd));
634 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
635 }
636
637 next = pgd_addr_end(addr, end);
638 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
639 if (err)
640 goto out;
641 pfn += (next - addr) >> PAGE_SHIFT;
642 } while (addr = next, addr != end);
643 out:
644 mutex_unlock(&kvm_hyp_pgd_mutex);
645 return err;
646 }
647
648 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
649 {
650 if (!is_vmalloc_addr(kaddr)) {
651 BUG_ON(!virt_addr_valid(kaddr));
652 return __pa(kaddr);
653 } else {
654 return page_to_phys(vmalloc_to_page(kaddr)) +
655 offset_in_page(kaddr);
656 }
657 }
658
659 /**
660 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
661 * @from: The virtual kernel start address of the range
662 * @to: The virtual kernel end address of the range (exclusive)
663 * @prot: The protection to be applied to this range
664 *
665 * The same virtual address as the kernel virtual address is also used
666 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
667 * physical pages.
668 */
669 int create_hyp_mappings(void *from, void *to, pgprot_t prot)
670 {
671 phys_addr_t phys_addr;
672 unsigned long virt_addr;
673 unsigned long start = kern_hyp_va((unsigned long)from);
674 unsigned long end = kern_hyp_va((unsigned long)to);
675
676 if (is_kernel_in_hyp_mode())
677 return 0;
678
679 start = start & PAGE_MASK;
680 end = PAGE_ALIGN(end);
681
682 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
683 int err;
684
685 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
686 err = __create_hyp_mappings(hyp_pgd, virt_addr,
687 virt_addr + PAGE_SIZE,
688 __phys_to_pfn(phys_addr),
689 prot);
690 if (err)
691 return err;
692 }
693
694 return 0;
695 }
696
697 /**
698 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
699 * @from: The kernel start VA of the range
700 * @to: The kernel end VA of the range (exclusive)
701 * @phys_addr: The physical start address which gets mapped
702 *
703 * The resulting HYP VA is the same as the kernel VA, modulo
704 * HYP_PAGE_OFFSET.
705 */
706 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
707 {
708 unsigned long start = kern_hyp_va((unsigned long)from);
709 unsigned long end = kern_hyp_va((unsigned long)to);
710
711 if (is_kernel_in_hyp_mode())
712 return 0;
713
714 /* Check for a valid kernel IO mapping */
715 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
716 return -EINVAL;
717
718 return __create_hyp_mappings(hyp_pgd, start, end,
719 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
720 }
721
722 /**
723 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
724 * @kvm: The KVM struct pointer for the VM.
725 *
726 * Allocates only the stage-2 HW PGD level table(s) (can support either full
727 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
728 * allocated pages.
729 *
730 * Note we don't need locking here as this is only called when the VM is
731 * created, which can only be done once.
732 */
733 int kvm_alloc_stage2_pgd(struct kvm *kvm)
734 {
735 pgd_t *pgd;
736
737 if (kvm->arch.pgd != NULL) {
738 kvm_err("kvm_arch already initialized?\n");
739 return -EINVAL;
740 }
741
742 /* Allocate the HW PGD, making sure that each page gets its own refcount */
743 pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
744 if (!pgd)
745 return -ENOMEM;
746
747 kvm->arch.pgd = pgd;
748 return 0;
749 }
750
751 static void stage2_unmap_memslot(struct kvm *kvm,
752 struct kvm_memory_slot *memslot)
753 {
754 hva_t hva = memslot->userspace_addr;
755 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
756 phys_addr_t size = PAGE_SIZE * memslot->npages;
757 hva_t reg_end = hva + size;
758
759 /*
760 * A memory region could potentially cover multiple VMAs, and any holes
761 * between them, so iterate over all of them to find out if we should
762 * unmap any of them.
763 *
764 * +--------------------------------------------+
765 * +---------------+----------------+ +----------------+
766 * | : VMA 1 | VMA 2 | | VMA 3 : |
767 * +---------------+----------------+ +----------------+
768 * | memory region |
769 * +--------------------------------------------+
770 */
771 do {
772 struct vm_area_struct *vma = find_vma(current->mm, hva);
773 hva_t vm_start, vm_end;
774
775 if (!vma || vma->vm_start >= reg_end)
776 break;
777
778 /*
779 * Take the intersection of this VMA with the memory region
780 */
781 vm_start = max(hva, vma->vm_start);
782 vm_end = min(reg_end, vma->vm_end);
783
784 if (!(vma->vm_flags & VM_PFNMAP)) {
785 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
786 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
787 }
788 hva = vm_end;
789 } while (hva < reg_end);
790 }
791
792 /**
793 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
794 * @kvm: The struct kvm pointer
795 *
796 * Go through the memregions and unmap any reguler RAM
797 * backing memory already mapped to the VM.
