]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm/mach-tegra/tegra30_clocks.c
Merge tag 'sound-3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[mirror_ubuntu-jammy-kernel.git] / arch / arm / mach-tegra / tegra30_clocks.c
1 /*
2 * arch/arm/mach-tegra/tegra30_clocks.c
3 *
4 * Copyright (c) 2010-2012 NVIDIA CORPORATION. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
18 *
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/delay.h>
26 #include <linux/err.h>
27 #include <linux/io.h>
28 #include <linux/clk.h>
29 #include <linux/cpufreq.h>
30 #include <linux/syscore_ops.h>
31
32 #include <asm/clkdev.h>
33
34 #include <mach/iomap.h>
35
36 #include "clock.h"
37 #include "fuse.h"
38 #include "tegra_cpu_car.h"
39
40 #define USE_PLL_LOCK_BITS 0
41
42 #define RST_DEVICES_L 0x004
43 #define RST_DEVICES_H 0x008
44 #define RST_DEVICES_U 0x00C
45 #define RST_DEVICES_V 0x358
46 #define RST_DEVICES_W 0x35C
47 #define RST_DEVICES_SET_L 0x300
48 #define RST_DEVICES_CLR_L 0x304
49 #define RST_DEVICES_SET_V 0x430
50 #define RST_DEVICES_CLR_V 0x434
51 #define RST_DEVICES_NUM 5
52
53 #define CLK_OUT_ENB_L 0x010
54 #define CLK_OUT_ENB_H 0x014
55 #define CLK_OUT_ENB_U 0x018
56 #define CLK_OUT_ENB_V 0x360
57 #define CLK_OUT_ENB_W 0x364
58 #define CLK_OUT_ENB_SET_L 0x320
59 #define CLK_OUT_ENB_CLR_L 0x324
60 #define CLK_OUT_ENB_SET_V 0x440
61 #define CLK_OUT_ENB_CLR_V 0x444
62 #define CLK_OUT_ENB_NUM 5
63
64 #define RST_DEVICES_V_SWR_CPULP_RST_DIS (0x1 << 1)
65 #define CLK_OUT_ENB_V_CLK_ENB_CPULP_EN (0x1 << 1)
66
67 #define PERIPH_CLK_TO_BIT(c) (1 << (c->u.periph.clk_num % 32))
68 #define PERIPH_CLK_TO_RST_REG(c) \
69 periph_clk_to_reg((c), RST_DEVICES_L, RST_DEVICES_V, 4)
70 #define PERIPH_CLK_TO_RST_SET_REG(c) \
71 periph_clk_to_reg((c), RST_DEVICES_SET_L, RST_DEVICES_SET_V, 8)
72 #define PERIPH_CLK_TO_RST_CLR_REG(c) \
73 periph_clk_to_reg((c), RST_DEVICES_CLR_L, RST_DEVICES_CLR_V, 8)
74
75 #define PERIPH_CLK_TO_ENB_REG(c) \
76 periph_clk_to_reg((c), CLK_OUT_ENB_L, CLK_OUT_ENB_V, 4)
77 #define PERIPH_CLK_TO_ENB_SET_REG(c) \
78 periph_clk_to_reg((c), CLK_OUT_ENB_SET_L, CLK_OUT_ENB_SET_V, 8)
79 #define PERIPH_CLK_TO_ENB_CLR_REG(c) \
80 periph_clk_to_reg((c), CLK_OUT_ENB_CLR_L, CLK_OUT_ENB_CLR_V, 8)
81
82 #define CLK_MASK_ARM 0x44
83 #define MISC_CLK_ENB 0x48
84
85 #define OSC_CTRL 0x50
86 #define OSC_CTRL_OSC_FREQ_MASK (0xF<<28)
87 #define OSC_CTRL_OSC_FREQ_13MHZ (0x0<<28)
88 #define OSC_CTRL_OSC_FREQ_19_2MHZ (0x4<<28)
89 #define OSC_CTRL_OSC_FREQ_12MHZ (0x8<<28)
90 #define OSC_CTRL_OSC_FREQ_26MHZ (0xC<<28)
91 #define OSC_CTRL_OSC_FREQ_16_8MHZ (0x1<<28)
92 #define OSC_CTRL_OSC_FREQ_38_4MHZ (0x5<<28)
93 #define OSC_CTRL_OSC_FREQ_48MHZ (0x9<<28)
94 #define OSC_CTRL_MASK (0x3f2 | OSC_CTRL_OSC_FREQ_MASK)
95
96 #define OSC_CTRL_PLL_REF_DIV_MASK (3<<26)
97 #define OSC_CTRL_PLL_REF_DIV_1 (0<<26)
98 #define OSC_CTRL_PLL_REF_DIV_2 (1<<26)
99 #define OSC_CTRL_PLL_REF_DIV_4 (2<<26)
100
101 #define OSC_FREQ_DET 0x58
102 #define OSC_FREQ_DET_TRIG (1<<31)
103
104 #define OSC_FREQ_DET_STATUS 0x5C
105 #define OSC_FREQ_DET_BUSY (1<<31)
106 #define OSC_FREQ_DET_CNT_MASK 0xFFFF
107
108 #define PERIPH_CLK_SOURCE_I2S1 0x100
109 #define PERIPH_CLK_SOURCE_EMC 0x19c
110 #define PERIPH_CLK_SOURCE_OSC 0x1fc
111 #define PERIPH_CLK_SOURCE_NUM1 \
112 ((PERIPH_CLK_SOURCE_OSC - PERIPH_CLK_SOURCE_I2S1) / 4)
113
114 #define PERIPH_CLK_SOURCE_G3D2 0x3b0
115 #define PERIPH_CLK_SOURCE_SE 0x42c
116 #define PERIPH_CLK_SOURCE_NUM2 \
117 ((PERIPH_CLK_SOURCE_SE - PERIPH_CLK_SOURCE_G3D2) / 4 + 1)
118
119 #define AUDIO_DLY_CLK 0x49c
120 #define AUDIO_SYNC_CLK_SPDIF 0x4b4
121 #define PERIPH_CLK_SOURCE_NUM3 \
122 ((AUDIO_SYNC_CLK_SPDIF - AUDIO_DLY_CLK) / 4 + 1)
123
124 #define PERIPH_CLK_SOURCE_NUM (PERIPH_CLK_SOURCE_NUM1 + \
125 PERIPH_CLK_SOURCE_NUM2 + \
126 PERIPH_CLK_SOURCE_NUM3)
127
128 #define CPU_SOFTRST_CTRL 0x380
129
130 #define PERIPH_CLK_SOURCE_DIVU71_MASK 0xFF
131 #define PERIPH_CLK_SOURCE_DIVU16_MASK 0xFFFF
132 #define PERIPH_CLK_SOURCE_DIV_SHIFT 0
133 #define PERIPH_CLK_SOURCE_DIVIDLE_SHIFT 8
134 #define PERIPH_CLK_SOURCE_DIVIDLE_VAL 50
135 #define PERIPH_CLK_UART_DIV_ENB (1<<24)
136 #define PERIPH_CLK_VI_SEL_EX_SHIFT 24
137 #define PERIPH_CLK_VI_SEL_EX_MASK (0x3<<PERIPH_CLK_VI_SEL_EX_SHIFT)
138 #define PERIPH_CLK_NAND_DIV_EX_ENB (1<<8)
139 #define PERIPH_CLK_DTV_POLARITY_INV (1<<25)
140
141 #define AUDIO_SYNC_SOURCE_MASK 0x0F
142 #define AUDIO_SYNC_DISABLE_BIT 0x10
143 #define AUDIO_SYNC_TAP_NIBBLE_SHIFT(c) ((c->reg_shift - 24) * 4)
144
145 #define PLL_BASE 0x0
146 #define PLL_BASE_BYPASS (1<<31)
147 #define PLL_BASE_ENABLE (1<<30)
148 #define PLL_BASE_REF_ENABLE (1<<29)
149 #define PLL_BASE_OVERRIDE (1<<28)
150 #define PLL_BASE_LOCK (1<<27)
151 #define PLL_BASE_DIVP_MASK (0x7<<20)
152 #define PLL_BASE_DIVP_SHIFT 20
153 #define PLL_BASE_DIVN_MASK (0x3FF<<8)
154 #define PLL_BASE_DIVN_SHIFT 8
155 #define PLL_BASE_DIVM_MASK (0x1F)
156 #define PLL_BASE_DIVM_SHIFT 0
157
158 #define PLL_OUT_RATIO_MASK (0xFF<<8)
159 #define PLL_OUT_RATIO_SHIFT 8
