]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/mach-exynos/platsmp.c
ARM: EXYNOS: Map SYSRAM through generic DT bindings
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mach-exynos / platsmp.c
1 /* linux/arch/arm/mach-exynos4/platsmp.c
2 *
3 * Copyright (c) 2010-2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
5 *
6 * Cloned from linux/arch/arm/mach-vexpress/platsmp.c
7 *
8 * Copyright (C) 2002 ARM Ltd.
9 * All Rights Reserved
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 */
15
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/delay.h>
19 #include <linux/device.h>
20 #include <linux/jiffies.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/of_address.h>
24
25 #include <asm/cacheflush.h>
26 #include <asm/smp_plat.h>
27 #include <asm/smp_scu.h>
28 #include <asm/firmware.h>
29
30 #include <plat/cpu.h>
31
32 #include "common.h"
33 #include "regs-pmu.h"
34
35 extern void exynos4_secondary_startup(void);
36
37 static void __iomem *sysram_base_addr;
38 void __iomem *sysram_ns_base_addr;
39
40 static void __init exynos_smp_prepare_sysram(void)
41 {
42 struct device_node *node;
43
44 for_each_compatible_node(node, NULL, "samsung,exynos4210-sysram") {
45 if (!of_device_is_available(node))
46 continue;
47 sysram_base_addr = of_iomap(node, 0);
48 break;
49 }
50
51 for_each_compatible_node(node, NULL, "samsung,exynos4210-sysram-ns") {
52 if (!of_device_is_available(node))
53 continue;
54 sysram_ns_base_addr = of_iomap(node, 0);
55 break;
56 }
57 }
58
59 static inline void __iomem *cpu_boot_reg_base(void)
60 {
61 if (soc_is_exynos4210() && samsung_rev() == EXYNOS4210_REV_1_1)
62 return S5P_INFORM5;
63 return sysram_base_addr;
64 }
65
66 static inline void __iomem *cpu_boot_reg(int cpu)
67 {
68 void __iomem *boot_reg;
69
70 boot_reg = cpu_boot_reg_base();
71 if (!boot_reg)
72 return ERR_PTR(-ENODEV);
73 if (soc_is_exynos4412())
74 boot_reg += 4*cpu;
75 else if (soc_is_exynos5420())
76 boot_reg += 4;
77 return boot_reg;
78 }
79
80 /*
81 * Write pen_release in a way that is guaranteed to be visible to all
82 * observers, irrespective of whether they're taking part in coherency
83 * or not. This is necessary for the hotplug code to work reliably.
84 */
85 static void write_pen_release(int val)
86 {
87 pen_release = val;
88 smp_wmb();
89 sync_cache_w(&pen_release);
90 }
91
92 static void __iomem *scu_base_addr(void)
93 {
94 return (void __iomem *)(S5P_VA_SCU);
95 }
96
97 static DEFINE_SPINLOCK(boot_lock);
98
99 static void exynos_secondary_init(unsigned int cpu)
100 {
101 /*
102 * let the primary processor know we're out of the
103 * pen, then head off into the C entry point
104 */
105 write_pen_release(-1);
106
107 /*
108 * Synchronise with the boot thread.
109 */
110 spin_lock(&boot_lock);
111 spin_unlock(&boot_lock);
112 }
113
114 static int exynos_boot_secondary(unsigned int cpu, struct task_struct *idle)
115 {
116 unsigned long timeout;
117 unsigned long phys_cpu = cpu_logical_map(cpu);
118 int ret = -ENOSYS;
119
120 /*
121 * Set synchronisation state between this boot processor
122 * and the secondary one
123 */
124 spin_lock(&boot_lock);
125
126 /*
127 * The secondary processor is waiting to be released from
128 * the holding pen - release it, then wait for it to flag
129 * that it has been released by resetting pen_release.
130 *
131 * Note that "pen_release" is the hardware CPU ID, whereas
132 * "cpu" is Linux's internal ID.