798 */
799 void stage2_unmap_vm(struct kvm *kvm)
800 {
801 struct kvm_memslots *slots;
802 struct kvm_memory_slot *memslot;
803 int idx;
804
805 idx = srcu_read_lock(&kvm->srcu);
806 spin_lock(&kvm->mmu_lock);
807
808 slots = kvm_memslots(kvm);
809 kvm_for_each_memslot(memslot, slots)
810 stage2_unmap_memslot(kvm, memslot);
811
812 spin_unlock(&kvm->mmu_lock);
813 srcu_read_unlock(&kvm->srcu, idx);
814 }
815
816 /**
817 * kvm_free_stage2_pgd - free all stage-2 tables
818 * @kvm: The KVM struct pointer for the VM.
819 *
820 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
821 * underlying level-2 and level-3 tables before freeing the actual level-1 table
822 * and setting the struct pointer to NULL.
823 *
824 * Note we don't need locking here as this is only called when the VM is
825 * destroyed, which can only be done once.
826 */
827 void kvm_free_stage2_pgd(struct kvm *kvm)
828 {
829 if (kvm->arch.pgd == NULL)
830 return;
831
832 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
833 /* Free the HW pgd, one page at a time */
834 free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
835 kvm->arch.pgd = NULL;
836 }
837
838 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
839 phys_addr_t addr)
840 {
841 pgd_t *pgd;
842 pud_t *pud;
843
844 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
845 if (WARN_ON(stage2_pgd_none(*pgd))) {
846 if (!cache)
847 return NULL;
848 pud = mmu_memory_cache_alloc(cache);
849 stage2_pgd_populate(pgd, pud);
850 get_page(virt_to_page(pgd));
851 }
852
853 return stage2_pud_offset(pgd, addr);
854 }
855
856 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
857 phys_addr_t addr)
858 {
859 pud_t *pud;
860 pmd_t *pmd;
861
862 pud = stage2_get_pud(kvm, cache, addr);
863 if (stage2_pud_none(*pud)) {
864 if (!cache)
865 return NULL;
866 pmd = mmu_memory_cache_alloc(cache);
867 stage2_pud_populate(pud, pmd);
868 get_page(virt_to_page(pud));
869 }
870
871 return stage2_pmd_offset(pud, addr);
872 }
873
874 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
875 *cache, phys_addr_t addr, const pmd_t *new_pmd)
876 {
877 pmd_t *pmd, old_pmd;
878
879 pmd = stage2_get_pmd(kvm, cache, addr);
880 VM_BUG_ON(!pmd);
881
882 /*
883 * Mapping in huge pages should only happen through a fault. If a
884 * page is merged into a transparent huge page, the individual
885 * subpages of that huge page should be unmapped through MMU
886 * notifiers before we get here.
887 *
888 * Merging of CompoundPages is not supported; they should become
889 * splitting first, unmapped, merged, and mapped back in on-demand.
890 */
891 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
892
893 old_pmd = *pmd;
894 if (pmd_present(old_pmd)) {
895 pmd_clear(pmd);
896 kvm_tlb_flush_vmid_ipa(kvm, addr);
897 } else {
898 get_page(virt_to_page(pmd));
899 }
900
901 kvm_set_pmd(pmd, *new_pmd);
902 return 0;
903 }
904
905 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
906 phys_addr_t addr, const pte_t *new_pte,
907 unsigned long flags)
908 {
909 pmd_t *pmd;
910 pte_t *pte, old_pte;
911 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
912 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
913
914 VM_BUG_ON(logging_active && !cache);
915
916 /* Create stage-2 page table mapping - Levels 0 and 1 */
917 pmd = stage2_get_pmd(kvm, cache, addr);
918 if (!pmd) {
919 /*
920 * Ignore calls from kvm_set_spte_hva for unallocated
921 * address ranges.
922 */
923 return 0;
924 }
925
926 /*
927 * While dirty page logging - dissolve huge PMD, then continue on to
928 * allocate page.