160 #define PLL_OUT_OVERRIDE (1<<2)
161 #define PLL_OUT_CLKEN (1<<1)
162 #define PLL_OUT_RESET_DISABLE (1<<0)
163
164 #define PLL_MISC(c) \
165 (((c)->flags & PLL_ALT_MISC_REG) ? 0x4 : 0xc)
166 #define PLL_MISC_LOCK_ENABLE(c) \
167 (((c)->flags & (PLLU | PLLD)) ? (1<<22) : (1<<18))
168
169 #define PLL_MISC_DCCON_SHIFT 20
170 #define PLL_MISC_CPCON_SHIFT 8
171 #define PLL_MISC_CPCON_MASK (0xF<<PLL_MISC_CPCON_SHIFT)
172 #define PLL_MISC_LFCON_SHIFT 4
173 #define PLL_MISC_LFCON_MASK (0xF<<PLL_MISC_LFCON_SHIFT)
174 #define PLL_MISC_VCOCON_SHIFT 0
175 #define PLL_MISC_VCOCON_MASK (0xF<<PLL_MISC_VCOCON_SHIFT)
176 #define PLLD_MISC_CLKENABLE (1<<30)
177
178 #define PLLU_BASE_POST_DIV (1<<20)
179
180 #define PLLD_BASE_DSIB_MUX_SHIFT 25
181 #define PLLD_BASE_DSIB_MUX_MASK (1<<PLLD_BASE_DSIB_MUX_SHIFT)
182 #define PLLD_BASE_CSI_CLKENABLE (1<<26)
183 #define PLLD_MISC_DSI_CLKENABLE (1<<30)
184 #define PLLD_MISC_DIV_RST (1<<23)
185 #define PLLD_MISC_DCCON_SHIFT 12
186
187 #define PLLDU_LFCON_SET_DIVN 600
188
189 /* FIXME: OUT_OF_TABLE_CPCON per pll */
190 #define OUT_OF_TABLE_CPCON 0x8
191
192 #define SUPER_CLK_MUX 0x00
193 #define SUPER_STATE_SHIFT 28
194 #define SUPER_STATE_MASK (0xF << SUPER_STATE_SHIFT)
195 #define SUPER_STATE_STANDBY (0x0 << SUPER_STATE_SHIFT)
196 #define SUPER_STATE_IDLE (0x1 << SUPER_STATE_SHIFT)
197 #define SUPER_STATE_RUN (0x2 << SUPER_STATE_SHIFT)
198 #define SUPER_STATE_IRQ (0x3 << SUPER_STATE_SHIFT)
199 #define SUPER_STATE_FIQ (0x4 << SUPER_STATE_SHIFT)
200 #define SUPER_LP_DIV2_BYPASS (0x1 << 16)
201 #define SUPER_SOURCE_MASK 0xF
202 #define SUPER_FIQ_SOURCE_SHIFT 12
203 #define SUPER_IRQ_SOURCE_SHIFT 8
204 #define SUPER_RUN_SOURCE_SHIFT 4
205 #define SUPER_IDLE_SOURCE_SHIFT 0
206
207 #define SUPER_CLK_DIVIDER 0x04
208 #define SUPER_CLOCK_DIV_U71_SHIFT 16
209 #define SUPER_CLOCK_DIV_U71_MASK (0xff << SUPER_CLOCK_DIV_U71_SHIFT)
210 /* guarantees safe cpu backup */
211 #define SUPER_CLOCK_DIV_U71_MIN 0x2
212
213 #define BUS_CLK_DISABLE (1<<3)
214 #define BUS_CLK_DIV_MASK 0x3
215
216 #define PMC_CTRL 0x0
217 #define PMC_CTRL_BLINK_ENB (1 << 7)
218
219 #define PMC_DPD_PADS_ORIDE 0x1c
220 #define PMC_DPD_PADS_ORIDE_BLINK_ENB (1 << 20)
221
222 #define PMC_BLINK_TIMER_DATA_ON_SHIFT 0
223 #define PMC_BLINK_TIMER_DATA_ON_MASK 0x7fff
224 #define PMC_BLINK_TIMER_ENB (1 << 15)
225 #define PMC_BLINK_TIMER_DATA_OFF_SHIFT 16
226 #define PMC_BLINK_TIMER_DATA_OFF_MASK 0xffff
227
228 #define PMC_PLLP_WB0_OVERRIDE 0xf8
229 #define PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE (1 << 12)
230
231 #define UTMIP_PLL_CFG2 0x488
232 #define UTMIP_PLL_CFG2_STABLE_COUNT(x) (((x) & 0xfff) << 6)
233 #define UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(x) (((x) & 0x3f) << 18)
234 #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN (1 << 0)
235 #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN (1 << 2)
236 #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN (1 << 4)
237
238 #define UTMIP_PLL_CFG1 0x484
239 #define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27)
240 #define UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0)
241 #define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN (1 << 14)
242 #define UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN (1 << 12)
243 #define UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN (1 << 16)
244
245 #define PLLE_BASE_CML_ENABLE (1<<31)
246 #define PLLE_BASE_ENABLE (1<<30)
247 #define PLLE_BASE_DIVCML_SHIFT 24
248 #define PLLE_BASE_DIVCML_MASK (0xf<<PLLE_BASE_DIVCML_SHIFT)
249 #define PLLE_BASE_DIVP_SHIFT 16
250 #define PLLE_BASE_DIVP_MASK (0x3f<<PLLE_BASE_DIVP_SHIFT)
251 #define PLLE_BASE_DIVN_SHIFT 8
252 #define PLLE_BASE_DIVN_MASK (0xFF<<PLLE_BASE_DIVN_SHIFT)
253 #define PLLE_BASE_DIVM_SHIFT 0
254 #define PLLE_BASE_DIVM_MASK (0xFF<<PLLE_BASE_DIVM_SHIFT)
255 #define PLLE_BASE_DIV_MASK \
256 (PLLE_BASE_DIVCML_MASK | PLLE_BASE_DIVP_MASK | \
257 PLLE_BASE_DIVN_MASK | PLLE_BASE_DIVM_MASK)
258 #define PLLE_BASE_DIV(m, n, p, cml) \
259 (((cml)<<PLLE_BASE_DIVCML_SHIFT) | ((p)<<PLLE_BASE_DIVP_SHIFT) | \
260 ((n)<<PLLE_BASE_DIVN_SHIFT) | ((m)<<PLLE_BASE_DIVM_SHIFT))
261
262 #define PLLE_MISC_SETUP_BASE_SHIFT 16
263 #define PLLE_MISC_SETUP_BASE_MASK (0xFFFF<<PLLE_MISC_SETUP_BASE_SHIFT)
264 #define PLLE_MISC_READY (1<<15)
265 #define PLLE_MISC_LOCK (1<<11)
266 #define PLLE_MISC_LOCK_ENABLE (1<<9)
267 #define PLLE_MISC_SETUP_EX_SHIFT 2
268 #define PLLE_MISC_SETUP_EX_MASK (0x3<<PLLE_MISC_SETUP_EX_SHIFT)
269 #define PLLE_MISC_SETUP_MASK \
270 (PLLE_MISC_SETUP_BASE_MASK | PLLE_MISC_SETUP_EX_MASK)
271 #define PLLE_MISC_SETUP_VALUE \
272 ((0x7<<PLLE_MISC_SETUP_BASE_SHIFT) | (0x0<<PLLE_MISC_SETUP_EX_SHIFT))
273
274 #define PLLE_SS_CTRL 0x68
275 #define PLLE_SS_INCINTRV_SHIFT 24
276 #define PLLE_SS_INCINTRV_MASK (0x3f<<PLLE_SS_INCINTRV_SHIFT)
277 #define PLLE_SS_INC_SHIFT 16
278 #define PLLE_SS_INC_MASK (0xff<<PLLE_SS_INC_SHIFT)
279 #define PLLE_SS_MAX_SHIFT 0
280 #define PLLE_SS_MAX_MASK (0x1ff<<PLLE_SS_MAX_SHIFT)
281 #define PLLE_SS_COEFFICIENTS_MASK \