133 */
134 write_pen_release(phys_cpu);
135
136 if (!(__raw_readl(S5P_ARM_CORE1_STATUS) & S5P_CORE_LOCAL_PWR_EN)) {
137 __raw_writel(S5P_CORE_LOCAL_PWR_EN,
138 S5P_ARM_CORE1_CONFIGURATION);
139
140 timeout = 10;
141
142 /* wait max 10 ms until cpu1 is on */
143 while ((__raw_readl(S5P_ARM_CORE1_STATUS)
144 & S5P_CORE_LOCAL_PWR_EN) != S5P_CORE_LOCAL_PWR_EN) {
145 if (timeout-- == 0)
146 break;
147
148 mdelay(1);
149 }
150
151 if (timeout == 0) {
152 printk(KERN_ERR "cpu1 power enable failed");
153 spin_unlock(&boot_lock);
154 return -ETIMEDOUT;
155 }
156 }
157 /*
158 * Send the secondary CPU a soft interrupt, thereby causing
159 * the boot monitor to read the system wide flags register,
160 * and branch to the address found there.
161 */
162
163 timeout = jiffies + (1 * HZ);
164 while (time_before(jiffies, timeout)) {
165 unsigned long boot_addr;
166
167 smp_rmb();
168
169 boot_addr = virt_to_phys(exynos4_secondary_startup);
170
171 /*
172 * Try to set boot address using firmware first
173 * and fall back to boot register if it fails.
174 */
175 ret = call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr);
176 if (ret && ret != -ENOSYS)
177 goto fail;
178 if (ret == -ENOSYS) {
179 void __iomem *boot_reg = cpu_boot_reg(phys_cpu);
180
181 if (IS_ERR(boot_reg)) {
182 ret = PTR_ERR(boot_reg);
183 goto fail;
184 }
185 __raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
186 }
187
188 call_firmware_op(cpu_boot, phys_cpu);
189
190 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
191
192 if (pen_release == -1)
193 break;
194
195 udelay(10);
196 }
197
198 /*
199 * now the secondary core is starting up let it run its
200 * calibrations, then wait for it to finish
201 */
202 fail:
203 spin_unlock(&boot_lock);
204
205 return pen_release != -1 ? ret : 0;
206 }
207
208 /*
209 * Initialise the CPU possible map early - this describes the CPUs
210 * which may be present or become present in the system.
211 */
212
213 static void __init exynos_smp_init_cpus(void)
214 {
215 void __iomem *scu_base = scu_base_addr();
216 unsigned int i, ncores;
217
218 if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9)
219 ncores = scu_base ? scu_get_core_count(scu_base) : 1;
220 else
221 /*
222 * CPU Nodes are passed thru DT and set_cpu_possible
223 * is set by "arm_dt_init_cpu_maps".
224 */
225 return;
226
227 /* sanity check */
228 if (ncores > nr_cpu_ids) {
229 pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
230 ncores, nr_cpu_ids);
231 ncores = nr_cpu_ids;
232 }
233
234 for (i = 0; i < ncores; i++)
235 set_cpu_possible(i, true);
236 }
237
238 static void __init exynos_smp_prepare_cpus(unsigned int max_cpus)
239 {
240 int i;
241
242 if (read_cpuid_part_number() == ARM_CPU_PART_CORTEX_A9)
243 scu_enable(scu_base_addr());
244
245 exynos_smp_prepare_sysram();
246
247 /*
248 * Write the address of secondary startup into the
249 * system-wide flags register. The boot monitor waits
250 * until it receives a soft interrupt, and then the
251 * secondary CPU branches to this address.
252 *
253 * Try using firmware operation first and fall back to
254 * boot register if it fails.
255 */
256 for (i = 1; i < max_cpus; ++i) {
257 unsigned long phys_cpu;
258 unsigned long boot_addr;
259 int ret;
260
261 phys_cpu = cpu_logical_map(i);
262 boot_addr = virt_to_phys(exynos4_secondary_startup);
263
264 ret = call_firmware_op(set_cpu_boot_addr, phys_cpu, boot_addr);
265 if (ret && ret != -ENOSYS)
266 break;
267 if (ret == -ENOSYS) {
268 void __iomem *boot_reg = cpu_boot_reg(phys_cpu);
269
270 if (IS_ERR(boot_reg))
271 break;
272 __raw_writel(boot_addr, cpu_boot_reg(phys_cpu));
273 }
274 }
275 }
276
277 struct smp_operations exynos_smp_ops __initdata = {
278 .smp_init_cpus = exynos_smp_init_cpus,
279 .smp_prepare_cpus = exynos_smp_prepare_cpus,
280 .smp_secondary_init = exynos_secondary_init,
281 .smp_boot_secondary = exynos_boot_secondary,
282 #ifdef CONFIG_HOTPLUG_CPU
283 .cpu_die = exynos_cpu_die,
284 #endif
285 };