929 */
930 if (logging_active)
931 stage2_dissolve_pmd(kvm, addr, pmd);
932
933 /* Create stage-2 page mappings - Level 2 */
934 if (pmd_none(*pmd)) {
935 if (!cache)
936 return 0; /* ignore calls from kvm_set_spte_hva */
937 pte = mmu_memory_cache_alloc(cache);
938 pmd_populate_kernel(NULL, pmd, pte);
939 get_page(virt_to_page(pmd));
940 }
941
942 pte = pte_offset_kernel(pmd, addr);
943
944 if (iomap && pte_present(*pte))
945 return -EFAULT;
946
947 /* Create 2nd stage page table mapping - Level 3 */
948 old_pte = *pte;
949 if (pte_present(old_pte)) {
950 kvm_set_pte(pte, __pte(0));
951 kvm_tlb_flush_vmid_ipa(kvm, addr);
952 } else {
953 get_page(virt_to_page(pte));
954 }
955
956 kvm_set_pte(pte, *new_pte);
957 return 0;
958 }
959
960 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
961 static int stage2_ptep_test_and_clear_young(pte_t *pte)
962 {
963 if (pte_young(*pte)) {
964 *pte = pte_mkold(*pte);
965 return 1;
966 }
967 return 0;
968 }
969 #else
970 static int stage2_ptep_test_and_clear_young(pte_t *pte)
971 {
972 return __ptep_test_and_clear_young(pte);
973 }
974 #endif
975
976 static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
977 {
978 return stage2_ptep_test_and_clear_young((pte_t *)pmd);
979 }
980
981 /**
982 * kvm_phys_addr_ioremap - map a device range to guest IPA
983 *
984 * @kvm: The KVM pointer
985 * @guest_ipa: The IPA at which to insert the mapping
986 * @pa: The physical address of the device
987 * @size: The size of the mapping
988 */
989 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
990 phys_addr_t pa, unsigned long size, bool writable)
991 {
992 phys_addr_t addr, end;
993 int ret = 0;
994 unsigned long pfn;
995 struct kvm_mmu_memory_cache cache = { 0, };
996
997 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
998 pfn = __phys_to_pfn(pa);
999
1000 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1001 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1002
1003 if (writable)
1004 pte = kvm_s2pte_mkwrite(pte);
1005
1006 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1007 KVM_NR_MEM_OBJS);
1008 if (ret)
1009 goto out;
1010 spin_lock(&kvm->mmu_lock);
1011 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1012 KVM_S2PTE_FLAG_IS_IOMAP);
1013 spin_unlock(&kvm->mmu_lock);
1014 if (ret)
1015 goto out;
1016
1017 pfn++;
1018 }
1019
1020 out:
1021 mmu_free_memory_cache(&cache);
1022 return ret;
1023 }
1024
1025 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1026 {
1027 kvm_pfn_t pfn = *pfnp;
1028 gfn_t gfn = *ipap >> PAGE_SHIFT;
1029
1030 if (PageTransCompoundMap(pfn_to_page(pfn))) {
1031 unsigned long mask;
1032 /*
1033 * The address we faulted on is backed by a transparent huge
1034 * page. However, because we map the compound huge page and
1035 * not the individual tail page, we need to transfer the
1036 * refcount to the head page. We have to be careful that the
1037 * THP doesn't start to split while we are adjusting the
1038 * refcounts.
1039 *
1040 * We are sure this doesn't happen, because mmu_notifier_retry
1041 * was successful and we are holding the mmu_lock, so if this
1042 * THP is trying to split, it will be blocked in the mmu
1043 * notifier before touching any of the pages, specifically
1044 * before being able to call __split_huge_page_refcount().
1045 *
1046 * We can therefore safely transfer the refcount from PG_tail
1047 * to PG_head and switch the pfn from a tail page to the head
1048 * page accordingly.
1049 */
1050 mask = PTRS_PER_PMD - 1;
1051 VM_BUG_ON((gfn & mask) != (pfn & mask));
1052 if (pfn & mask) {
1053 *ipap &= PMD_MASK;
1054 kvm_release_pfn_clean(pfn);
1055 pfn &= ~mask;
1056 kvm_get_pfn(pfn);
1057 *pfnp = pfn;
1058 }
1059
1060 return true;
1061 }
1062
1063 return false;
1064 }
1065
1066 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1067 {
1068 if (kvm_vcpu_trap_is_iabt(vcpu))
1069 return false;
1070
1071 return kvm_vcpu_dabt_iswrite(vcpu);
1072 }
1073
1074 /**
1075 * stage2_wp_ptes - write protect PMD range
1076 * @pmd: pointer to pmd entry
1077 * @addr: range start address
1078 * @end: range end address
1079 */
1080 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1081 {
1082 pte_t *pte;
1083
1084 pte = pte_offset_kernel(pmd, addr);
1085 do {
1086 if (!pte_none(*pte)) {
1087 if (!kvm_s2pte_readonly(pte))
1088 kvm_set_s2pte_readonly(pte);
1089 }
1090 } while (pte++, addr += PAGE_SIZE, addr != end);
1091 }
1092
1093 /**
1094 * stage2_wp_pmds - write protect PUD range
1095 * @pud: pointer to pud entry
1096 * @addr: range start address
1097 * @end: range end address
1098 */
1099 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1100 {
1101 pmd_t *pmd;
1102 phys_addr_t next;
1103
1104 pmd = stage2_pmd_offset(pud, addr);
1105
1106 do {
1107 next = stage2_pmd_addr_end(addr, end);
1108 if (!pmd_none(*pmd)) {
1109 if (pmd_thp_or_huge(*pmd)) {
1110 if (!kvm_s2pmd_readonly(pmd))
1111 kvm_set_s2pmd_readonly(pmd);
1112 } else {
1113 stage2_wp_ptes(pmd, addr, next);
1114 }
1115 }
1116 } while (pmd++, addr = next, addr != end);
1117 }
1118
1119 /**
1120 * stage2_wp_puds - write protect PGD range
1121 * @pgd: pointer to pgd entry
1122 * @addr: range start address
1123 * @end: range end address
1124 *
1125 * Process PUD entries, for a huge PUD we cause a panic.