282 (PLLE_SS_INCINTRV_MASK | PLLE_SS_INC_MASK | PLLE_SS_MAX_MASK)
283 #define PLLE_SS_COEFFICIENTS_12MHZ \
284 ((0x18<<PLLE_SS_INCINTRV_SHIFT) | (0x1<<PLLE_SS_INC_SHIFT) | \
285 (0x24<<PLLE_SS_MAX_SHIFT))
286 #define PLLE_SS_DISABLE ((1<<12) | (1<<11) | (1<<10))
287
288 #define PLLE_AUX 0x48c
289 #define PLLE_AUX_PLLP_SEL (1<<2)
290 #define PLLE_AUX_CML_SATA_ENABLE (1<<1)
291 #define PLLE_AUX_CML_PCIE_ENABLE (1<<0)
292
293 #define PMC_SATA_PWRGT 0x1ac
294 #define PMC_SATA_PWRGT_PLLE_IDDQ_VALUE (1<<5)
295 #define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1<<4)
296
297 #define ROUND_DIVIDER_UP 0
298 #define ROUND_DIVIDER_DOWN 1
299
300 /* FIXME: recommended safety delay after lock is detected */
301 #define PLL_POST_LOCK_DELAY 100
302
303 /* Tegra CPU clock and reset control regs */
304 #define TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX 0x4c
305 #define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET 0x340
306 #define TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR 0x344
307 #define TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR 0x34c
308 #define TEGRA30_CLK_RST_CONTROLLER_CPU_CMPLX_STATUS 0x470
309
310 #define CPU_CLOCK(cpu) (0x1 << (8 + cpu))
311 #define CPU_RESET(cpu) (0x1111ul << (cpu))
312
313 /**
314 * Structure defining the fields for USB UTMI clocks Parameters.
315 */
316 struct utmi_clk_param {
317 /* Oscillator Frequency in KHz */
318 u32 osc_frequency;
319 /* UTMIP PLL Enable Delay Count */
320 u8 enable_delay_count;
321 /* UTMIP PLL Stable count */
322 u8 stable_count;
323 /* UTMIP PLL Active delay count */
324 u8 active_delay_count;
325 /* UTMIP PLL Xtal frequency count */
326 u8 xtal_freq_count;
327 };
328
329 static const struct utmi_clk_param utmi_parameters[] = {
330 {
331 .osc_frequency = 13000000,
332 .enable_delay_count = 0x02,
333 .stable_count = 0x33,
334 .active_delay_count = 0x05,
335 .xtal_freq_count = 0x7F
336 },
337 {
338 .osc_frequency = 19200000,
339 .enable_delay_count = 0x03,
340 .stable_count = 0x4B,
341 .active_delay_count = 0x06,
342 .xtal_freq_count = 0xBB},
343 {
344 .osc_frequency = 12000000,
345 .enable_delay_count = 0x02,
346 .stable_count = 0x2F,
347 .active_delay_count = 0x04,
348 .xtal_freq_count = 0x76
349 },
350 {
351 .osc_frequency = 26000000,
352 .enable_delay_count = 0x04,
353 .stable_count = 0x66,
354 .active_delay_count = 0x09,
355 .xtal_freq_count = 0xFE
356 },
357 {
358 .osc_frequency = 16800000,
359 .enable_delay_count = 0x03,
360 .stable_count = 0x41,
361 .active_delay_count = 0x0A,
362 .xtal_freq_count = 0xA4
363 },
364 };
365
366 static void __iomem *reg_clk_base = IO_ADDRESS(TEGRA_CLK_RESET_BASE);
367 static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE);
368 static void __iomem *misc_gp_hidrev_base = IO_ADDRESS(TEGRA_APB_MISC_BASE);
369
370 #define MISC_GP_HIDREV 0x804
371
372 /*
373 * Some peripheral clocks share an enable bit, so refcount the enable bits
374 * in registers CLK_ENABLE_L, ... CLK_ENABLE_W
375 */
376 static int tegra_periph_clk_enable_refcount[CLK_OUT_ENB_NUM * 32];
377
378 #define clk_writel(value, reg) \
379 __raw_writel(value, reg_clk_base + (reg))
380 #define clk_readl(reg) \
381 __raw_readl(reg_clk_base + (reg))
382 #define pmc_writel(value, reg) \
383 __raw_writel(value, reg_pmc_base + (reg))
384 #define pmc_readl(reg) \
385 __raw_readl(reg_pmc_base + (reg))
386 #define chipid_readl() \
387 __raw_readl(misc_gp_hidrev_base + MISC_GP_HIDREV)
388
389 #define clk_writel_delay(value, reg) \
390 do { \
391 __raw_writel((value), reg_clk_base + (reg)); \
392 udelay(2); \
393 } while (0)
394
395 static inline int clk_set_div(struct clk_tegra *c, u32 n)
396 {
397 struct clk *clk = c->hw.clk;
398
399 return clk_set_rate(clk,
400 (__clk_get_rate(__clk_get_parent(clk)) + n - 1) / n);
401 }
402
403 static inline u32 periph_clk_to_reg(
404 struct clk_tegra *c, u32 reg_L, u32 reg_V, int offs)
405 {
406 u32 reg = c->u.periph.clk_num / 32;
407 BUG_ON(reg >= RST_DEVICES_NUM);
408 if (reg < 3)
409 reg = reg_L + (reg * offs);
410 else
411 reg = reg_V + ((reg - 3) * offs);
412 return reg;
413 }
414
415 static unsigned long clk_measure_input_freq(void)
416 {
417 u32 clock_autodetect;
418 clk_writel(OSC_FREQ_DET_TRIG | 1, OSC_FREQ_DET);
419 do {} while (clk_readl(OSC_FREQ_DET_STATUS) & OSC_FREQ_DET_BUSY);
420 clock_autodetect = clk_readl(OSC_FREQ_DET_STATUS);
421 if (clock_autodetect >= 732 - 3 && clock_autodetect <= 732 + 3) {
422 return 12000000;
423 } else if (clock_autodetect >= 794 - 3 && clock_autodetect <= 794 + 3) {
424 return 13000000;
425 } else if (clock_autodetect >= 1172 - 3 && clock_autodetect <= 1172 + 3) {
426 return 19200000;
427 } else if (clock_autodetect >= 1587 - 3 && clock_autodetect <= 1587 + 3) {
428 return 26000000;
429 } else if (clock_autodetect >= 1025 - 3 && clock_autodetect <= 1025 + 3) {
430 return 16800000;
431 } else if (clock_autodetect >= 2344 - 3 && clock_autodetect <= 2344 + 3) {
432 return 38400000;
433 } else if (clock_autodetect >= 2928 - 3 && clock_autodetect <= 2928 + 3) {
434 return 48000000;
435 } else {
436 pr_err("%s: Unexpected clock autodetect value %d", __func__,
437 clock_autodetect);
438 BUG();
439 return 0;
440 }
441 }
442
443 static int clk_div71_get_divider(unsigned long parent_rate, unsigned long rate,
444 u32 flags, u32 round_mode)
445 {
446 s64 divider_u71 = parent_rate;
447 if (!rate)
448 return -EINVAL;
449
450 if (!(flags & DIV_U71_INT))
451 divider_u71 *= 2;
452 if (round_mode == ROUND_DIVIDER_UP)
453 divider_u71 += rate - 1;
454 do_div(divider_u71, rate);
455 if (flags & DIV_U71_INT)
456 divider_u71 *= 2;
457
458 if (divider_u71 - 2 < 0)
459 return 0;
460
461 if (divider_u71 - 2 > 255)
462 return -EINVAL;
463
464 return divider_u71 - 2;
465 }
466
467 static int clk_div16_get_divider(unsigned long parent_rate, unsigned long rate)
468 {
469 s64 divider_u16;
470
471 divider_u16 = parent_rate;
472 if (!rate)
473 return -EINVAL;
474 divider_u16 += rate - 1;
475 do_div(divider_u16, rate);
476
477 if (divider_u16 - 1 < 0)
478 return 0;
479
480 if (divider_u16 - 1 > 0xFFFF)
481 return -EINVAL;
482
483 return divider_u16 - 1;
484 }
485
486 static unsigned long tegra30_clk_fixed_recalc_rate(struct clk_hw *hw,
487 unsigned long parent_rate)
488 {
489 return to_clk_tegra(hw)->fixed_rate;
490 }
491
492 struct clk_ops tegra30_clk_32k_ops = {
493 .recalc_rate = tegra30_clk_fixed_recalc_rate,
494 };
495
496 /* clk_m functions */
497 static unsigned long tegra30_clk_m_recalc_rate(struct clk_hw *hw,
498 unsigned long parent_rate)
499 {
500 if (!to_clk_tegra(hw)->fixed_rate)
501 to_clk_tegra(hw)->fixed_rate = clk_measure_input_freq();
502 return to_clk_tegra(hw)->fixed_rate;
503 }
504
505 static void tegra30_clk_m_init(struct clk_hw *hw)
506 {
507 u32 osc_ctrl = clk_readl(OSC_CTRL);
508 u32 auto_clock_control = osc_ctrl & ~OSC_CTRL_OSC_FREQ_MASK;
509 u32 pll_ref_div = osc_ctrl & OSC_CTRL_PLL_REF_DIV_MASK;
510
511 switch (to_clk_tegra(hw)->fixed_rate) {
512 case 12000000:
513 auto_clock_control |= OSC_CTRL_OSC_FREQ_12MHZ;
514 BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
515 break;
516 case 13000000:
517 auto_clock_control |= OSC_CTRL_OSC_FREQ_13MHZ;
518 BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
519 break;
520 case 19200000:
521 auto_clock_control |= OSC_CTRL_OSC_FREQ_19_2MHZ;
522 BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
523 break;
524 case 26000000:
525 auto_clock_control |= OSC_CTRL_OSC_FREQ_26MHZ;
526 BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
527 break;
528 case 16800000:
529 auto_clock_control |= OSC_CTRL_OSC_FREQ_16_8MHZ;
530 BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_1);
531 break;
532 case 38400000:
533 auto_clock_control |= OSC_CTRL_OSC_FREQ_38_4MHZ;
534 BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_2);
535 break;
536 case 48000000:
537 auto_clock_control |= OSC_CTRL_OSC_FREQ_48MHZ;
538 BUG_ON(pll_ref_div != OSC_CTRL_PLL_REF_DIV_4);
539 break;
540 default:
541 pr_err("%s: Unexpected clock rate %ld", __func__,
542 to_clk_tegra(hw)->fixed_rate);
543 BUG();
544 }
545 clk_writel(auto_clock_control, OSC_CTRL);
546 }
547
548 struct clk_ops tegra30_clk_m_ops = {
549 .init = tegra30_clk_m_init,
550 .recalc_rate = tegra30_clk_m_recalc_rate,
551 };
552
553 static unsigned long tegra30_clk_m_div_recalc_rate(struct clk_hw *hw,
554 unsigned long parent_rate)
555 {
556 struct clk_tegra *c = to_clk_tegra(hw);
557 u64 rate = parent_rate;
558
559 if (c->mul != 0 && c->div != 0) {
560 rate *= c->mul;
561 rate += c->div - 1; /* round up */
562 do_div(rate, c->div);
563 }
564
565 return rate;
566 }
567
568 struct clk_ops tegra_clk_m_div_ops = {
569 .recalc_rate = tegra30_clk_m_div_recalc_rate,
570 };
571
572 /* PLL reference divider functions */
573 static unsigned long tegra30_pll_ref_recalc_rate(struct clk_hw *hw,
574 unsigned long parent_rate)
575 {
576 struct clk_tegra *c = to_clk_tegra(hw);
577 unsigned long rate = parent_rate;
578 u32 pll_ref_div = clk_readl(OSC_CTRL) & OSC_CTRL_PLL_REF_DIV_MASK;
579
580 switch (pll_ref_div) {
581 case OSC_CTRL_PLL_REF_DIV_1:
582 c->div = 1;
583 break;
584 case OSC_CTRL_PLL_REF_DIV_2:
585 c->div = 2;
586 break;
587 case OSC_CTRL_PLL_REF_DIV_4:
588 c->div = 4;
589 break;
590 default:
591 pr_err("%s: Invalid pll ref divider %d", __func__, pll_ref_div);
592 BUG();
593 }
594 c->mul = 1;
595
596 if (c->mul != 0 && c->div != 0) {
597 rate *= c->mul;
598 rate += c->div - 1; /* round up */
599 do_div(rate, c->div);
600 }
601
602 return rate;
603 }
604
605 struct clk_ops tegra_pll_ref_ops = {
606 .recalc_rate = tegra30_pll_ref_recalc_rate,
607 };
608
609 /* super clock functions */
610 /* "super clocks" on tegra30 have two-stage muxes, fractional 7.1 divider and
611 * clock skipping super divider. We will ignore the clock skipping divider,
612 * since we can't lower the voltage when using the clock skip, but we can if
613 * we lower the PLL frequency. We will use 7.1 divider for CPU super-clock
614 * only when its parent is a fixed rate PLL, since we can't change PLL rate
615 * in this case.