1126 */
1127 static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1128 {
1129 pud_t *pud;
1130 phys_addr_t next;
1131
1132 pud = stage2_pud_offset(pgd, addr);
1133 do {
1134 next = stage2_pud_addr_end(addr, end);
1135 if (!stage2_pud_none(*pud)) {
1136 /* TODO:PUD not supported, revisit later if supported */
1137 BUG_ON(stage2_pud_huge(*pud));
1138 stage2_wp_pmds(pud, addr, next);
1139 }
1140 } while (pud++, addr = next, addr != end);
1141 }
1142
1143 /**
1144 * stage2_wp_range() - write protect stage2 memory region range
1145 * @kvm: The KVM pointer
1146 * @addr: Start address of range
1147 * @end: End address of range
1148 */
1149 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1150 {
1151 pgd_t *pgd;
1152 phys_addr_t next;
1153
1154 pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1155 do {
1156 /*
1157 * Release kvm_mmu_lock periodically if the memory region is
1158 * large. Otherwise, we may see kernel panics with
1159 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1160 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1161 * will also starve other vCPUs.
1162 */
1163 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1164 cond_resched_lock(&kvm->mmu_lock);
1165
1166 next = stage2_pgd_addr_end(addr, end);
1167 if (stage2_pgd_present(*pgd))
1168 stage2_wp_puds(pgd, addr, next);
1169 } while (pgd++, addr = next, addr != end);
1170 }
1171
1172 /**
1173 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1174 * @kvm: The KVM pointer
1175 * @slot: The memory slot to write protect
1176 *
1177 * Called to start logging dirty pages after memory region
1178 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1179 * all present PMD and PTEs are write protected in the memory region.
1180 * Afterwards read of dirty page log can be called.
1181 *
1182 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1183 * serializing operations for VM memory regions.
1184 */
1185 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1186 {
1187 struct kvm_memslots *slots = kvm_memslots(kvm);
1188 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1189 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1190 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1191
1192 spin_lock(&kvm->mmu_lock);
1193 stage2_wp_range(kvm, start, end);
1194 spin_unlock(&kvm->mmu_lock);
1195 kvm_flush_remote_tlbs(kvm);
1196 }
1197
1198 /**
1199 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1200 * @kvm: The KVM pointer
1201 * @slot: The memory slot associated with mask
1202 * @gfn_offset: The gfn offset in memory slot
1203 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1204 * slot to be write protected
1205 *
1206 * Walks bits set in mask write protects the associated pte's. Caller must
1207 * acquire kvm_mmu_lock.
1208 */
1209 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1210 struct kvm_memory_slot *slot,
1211 gfn_t gfn_offset, unsigned long mask)
1212 {
1213 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1214 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1215 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1216
1217 stage2_wp_range(kvm, start, end);
1218 }
1219
1220 /*
1221 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1222 * dirty pages.
1223 *
1224 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1225 * enable dirty logging for them.
1226 */
1227 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1228 struct kvm_memory_slot *slot,
1229 gfn_t gfn_offset, unsigned long mask)
1230 {
1231 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1232 }
1233
1234 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1235 unsigned long size, bool uncached)
1236 {
1237 __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1238 }
1239
1240 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1241 struct kvm_memory_slot *memslot, unsigned long hva,
1242 unsigned long fault_status)
1243 {
1244 int ret;
1245 bool write_fault, writable, hugetlb = false, force_pte = false;
1246 unsigned long mmu_seq;
1247 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1248 struct kvm *kvm = vcpu->kvm;
1249 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1250 struct vm_area_struct *vma;
1251 kvm_pfn_t pfn;
1252 pgprot_t mem_type = PAGE_S2;
1253 bool fault_ipa_uncached;
1254 bool logging_active = memslot_is_logging(memslot);
1255 unsigned long flags = 0;
1256
1257 write_fault = kvm_is_write_fault(vcpu);
1258 if (fault_status == FSC_PERM && !write_fault) {
1259 kvm_err("Unexpected L2 read permission error\n");
1260 return -EFAULT;
1261 }
1262
1263 /* Let's check if we will get back a huge page backed by hugetlbfs */
1264 down_read(&current->mm->mmap_sem);
1265 vma = find_vma_intersection(current->mm, hva, hva + 1);
1266 if (unlikely(!vma)) {
1267 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1268 up_read(&current->mm->mmap_sem);
1269 return -EFAULT;
1270 }
1271
1272 if (is_vm_hugetlb_page(vma) && !logging_active) {
1273 hugetlb = true;
1274 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1275 } else {
1276 /*
1277 * Pages belonging to memslots that don't have the same
1278 * alignment for userspace and IPA cannot be mapped using
1279 * block descriptors even if the pages belong to a THP for
1280 * the process, because the stage-2 block descriptor will
1281 * cover more than a single THP and we loose atomicity for
1282 * unmapping, updates, and splits of the THP or other pages
1283 * in the stage-2 block range.