616 */
617 static void tegra30_super_clk_init(struct clk_hw *hw)
618 {
619 struct clk_tegra *c = to_clk_tegra(hw);
620 struct clk_tegra *p =
621 to_clk_tegra(__clk_get_hw(__clk_get_parent(hw->clk)));
622
623 c->state = ON;
624 if (c->flags & DIV_U71) {
625 /* Init safe 7.1 divider value (does not affect PLLX path) */
626 clk_writel(SUPER_CLOCK_DIV_U71_MIN << SUPER_CLOCK_DIV_U71_SHIFT,
627 c->reg + SUPER_CLK_DIVIDER);
628 c->mul = 2;
629 c->div = 2;
630 if (!(p->flags & PLLX))
631 c->div += SUPER_CLOCK_DIV_U71_MIN;
632 } else
633 clk_writel(0, c->reg + SUPER_CLK_DIVIDER);
634 }
635
636 static u8 tegra30_super_clk_get_parent(struct clk_hw *hw)
637 {
638 struct clk_tegra *c = to_clk_tegra(hw);
639 u32 val;
640 int source;
641 int shift;
642
643 val = clk_readl(c->reg + SUPER_CLK_MUX);
644 BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
645 ((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
646 shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
647 SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
648 source = (val >> shift) & SUPER_SOURCE_MASK;
649 if (c->flags & DIV_2)
650 source |= val & SUPER_LP_DIV2_BYPASS;
651
652 return source;
653 }
654
655 static int tegra30_super_clk_set_parent(struct clk_hw *hw, u8 index)
656 {
657 struct clk_tegra *c = to_clk_tegra(hw);
658 struct clk_tegra *p =
659 to_clk_tegra(__clk_get_hw(clk_get_parent(hw->clk)));
660 u32 val;
661 int shift;
662
663 val = clk_readl(c->reg + SUPER_CLK_MUX);
664 BUG_ON(((val & SUPER_STATE_MASK) != SUPER_STATE_RUN) &&
665 ((val & SUPER_STATE_MASK) != SUPER_STATE_IDLE));
666 shift = ((val & SUPER_STATE_MASK) == SUPER_STATE_IDLE) ?
667 SUPER_IDLE_SOURCE_SHIFT : SUPER_RUN_SOURCE_SHIFT;
668
669 /* For LP mode super-clock switch between PLLX direct
670 and divided-by-2 outputs is allowed only when other
671 than PLLX clock source is current parent */
672 if ((c->flags & DIV_2) && (p->flags & PLLX) &&
673 ((index ^ val) & SUPER_LP_DIV2_BYPASS)) {
674 if (p->flags & PLLX)
675 return -EINVAL;
676 val ^= SUPER_LP_DIV2_BYPASS;
677 clk_writel_delay(val, c->reg);
678 }
679 val &= ~(SUPER_SOURCE_MASK << shift);
680 val |= (index & SUPER_SOURCE_MASK) << shift;
681
682 /* 7.1 divider for CPU super-clock does not affect
683 PLLX path */
684 if (c->flags & DIV_U71) {
685 u32 div = 0;
686 if (!(p->flags & PLLX)) {
687 div = clk_readl(c->reg +
688 SUPER_CLK_DIVIDER);
689 div &= SUPER_CLOCK_DIV_U71_MASK;
690 div >>= SUPER_CLOCK_DIV_U71_SHIFT;
691 }
692 c->div = div + 2;
693 c->mul = 2;
694 }
695 clk_writel_delay(val, c->reg);
696
697 return 0;
698 }
699
700 /*
701 * Do not use super clocks "skippers", since dividing using a clock skipper
702 * does not allow the voltage to be scaled down. Instead adjust the rate of
703 * the parent clock. This requires that the parent of a super clock have no
704 * other children, otherwise the rate will change underneath the other
705 * children. Special case: if fixed rate PLL is CPU super clock parent the
706 * rate of this PLL can't be changed, and it has many other children. In
707 * this case use 7.1 fractional divider to adjust the super clock rate.
708 */
709 static int tegra30_super_clk_set_rate(struct clk_hw *hw, unsigned long rate,
710 unsigned long parent_rate)
711 {
712 struct clk_tegra *c = to_clk_tegra(hw);
713 struct clk *parent = __clk_get_parent(hw->clk);
714 struct clk_tegra *cparent = to_clk_tegra(__clk_get_hw(parent));
715
716 if ((c->flags & DIV_U71) && (cparent->flags & PLL_FIXED)) {
717 int div = clk_div71_get_divider(parent_rate,
718 rate, c->flags, ROUND_DIVIDER_DOWN);
719 div = max(div, SUPER_CLOCK_DIV_U71_MIN);
720
721 clk_writel(div << SUPER_CLOCK_DIV_U71_SHIFT,
722 c->reg + SUPER_CLK_DIVIDER);
723 c->div = div + 2;
724 c->mul = 2;
725 return 0;
726 }
727 return 0;
728 }
729
730 static unsigned long tegra30_super_clk_recalc_rate(struct clk_hw *hw,
731 unsigned long parent_rate)
732 {
733 struct clk_tegra *c = to_clk_tegra(hw);
734 u64 rate = parent_rate;
735
736 if (c->mul != 0 && c->div != 0) {
737 rate *= c->mul;
738 rate += c->div - 1; /* round up */
739 do_div(rate, c->div);
740 }
741
742 return rate;
743 }
744
745 static long tegra30_super_clk_round_rate(struct clk_hw *hw, unsigned long rate,
746 unsigned long *prate)
747 {
748 struct clk_tegra *c = to_clk_tegra(hw);
749 struct clk *parent = __clk_get_parent(hw->clk);
750 struct clk_tegra *cparent = to_clk_tegra(__clk_get_hw(parent));
751 int mul = 2;
752 int div;
753
754 if ((c->flags & DIV_U71) && (cparent->flags & PLL_FIXED)) {
755 div = clk_div71_get_divider(*prate,
756 rate, c->flags, ROUND_DIVIDER_DOWN);
757 div = max(div, SUPER_CLOCK_DIV_U71_MIN) + 2;
758 rate = *prate * mul;
759 rate += div - 1; /* round up */
760 do_div(rate, c->div);
761
762 return rate;
763 }
764 return *prate;
765 }
766
767 struct clk_ops tegra30_super_ops = {
768 .init = tegra30_super_clk_init,
769 .set_parent = tegra30_super_clk_set_parent,
770 .get_parent = tegra30_super_clk_get_parent,
771 .recalc_rate = tegra30_super_clk_recalc_rate,
772 .round_rate = tegra30_super_clk_round_rate,
773 .set_rate = tegra30_super_clk_set_rate,
774 };
775
776 static unsigned long tegra30_twd_clk_recalc_rate(struct clk_hw *hw,
777 unsigned long parent_rate)
778 {
779 struct clk_tegra *c = to_clk_tegra(hw);
780 u64 rate = parent_rate;
781
782 if (c->mul != 0 && c->div != 0) {
783 rate *= c->mul;
784 rate += c->div - 1; /* round up */
785 do_div(rate, c->div);
786 }
787
788 return rate;
789 }
790
791 struct clk_ops tegra30_twd_ops = {
792 .recalc_rate = tegra30_twd_clk_recalc_rate,
793 };
794
795 /* Blink output functions */
796 static int tegra30_blink_clk_is_enabled(struct clk_hw *hw)
797 {
798 struct clk_tegra *c = to_clk_tegra(hw);
799 u32 val;
800
801 val = pmc_readl(PMC_CTRL);
802 c->state = (val & PMC_CTRL_BLINK_ENB) ? ON : OFF;
803 return c->state;
804 }
805
806 static int tegra30_blink_clk_enable(struct clk_hw *hw)
807 {
808 u32 val;
809
810 val = pmc_readl(PMC_DPD_PADS_ORIDE);
811 pmc_writel(val | PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
812
813 val = pmc_readl(PMC_CTRL);
814 pmc_writel(val | PMC_CTRL_BLINK_ENB, PMC_CTRL);
815
816 return 0;
817 }
818
819 static void tegra30_blink_clk_disable(struct clk_hw *hw)
820 {
821 u32 val;
822
823 val = pmc_readl(PMC_CTRL);
824 pmc_writel(val & ~PMC_CTRL_BLINK_ENB, PMC_CTRL);
825
826 val = pmc_readl(PMC_DPD_PADS_ORIDE);
827 pmc_writel(val & ~PMC_DPD_PADS_ORIDE_BLINK_ENB, PMC_DPD_PADS_ORIDE);
828 }
829
830 static int tegra30_blink_clk_set_rate(struct clk_hw *hw, unsigned long rate,
831 unsigned long parent_rate)
832 {
833 struct clk_tegra *c = to_clk_tegra(hw);
834
835 if (rate >= parent_rate) {
836 c->div = 1;
837 pmc_writel(0, c->reg);
838 } else {
839 unsigned int on_off;
840 u32 val;
841
842 on_off = DIV_ROUND_UP(parent_rate / 8, rate);
843 c->div = on_off * 8;
844
845 val = (on_off & PMC_BLINK_TIMER_DATA_ON_MASK) <<
846 PMC_BLINK_TIMER_DATA_ON_SHIFT;
847 on_off &= PMC_BLINK_TIMER_DATA_OFF_MASK;
848 on_off <<= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
849 val |= on_off;
850 val |= PMC_BLINK_TIMER_ENB;
851 pmc_writel(val, c->reg);
852 }
853
854 return 0;
855 }
856
857 static unsigned long tegra30_blink_clk_recalc_rate(struct clk_hw *hw,
858 unsigned long parent_rate)
859 {
860 struct clk_tegra *c = to_clk_tegra(hw);
861 u64 rate = parent_rate;
862 u32 val;
863 u32 mul;
864 u32 div;
865 u32 on_off;
866
867 mul = 1;
868 val = pmc_readl(c->reg);
869
870 if (val & PMC_BLINK_TIMER_ENB) {
871 on_off = (val >> PMC_BLINK_TIMER_DATA_ON_SHIFT) &
872 PMC_BLINK_TIMER_DATA_ON_MASK;
873 val >>= PMC_BLINK_TIMER_DATA_OFF_SHIFT;
874 val &= PMC_BLINK_TIMER_DATA_OFF_MASK;
875 on_off += val;
876 /* each tick in the blink timer is 4 32KHz clocks */
877 div = on_off * 4;
878 } else {
879 div = 1;
880 }
881
882 if (mul != 0 && div != 0) {
883 rate *= mul;
884 rate += div - 1; /* round up */
885 do_div(rate, div);
886 }
887 return rate;
888 }
889
890 static long tegra30_blink_clk_round_rate(struct clk_hw *hw, unsigned long rate,
891 unsigned long *prate)
892 {
893 int div;
894 int mul;
895 long round_rate = *prate;
896
897 mul = 1;
898
899 if (rate >= *prate) {
900 div = 1;
901 } else {
902 div = DIV_ROUND_UP(*prate / 8, rate);
903 div *= 8;
904 }
905
906 round_rate *= mul;
907 round_rate += div - 1;
908 do_div(round_rate, div);
909
910 return round_rate;
911 }
912
913 struct clk_ops tegra30_blink_clk_ops = {
914 .is_enabled = tegra30_blink_clk_is_enabled,
915 .enable = tegra30_blink_clk_enable,
916 .disable = tegra30_blink_clk_disable,
917 .recalc_rate = tegra30_blink_clk_recalc_rate,
918 .round_rate = tegra30_blink_clk_round_rate,
919 .set_rate = tegra30_blink_clk_set_rate,
920 };
921
922 static void tegra30_utmi_param_configure(struct clk_hw *hw)
923 {
924 unsigned long main_rate =
925 __clk_get_rate(__clk_get_parent(__clk_get_parent(hw->clk)));
926 u32 reg;
927 int i;
928
929 for (i = 0; i < ARRAY_SIZE(utmi_parameters); i++) {
930 if (main_rate == utmi_parameters[i].osc_frequency)
931 break;
932 }
933
934 if (i >= ARRAY_SIZE(utmi_parameters)) {
935 pr_err("%s: Unexpected main rate %lu\n", __func__, main_rate);
936 return;
937 }
938
939 reg = clk_readl(UTMIP_PLL_CFG2);
940
941 /* Program UTMIP PLL stable and active counts */
942 /* [FIXME] arclk_rst.h says WRONG! This should be 1ms -> 0x50 Check! */
943 reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0);
944 reg |= UTMIP_PLL_CFG2_STABLE_COUNT(
945 utmi_parameters[i].stable_count);
946
947 reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0);
948
949 reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(
950 utmi_parameters[i].active_delay_count);
951
952 /* Remove power downs from UTMIP PLL control bits */
953 reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN;
954 reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN;
955 reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN;
956
957 clk_writel(reg, UTMIP_PLL_CFG2);
958
959 /* Program UTMIP PLL delay and oscillator frequency counts */
960 reg = clk_readl(UTMIP_PLL_CFG1);
961 reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0);
962
963 reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(
964 utmi_parameters[i].enable_delay_count);
965
966 reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0);
967 reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(
968 utmi_parameters[i].xtal_freq_count);
969
970 /* Remove power downs from UTMIP PLL control bits */
971 reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN;
972 reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN;
973 reg &= ~UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN;
974
975 clk_writel(reg, UTMIP_PLL_CFG1);
976 }
977
978 /* PLL Functions */
979 static int tegra30_pll_clk_wait_for_lock(struct clk_tegra *c, u32 lock_reg,
980 u32 lock_bit)
981 {
982 int ret = 0;
983
984 #if USE_PLL_LOCK_BITS
985 int i;
986 for (i = 0; i < c->u.pll.lock_delay; i++) {
987 if (clk_readl(lock_reg) & lock_bit) {
988 udelay(PLL_POST_LOCK_DELAY);
989 return 0;
990 }
991 udelay(2); /* timeout = 2 * lock time */
992 }
993 pr_err("Timed out waiting for lock bit on pll %s",
994 __clk_get_name(hw->clk));
995 ret = -1;
996 #else
997 udelay(c->u.pll.lock_delay);
998 #endif
999 return ret;
1000 }
1001
1002 static int tegra30_pll_clk_is_enabled(struct clk_hw *hw)
1003 {
1004 struct clk_tegra *c = to_clk_tegra(hw);
1005 u32 val = clk_readl(c->reg + PLL_BASE);
1006
1007 c->state = (val & PLL_BASE_ENABLE) ? ON : OFF;
1008 return c->state;
1009 }
1010
1011 static void tegra30_pll_clk_init(struct clk_hw *hw)
1012 {
1013 struct clk_tegra *c = to_clk_tegra(hw);
1014
1015 if (c->flags & PLLU)
1016 tegra30_utmi_param_configure(hw);
1017 }
1018
1019 static int tegra30_pll_clk_enable(struct clk_hw *hw)
1020 {