1284 */
1285 if ((memslot->userspace_addr & ~PMD_MASK) !=
1286 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1287 force_pte = true;
1288 }
1289 up_read(&current->mm->mmap_sem);
1290
1291 /* We need minimum second+third level pages */
1292 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1293 KVM_NR_MEM_OBJS);
1294 if (ret)
1295 return ret;
1296
1297 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1298 /*
1299 * Ensure the read of mmu_notifier_seq happens before we call
1300 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1301 * the page we just got a reference to gets unmapped before we have a
1302 * chance to grab the mmu_lock, which ensure that if the page gets
1303 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1304 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1305 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1306 */
1307 smp_rmb();
1308
1309 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1310 if (is_error_noslot_pfn(pfn))
1311 return -EFAULT;
1312
1313 if (kvm_is_device_pfn(pfn)) {
1314 mem_type = PAGE_S2_DEVICE;
1315 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1316 } else if (logging_active) {
1317 /*
1318 * Faults on pages in a memslot with logging enabled
1319 * should not be mapped with huge pages (it introduces churn
1320 * and performance degradation), so force a pte mapping.
1321 */
1322 force_pte = true;
1323 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1324
1325 /*
1326 * Only actually map the page as writable if this was a write
1327 * fault.
1328 */
1329 if (!write_fault)
1330 writable = false;
1331 }
1332
1333 spin_lock(&kvm->mmu_lock);
1334 if (mmu_notifier_retry(kvm, mmu_seq))
1335 goto out_unlock;
1336
1337 if (!hugetlb && !force_pte)
1338 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1339
1340 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1341
1342 if (hugetlb) {
1343 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1344 new_pmd = pmd_mkhuge(new_pmd);
1345 if (writable) {
1346 new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1347 kvm_set_pfn_dirty(pfn);
1348 }
1349 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1350 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1351 } else {
1352 pte_t new_pte = pfn_pte(pfn, mem_type);
1353
1354 if (writable) {
1355 new_pte = kvm_s2pte_mkwrite(new_pte);
1356 kvm_set_pfn_dirty(pfn);
1357 mark_page_dirty(kvm, gfn);
1358 }
1359 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1360 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1361 }
1362
1363 out_unlock:
1364 spin_unlock(&kvm->mmu_lock);
1365 kvm_set_pfn_accessed(pfn);
1366 kvm_release_pfn_clean(pfn);
1367 return ret;
1368 }
1369
1370 /*
1371 * Resolve the access fault by making the page young again.
1372 * Note that because the faulting entry is guaranteed not to be
1373 * cached in the TLB, we don't need to invalidate anything.
1374 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
1375 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1376 */
1377 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1378 {
1379 pmd_t *pmd;
1380 pte_t *pte;
1381 kvm_pfn_t pfn;
1382 bool pfn_valid = false;
1383
1384 trace_kvm_access_fault(fault_ipa);
1385
1386 spin_lock(&vcpu->kvm->mmu_lock);
1387
1388 pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1389 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1390 goto out;
1391
1392 if (pmd_thp_or_huge(*pmd)) { /* THP, HugeTLB */
1393 *pmd = pmd_mkyoung(*pmd);
1394 pfn = pmd_pfn(*pmd);
1395 pfn_valid = true;
1396 goto out;
1397 }
1398
1399 pte = pte_offset_kernel(pmd, fault_ipa);
1400 if (pte_none(*pte)) /* Nothing there either */
1401 goto out;
1402
1403 *pte = pte_mkyoung(*pte); /* Just a page... */
1404 pfn = pte_pfn(*pte);
1405 pfn_valid = true;
1406 out:
1407 spin_unlock(&vcpu->kvm->mmu_lock);
1408 if (pfn_valid)
1409 kvm_set_pfn_accessed(pfn);
1410 }
1411
1412 /**
1413 * kvm_handle_guest_abort - handles all 2nd stage aborts
1414 * @vcpu: the VCPU pointer
1415 * @run: the kvm_run structure
1416 *
1417 * Any abort that gets to the host is almost guaranteed to be caused by a
1418 * missing second stage translation table entry, which can mean that either the
1419 * guest simply needs more memory and we must allocate an appropriate page or it
1420 * can mean that the guest tried to access I/O memory, which is emulated by user
1421 * space. The distinction is based on the IPA causing the fault and whether this
1422 * memory region has been registered as standard RAM by user space.
1423 */
1424 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1425 {
1426 unsigned long fault_status;
1427 phys_addr_t fault_ipa;
1428 struct kvm_memory_slot *memslot;
1429 unsigned long hva;
1430 bool is_iabt, write_fault, writable;
1431 gfn_t gfn;
1432 int ret, idx;
1433
1434 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1435 if (unlikely(!is_iabt && kvm_vcpu_dabt_isextabt(vcpu))) {
1436 kvm_inject_vabt(vcpu);
1437 return 1;
1438 }
1439
1440 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1441
1442 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1443 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1444
1445 /* Check the stage-2 fault is trans. fault or write fault */
1446 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1447 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1448 fault_status != FSC_ACCESS) {
1449 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1450 kvm_vcpu_trap_get_class(vcpu),
1451 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1452 (unsigned long)kvm_vcpu_get_hsr(vcpu));
1453 return -EFAULT;
1454 }
1455
1456 idx = srcu_read_lock(&vcpu->kvm->srcu);
1457
1458 gfn = fault_ipa >> PAGE_SHIFT;
1459 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1460 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1461 write_fault = kvm_is_write_fault(vcpu);
1462 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1463 if (is_iabt) {
1464 /* Prefetch Abort on I/O address */
1465 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1466 ret = 1;
1467 goto out_unlock;
1468 }
1469
1470 /*
1471 * Check for a cache maintenance operation. Since we
1472 * ended-up here, we know it is outside of any memory
1473 * slot. But we can't find out if that is for a device,
1474 * or if the guest is just being stupid. The only thing
1475 * we know for sure is that this range cannot be cached.