1021 struct clk_tegra *c = to_clk_tegra(hw);
1022 u32 val;
1023 pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
1024
1025 #if USE_PLL_LOCK_BITS
1026 val = clk_readl(c->reg + PLL_MISC(c));
1027 val |= PLL_MISC_LOCK_ENABLE(c);
1028 clk_writel(val, c->reg + PLL_MISC(c));
1029 #endif
1030 val = clk_readl(c->reg + PLL_BASE);
1031 val &= ~PLL_BASE_BYPASS;
1032 val |= PLL_BASE_ENABLE;
1033 clk_writel(val, c->reg + PLL_BASE);
1034
1035 if (c->flags & PLLM) {
1036 val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
1037 val |= PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
1038 pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
1039 }
1040
1041 tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_BASE, PLL_BASE_LOCK);
1042
1043 return 0;
1044 }
1045
1046 static void tegra30_pll_clk_disable(struct clk_hw *hw)
1047 {
1048 struct clk_tegra *c = to_clk_tegra(hw);
1049 u32 val;
1050 pr_debug("%s on clock %s\n", __func__, __clk_get_name(hw->clk));
1051
1052 val = clk_readl(c->reg);
1053 val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
1054 clk_writel(val, c->reg);
1055
1056 if (c->flags & PLLM) {
1057 val = pmc_readl(PMC_PLLP_WB0_OVERRIDE);
1058 val &= ~PMC_PLLP_WB0_OVERRIDE_PLLM_ENABLE;
1059 pmc_writel(val, PMC_PLLP_WB0_OVERRIDE);
1060 }
1061 }
1062
1063 static int tegra30_pll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1064 unsigned long parent_rate)
1065 {
1066 struct clk_tegra *c = to_clk_tegra(hw);
1067 u32 val, p_div, old_base;
1068 unsigned long input_rate;
1069 const struct clk_pll_freq_table *sel;
1070 struct clk_pll_freq_table cfg;
1071
1072 if (c->flags & PLL_FIXED) {
1073 int ret = 0;
1074 if (rate != c->u.pll.fixed_rate) {
1075 pr_err("%s: Can not change %s fixed rate %lu to %lu\n",
1076 __func__, __clk_get_name(hw->clk),
1077 c->u.pll.fixed_rate, rate);
1078 ret = -EINVAL;
1079 }
1080 return ret;
1081 }
1082
1083 if (c->flags & PLLM) {
1084 if (rate != __clk_get_rate(hw->clk)) {
1085 pr_err("%s: Can not change memory %s rate in flight\n",
1086 __func__, __clk_get_name(hw->clk));
1087 return -EINVAL;
1088 }
1089 }
1090
1091 p_div = 0;
1092 input_rate = parent_rate;
1093
1094 /* Check if the target rate is tabulated */
1095 for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
1096 if (sel->input_rate == input_rate && sel->output_rate == rate) {
1097 if (c->flags & PLLU) {
1098 BUG_ON(sel->p < 1 || sel->p > 2);
1099 if (sel->p == 1)
1100 p_div = PLLU_BASE_POST_DIV;
1101 } else {
1102 BUG_ON(sel->p < 1);
1103 for (val = sel->p; val > 1; val >>= 1)
1104 p_div++;
1105 p_div <<= PLL_BASE_DIVP_SHIFT;
1106 }
1107 break;
1108 }
1109 }
1110
1111 /* Configure out-of-table rate */
1112 if (sel->input_rate == 0) {
1113 unsigned long cfreq;
1114 BUG_ON(c->flags & PLLU);
1115 sel = &cfg;
1116
1117 switch (input_rate) {
1118 case 12000000:
1119 case 26000000:
1120 cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2000000;
1121 break;
1122 case 13000000:
1123 cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2600000;
1124 break;
1125 case 16800000:
1126 case 19200000:
1127 cfreq = (rate <= 1200000 * 1000) ? 1200000 : 2400000;
1128 break;
1129 default:
1130 pr_err("%s: Unexpected reference rate %lu\n",
1131 __func__, input_rate);
1132 BUG();
1133 }
1134
1135 /* Raise VCO to guarantee 0.5% accuracy */
1136 for (cfg.output_rate = rate; cfg.output_rate < 200 * cfreq;
1137 cfg.output_rate <<= 1)
1138 p_div++;
1139
1140 cfg.p = 0x1 << p_div;
1141 cfg.m = input_rate / cfreq;
1142 cfg.n = cfg.output_rate / cfreq;
1143 cfg.cpcon = OUT_OF_TABLE_CPCON;
1144
1145 if ((cfg.m > (PLL_BASE_DIVM_MASK >> PLL_BASE_DIVM_SHIFT)) ||
1146 (cfg.n > (PLL_BASE_DIVN_MASK >> PLL_BASE_DIVN_SHIFT)) ||
1147 (p_div > (PLL_BASE_DIVP_MASK >> PLL_BASE_DIVP_SHIFT)) ||
1148 (cfg.output_rate > c->u.pll.vco_max)) {
1149 pr_err("%s: Failed to set %s out-of-table rate %lu\n",
1150 __func__, __clk_get_name(hw->clk), rate);
1151 return -EINVAL;
1152 }
1153 p_div <<= PLL_BASE_DIVP_SHIFT;
1154 }
1155
1156 c->mul = sel->n;
1157 c->div = sel->m * sel->p;
1158
1159 old_base = val = clk_readl(c->reg + PLL_BASE);
1160 val &= ~(PLL_BASE_DIVM_MASK | PLL_BASE_DIVN_MASK |
1161 ((c->flags & PLLU) ? PLLU_BASE_POST_DIV : PLL_BASE_DIVP_MASK));
1162 val |= (sel->m << PLL_BASE_DIVM_SHIFT) |
1163 (sel->n << PLL_BASE_DIVN_SHIFT) | p_div;
1164 if (val == old_base)
1165 return 0;
1166
1167 if (c->state == ON) {
1168 tegra30_pll_clk_disable(hw);
1169 val &= ~(PLL_BASE_BYPASS | PLL_BASE_ENABLE);
1170 }
1171 clk_writel(val, c->reg + PLL_BASE);
1172
1173 if (c->flags & PLL_HAS_CPCON) {
1174 val = clk_readl(c->reg + PLL_MISC(c));
1175 val &= ~PLL_MISC_CPCON_MASK;
1176 val |= sel->cpcon << PLL_MISC_CPCON_SHIFT;
1177 if (c->flags & (PLLU | PLLD)) {
1178 val &= ~PLL_MISC_LFCON_MASK;
1179 if (sel->n >= PLLDU_LFCON_SET_DIVN)
1180 val |= 0x1 << PLL_MISC_LFCON_SHIFT;
1181 } else if (c->flags & (PLLX | PLLM)) {
1182 val &= ~(0x1 << PLL_MISC_DCCON_SHIFT);
1183 if (rate >= (c->u.pll.vco_max >> 1))
1184 val |= 0x1 << PLL_MISC_DCCON_SHIFT;
1185 }
1186 clk_writel(val, c->reg + PLL_MISC(c));
1187 }
1188
1189 if (c->state == ON)
1190 tegra30_pll_clk_enable(hw);
1191
1192 c->u.pll.fixed_rate = rate;
1193
1194 return 0;
1195 }
1196
1197 static long tegra30_pll_round_rate(struct clk_hw *hw, unsigned long rate,
1198 unsigned long *prate)
1199 {
1200 struct clk_tegra *c = to_clk_tegra(hw);
1201 unsigned long input_rate = *prate;
1202 unsigned long output_rate = *prate;
1203 const struct clk_pll_freq_table *sel;
1204 struct clk_pll_freq_table cfg;
1205 int mul;
1206 int div;
1207 u32 p_div;
1208 u32 val;
1209
1210 if (c->flags & PLL_FIXED)
1211 return c->u.pll.fixed_rate;
1212
1213 if (c->flags & PLLM)
1214 return __clk_get_rate(hw->clk);
1215
1216 p_div = 0;
1217 /* Check if the target rate is tabulated */
1218 for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