1476 *
1477 * So let's assume that the guest is just being
1478 * cautious, and skip the instruction.
1479 */
1480 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1481 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1482 ret = 1;
1483 goto out_unlock;
1484 }
1485
1486 /*
1487 * The IPA is reported as [MAX:12], so we need to
1488 * complement it with the bottom 12 bits from the
1489 * faulting VA. This is always 12 bits, irrespective
1490 * of the page size.
1491 */
1492 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1493 ret = io_mem_abort(vcpu, run, fault_ipa);
1494 goto out_unlock;
1495 }
1496
1497 /* Userspace should not be able to register out-of-bounds IPAs */
1498 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1499
1500 if (fault_status == FSC_ACCESS) {
1501 handle_access_fault(vcpu, fault_ipa);
1502 ret = 1;
1503 goto out_unlock;
1504 }
1505
1506 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1507 if (ret == 0)
1508 ret = 1;
1509 out_unlock:
1510 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1511 return ret;
1512 }
1513
1514 static int handle_hva_to_gpa(struct kvm *kvm,
1515 unsigned long start,
1516 unsigned long end,
1517 int (*handler)(struct kvm *kvm,
1518 gpa_t gpa, void *data),
1519 void *data)
1520 {
1521 struct kvm_memslots *slots;
1522 struct kvm_memory_slot *memslot;
1523 int ret = 0;
1524
1525 slots = kvm_memslots(kvm);
1526
1527 /* we only care about the pages that the guest sees */
1528 kvm_for_each_memslot(memslot, slots) {
1529 unsigned long hva_start, hva_end;
1530 gfn_t gfn, gfn_end;
1531
1532 hva_start = max(start, memslot->userspace_addr);
1533 hva_end = min(end, memslot->userspace_addr +
1534 (memslot->npages << PAGE_SHIFT));
1535 if (hva_start >= hva_end)
1536 continue;
1537
1538 /*
1539 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1540 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1541 */
1542 gfn = hva_to_gfn_memslot(hva_start, memslot);
1543 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1544
1545 for (; gfn < gfn_end; ++gfn) {
1546 gpa_t gpa = gfn << PAGE_SHIFT;
1547 ret |= handler(kvm, gpa, data);
1548 }
1549 }
1550
1551 return ret;
1552 }
1553
1554 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1555 {
1556 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1557 return 0;
1558 }
1559
1560 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1561 {
1562 unsigned long end = hva + PAGE_SIZE;
1563
1564 if (!kvm->arch.pgd)
1565 return 0;
1566
1567 trace_kvm_unmap_hva(hva);
1568 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1569 return 0;
1570 }
1571
1572 int kvm_unmap_hva_range(struct kvm *kvm,
1573 unsigned long start, unsigned long end)
1574 {
1575 if (!kvm->arch.pgd)
1576 return 0;
1577
1578 trace_kvm_unmap_hva_range(start, end);
1579 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1580 return 0;
1581 }
1582
1583 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1584 {
1585 pte_t *pte = (pte_t *)data;
1586
1587 /*
1588 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1589 * flag clear because MMU notifiers will have unmapped a huge PMD before
1590 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1591 * therefore stage2_set_pte() never needs to clear out a huge PMD
1592 * through this calling path.
1593 */
1594 stage2_set_pte(kvm, NULL, gpa, pte, 0);
1595 return 0;
1596 }
1597
1598
1599 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1600 {
1601 unsigned long end = hva + PAGE_SIZE;
1602 pte_t stage2_pte;
1603
1604 if (!kvm->arch.pgd)
1605 return;
1606
1607 trace_kvm_set_spte_hva(hva);
1608 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1609 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1610 }
1611
1612 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1613 {
1614 pmd_t *pmd;
1615 pte_t *pte;
1616
1617 pmd = stage2_get_pmd(kvm, NULL, gpa);
1618 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1619 return 0;
1620
1621 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1622 return stage2_pmdp_test_and_clear_young(pmd);
1623
1624 pte = pte_offset_kernel(pmd, gpa);
1625 if (pte_none(*pte))
1626 return 0;
1627
1628 return stage2_ptep_test_and_clear_young(pte);
1629 }
1630
1631 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1632 {
1633 pmd_t *pmd;
1634 pte_t *pte;
1635
1636 pmd = stage2_get_pmd(kvm, NULL, gpa);
1637 if (!pmd || pmd_none(*pmd)) /* Nothing there */
1638 return 0;
1639
1640 if (pmd_thp_or_huge(*pmd)) /* THP, HugeTLB */
1641 return pmd_young(*pmd);
1642
1643 pte = pte_offset_kernel(pmd, gpa);
1644 if (!pte_none(*pte)) /* Just a page... */
1645 return pte_young(*pte);
1646
1647 return 0;
1648 }
1649
1650 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1651 {
1652 trace_kvm_age_hva(start, end);
1653 return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1654 }
1655
1656 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1657 {
1658 trace_kvm_test_age_hva(hva);
1659 return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1660 }
1661
1662 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1663 {
1664 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1665 }
1666
1667 phys_addr_t kvm_mmu_get_httbr(void)
1668 {
1669 if (__kvm_cpu_uses_extended_idmap())
1670 return virt_to_phys(merged_hyp_pgd);
1671 else
1672 return virt_to_phys(hyp_pgd);
1673 }
1674
1675 phys_addr_t kvm_get_idmap_vector(void)
1676 {
1677 return hyp_idmap_vector;
1678 }
1679
1680 phys_addr_t kvm_get_idmap_start(void)
1681 {
1682 return hyp_idmap_start;
1683 }
1684
1685 static int kvm_map_idmap_text(pgd_t *pgd)
1686 {
1687 int err;
1688
1689 /* Create the idmap in the boot page tables */
1690 err = __create_hyp_mappings(pgd,
1691 hyp_idmap_start, hyp_idmap_end,
1692 __phys_to_pfn(hyp_idmap_start),
1693 PAGE_HYP_EXEC);
1694 if (err)
1695 kvm_err("Failed to idmap %lx-%lx\n",
1696 hyp_idmap_start, hyp_idmap_end);
1697
1698 return err;
1699 }
1700
1701 int kvm_mmu_init(void)
1702 {
1703 int err;
1704
1705 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1706 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1707 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1708
1709 /*
1710 * We rely on the linker script to ensure at build time that the HYP
1711 * init code does not cross a page boundary.
1712 */
1713 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1714
1715 kvm_info("IDMAP page: %lx\n", hyp_idmap_start);
1716 kvm_info("HYP VA range: %lx:%lx\n",
1717 kern_hyp_va(PAGE_OFFSET), kern_hyp_va(~0UL));
1718
1719 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1720 hyp_idmap_start < kern_hyp_va(~0UL) &&
1721 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1722 /*
1723 * The idmap page is intersecting with the VA space,
1724 * it is not safe to continue further.
1725 */
1726 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1727 err = -EINVAL;
1728 goto out;
1729 }
1730
1731 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1732 if (!hyp_pgd) {
1733 kvm_err("Hyp mode PGD not allocated\n");
1734 err = -ENOMEM;
1735 goto out;
1736 }
1737
1738 if (__kvm_cpu_uses_extended_idmap()) {
1739 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1740 hyp_pgd_order);
1741 if (!boot_hyp_pgd) {
1742 kvm_err("Hyp boot PGD not allocated\n");
1743 err = -ENOMEM;
1744 goto out;
1745 }
1746
1747 err = kvm_map_idmap_text(boot_hyp_pgd);
1748 if (err)
1749 goto out;
1750
1751 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1752 if (!merged_hyp_pgd) {
1753 kvm_err("Failed to allocate extra HYP pgd\n");
1754 goto out;
1755 }
1756 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1757 hyp_idmap_start);
1758 } else {
1759 err = kvm_map_idmap_text(hyp_pgd);
1760 if (err)
1761 goto out;
1762 }
1763
1764 return 0;
1765 out:
1766 free_hyp_pgds();
1767 return err;
1768 }
1769
1770 void kvm_arch_commit_memory_region(struct kvm *kvm,
1771 const struct kvm_userspace_memory_region *mem,
1772 const struct kvm_memory_slot *old,
1773 const struct kvm_memory_slot *new,
1774 enum kvm_mr_change change)
1775 {
1776 /*
1777 * At this point memslot has been committed and there is an
1778 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1779 * memory slot is write protected.
1780 */
1781 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1782 kvm_mmu_wp_memory_region(kvm, mem->slot);
1783 }
1784
1785 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1786 struct kvm_memory_slot *memslot,
1787 const struct kvm_userspace_memory_region *mem,
1788 enum kvm_mr_change change)
1789 {
1790 hva_t hva = mem->userspace_addr;
1791 hva_t reg_end = hva + mem->memory_size;
1792 bool writable = !(mem->flags & KVM_MEM_READONLY);
1793 int ret = 0;
1794
1795 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1796 change != KVM_MR_FLAGS_ONLY)
1797 return 0;
1798
1799 /*
1800 * Prevent userspace from creating a memory region outside of the IPA
1801 * space addressable by the KVM guest IPA space.
1802 */
1803 if (memslot->base_gfn + memslot->npages >=
1804 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1805 return -EFAULT;
1806
1807 /*
1808 * A memory region could potentially cover multiple VMAs, and any holes
1809 * between them, so iterate over all of them to find out if we can map
1810 * any of them right now.
1811 *
1812 * +--------------------------------------------+
1813 * +---------------+----------------+ +----------------+
1814 * | : VMA 1 | VMA 2 | | VMA 3 : |
1815 * +---------------+----------------+ +----------------+
1816 * | memory region |
1817 * +--------------------------------------------+
1818 */
1819 do {
1820 struct vm_area_struct *vma = find_vma(current->mm, hva);
1821 hva_t vm_start, vm_end;
1822
1823 if (!vma || vma->vm_start >= reg_end)
1824 break;
1825
1826 /*
1827 * Mapping a read-only VMA is only allowed if the
1828 * memory region is configured as read-only.
1829 */
1830 if (writable && !(vma->vm_flags & VM_WRITE)) {
1831 ret = -EPERM;
1832 break;
1833 }
1834
1835 /*
1836 * Take the intersection of this VMA with the memory region
1837 */
1838 vm_start = max(hva, vma->vm_start);
1839 vm_end = min(reg_end, vma->vm_end);
1840
1841 if (vma->vm_flags & VM_PFNMAP) {
1842 gpa_t gpa = mem->guest_phys_addr +
1843 (vm_start - mem->userspace_addr);
1844 phys_addr_t pa;
1845
1846 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1847 pa += vm_start - vma->vm_start;
1848
1849 /* IO region dirty page logging not allowed */
1850 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1851 return -EINVAL;
1852
1853 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1854 vm_end - vm_start,
1855 writable);
1856 if (ret)
1857 break;
1858 }
1859 hva = vm_end;
1860 } while (hva < reg_end);
1861
1862 if (change == KVM_MR_FLAGS_ONLY)
1863 return ret;
1864
1865 spin_lock(&kvm->mmu_lock);
1866 if (ret)
1867 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1868 else
1869 stage2_flush_memslot(kvm, memslot);
1870 spin_unlock(&kvm->mmu_lock);
1871 return ret;
1872 }
1873
1874 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1875 struct kvm_memory_slot *dont)
1876 {
1877 }
1878
1879 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1880 unsigned long npages)
1881 {
1882 /*
1883 * Readonly memslots are not incoherent with the caches by definition,
1884 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1885 * that the guest may consider devices and hence map as uncached.
1886 * To prevent incoherency issues in these cases, tag all readonly
1887 * regions as incoherent.
1888 */
1889 if (slot->flags & KVM_MEM_READONLY)
1890 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1891 return 0;
1892 }
1893
1894 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1895 {
1896 }
1897
1898 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1899 {
1900 kvm_free_stage2_pgd(kvm);
1901 }
1902
1903 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1904 struct kvm_memory_slot *slot)
1905 {
1906 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1907 phys_addr_t size = slot->npages << PAGE_SHIFT;
1908
1909 spin_lock(&kvm->mmu_lock);
1910 unmap_stage2_range(kvm, gpa, size);
1911 spin_unlock(&kvm->mmu_lock);
1912 }
1913
1914 /*
1915 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1916 *
1917 * Main problems:
1918 * - S/W ops are local to a CPU (not broadcast)
1919 * - We have line migration behind our back (speculation)
1920 * - System caches don't support S/W at all (damn!)
1921 *
1922 * In the face of the above, the best we can do is to try and convert
1923 * S/W ops to VA ops. Because the guest is not allowed to infer the
1924 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1925 * which is a rather good thing for us.
1926 *
1927 * Also, it is only used when turning caches on/off ("The expected
1928 * usage of the cache maintenance instructions that operate by set/way
1929 * is associated with the cache maintenance instructions associated
1930 * with the powerdown and powerup of caches, if this is required by
1931 * the implementation.").
1932 *
1933 * We use the following policy:
1934 *
1935 * - If we trap a S/W operation, we enable VM trapping to detect
1936 * caches being turned on/off, and do a full clean.
1937 *
1938 * - We flush the caches on both caches being turned on and off.
1939 *
1940 * - Once the caches are enabled, we stop trapping VM ops.
1941 */
1942 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1943 {
1944 unsigned long hcr = vcpu_get_hcr(vcpu);
1945
1946 /*
1947 * If this is the first time we do a S/W operation
1948 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1949 * VM trapping.
1950 *
1951 * Otherwise, rely on the VM trapping to wait for the MMU +
1952 * Caches to be turned off. At that point, we'll be able to
1953 * clean the caches again.
1954 */
1955 if (!(hcr & HCR_TVM)) {
1956 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1957 vcpu_has_cache_enabled(vcpu));
1958 stage2_flush_vm(vcpu->kvm);
1959 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1960 }
1961 }
1962
1963 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1964 {
1965 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1966
1967 /*
1968 * If switching the MMU+caches on, need to invalidate the caches.
1969 * If switching it off, need to clean the caches.
1970 * Clean + invalidate does the trick always.
1971 */
1972 if (now_enabled != was_enabled)
1973 stage2_flush_vm(vcpu->kvm);
1974
1975 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1976 if (now_enabled)
1977 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1978
1979 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1980 }