1219 if (sel->input_rate == input_rate && sel->output_rate == rate) {
1220 if (c->flags & PLLU) {
1221 BUG_ON(sel->p < 1 || sel->p > 2);
1222 if (sel->p == 1)
1223 p_div = PLLU_BASE_POST_DIV;
1224 } else {
1225 BUG_ON(sel->p < 1);
1226 for (val = sel->p; val > 1; val >>= 1)
1227 p_div++;
1228 p_div <<= PLL_BASE_DIVP_SHIFT;
1229 }
1230 break;
1231 }
1232 }
1233
1234 if (sel->input_rate == 0) {
1235 unsigned long cfreq;
1236 BUG_ON(c->flags & PLLU);
1237 sel = &cfg;
1238
1239 switch (input_rate) {
1240 case 12000000:
1241 case 26000000:
1242 cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2000000;
1243 break;
1244 case 13000000:
1245 cfreq = (rate <= 1000000 * 1000) ? 1000000 : 2600000;
1246 break;
1247 case 16800000:
1248 case 19200000:
1249 cfreq = (rate <= 1200000 * 1000) ? 1200000 : 2400000;
1250 break;
1251 default:
1252 pr_err("%s: Unexpected reference rate %lu\n",
1253 __func__, input_rate);
1254 BUG();
1255 }
1256
1257 /* Raise VCO to guarantee 0.5% accuracy */
1258 for (cfg.output_rate = rate; cfg.output_rate < 200 * cfreq;
1259 cfg.output_rate <<= 1)
1260 p_div++;
1261
1262 cfg.p = 0x1 << p_div;
1263 cfg.m = input_rate / cfreq;
1264 cfg.n = cfg.output_rate / cfreq;
1265 }
1266
1267 mul = sel->n;
1268 div = sel->m * sel->p;
1269
1270 output_rate *= mul;
1271 output_rate += div - 1; /* round up */
1272 do_div(output_rate, div);
1273
1274 return output_rate;
1275 }
1276
1277 static unsigned long tegra30_pll_recalc_rate(struct clk_hw *hw,
1278 unsigned long parent_rate)
1279 {
1280 struct clk_tegra *c = to_clk_tegra(hw);
1281 u64 rate = parent_rate;
1282 u32 val = clk_readl(c->reg + PLL_BASE);
1283
1284 if (c->flags & PLL_FIXED && !(val & PLL_BASE_OVERRIDE)) {
1285 const struct clk_pll_freq_table *sel;
1286 for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
1287 if (sel->input_rate == parent_rate &&
1288 sel->output_rate == c->u.pll.fixed_rate) {
1289 c->mul = sel->n;
1290 c->div = sel->m * sel->p;
1291 break;
1292 }
1293 }
1294 pr_err("Clock %s has unknown fixed frequency\n",
1295 __clk_get_name(hw->clk));
1296 BUG();
1297 } else if (val & PLL_BASE_BYPASS) {
1298 c->mul = 1;
1299 c->div = 1;
1300 } else {
1301 c->mul = (val & PLL_BASE_DIVN_MASK) >> PLL_BASE_DIVN_SHIFT;
1302 c->div = (val & PLL_BASE_DIVM_MASK) >> PLL_BASE_DIVM_SHIFT;
1303 if (c->flags & PLLU)
1304 c->div *= (val & PLLU_BASE_POST_DIV) ? 1 : 2;
1305 else
1306 c->div *= (0x1 << ((val & PLL_BASE_DIVP_MASK) >>
1307 PLL_BASE_DIVP_SHIFT));
1308 }
1309
1310 if (c->mul != 0 && c->div != 0) {
1311 rate *= c->mul;
1312 rate += c->div - 1; /* round up */
1313 do_div(rate, c->div);
1314 }
1315
1316 return rate;
1317 }
1318
1319 struct clk_ops tegra30_pll_ops = {
1320 .is_enabled = tegra30_pll_clk_is_enabled,
1321 .init = tegra30_pll_clk_init,
1322 .enable = tegra30_pll_clk_enable,
1323 .disable = tegra30_pll_clk_disable,
1324 .recalc_rate = tegra30_pll_recalc_rate,
1325 .round_rate = tegra30_pll_round_rate,
1326 .set_rate = tegra30_pll_clk_set_rate,
1327 };
1328
1329 int tegra30_plld_clk_cfg_ex(struct clk_hw *hw,
1330 enum tegra_clk_ex_param p, u32 setting)
1331 {
1332 struct clk_tegra *c = to_clk_tegra(hw);
1333 u32 val, mask, reg;
1334
1335 switch (p) {
1336 case TEGRA_CLK_PLLD_CSI_OUT_ENB:
1337 mask = PLLD_BASE_CSI_CLKENABLE;
1338 reg = c->reg + PLL_BASE;
1339 break;
1340 case TEGRA_CLK_PLLD_DSI_OUT_ENB:
1341 mask = PLLD_MISC_DSI_CLKENABLE;
1342 reg = c->reg + PLL_MISC(c);
1343 break;
1344 case TEGRA_CLK_PLLD_MIPI_MUX_SEL:
1345 if (!(c->flags & PLL_ALT_MISC_REG)) {
1346 mask = PLLD_BASE_DSIB_MUX_MASK;
1347 reg = c->reg + PLL_BASE;
1348 break;
1349 }
1350 /* fall through - error since PLLD2 does not have MUX_SEL control */
1351 default:
1352 return -EINVAL;
1353 }
1354
1355 val = clk_readl(reg);
1356 if (setting)
1357 val |= mask;
1358 else
1359 val &= ~mask;
1360 clk_writel(val, reg);
1361 return 0;
1362 }
1363
1364 static int tegra30_plle_clk_is_enabled(struct clk_hw *hw)
1365 {
1366 struct clk_tegra *c = to_clk_tegra(hw);
1367 u32 val;
1368
1369 val = clk_readl(c->reg + PLL_BASE);
1370 c->state = (val & PLLE_BASE_ENABLE) ? ON : OFF;
1371 return c->state;
1372 }
1373
1374 static void tegra30_plle_clk_disable(struct clk_hw *hw)
1375 {
1376 struct clk_tegra *c = to_clk_tegra(hw);
1377 u32 val;
1378
1379 val = clk_readl(c->reg + PLL_BASE);
1380 val &= ~(PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
1381 clk_writel(val, c->reg + PLL_BASE);
1382 }
1383
1384 static void tegra30_plle_training(struct clk_tegra *c)
1385 {
1386 u32 val;
1387
1388 /* PLLE is already disabled, and setup cleared;
1389 * create falling edge on PLLE IDDQ input */
1390 val = pmc_readl(PMC_SATA_PWRGT);
1391 val |= PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
1392 pmc_writel(val, PMC_SATA_PWRGT);
1393
1394 val = pmc_readl(PMC_SATA_PWRGT);
1395 val |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
1396 pmc_writel(val, PMC_SATA_PWRGT);
1397
1398 val = pmc_readl(PMC_SATA_PWRGT);
1399 val &= ~PMC_SATA_PWRGT_PLLE_IDDQ_VALUE;
1400 pmc_writel(val, PMC_SATA_PWRGT);
1401
1402 do {
1403 val = clk_readl(c->reg + PLL_MISC(c));
1404 } while (!(val & PLLE_MISC_READY));
1405 }
1406
1407 static int tegra30_plle_configure(struct clk_hw *hw, bool force_training)
1408 {
1409 struct clk_tegra *c = to_clk_tegra(hw);
1410 struct clk *parent = __clk_get_parent(hw->clk);
1411 const struct clk_pll_freq_table *sel;
1412 u32 val;
1413
1414 unsigned long rate = c->u.pll.fixed_rate;
1415 unsigned long input_rate = __clk_get_rate(parent);
1416
1417 for (sel = c->u.pll.freq_table; sel->input_rate != 0; sel++) {
1418 if (sel->input_rate == input_rate && sel->output_rate == rate)
1419 break;
1420 }
1421
1422 if (sel->input_rate == 0)
1423 return -ENOSYS;
1424
1425 /* disable PLLE, clear setup fiels */
1426 tegra30_plle_clk_disable(hw);
1427
1428 val = clk_readl(c->reg + PLL_MISC(c));
1429 val &= ~(PLLE_MISC_LOCK_ENABLE | PLLE_MISC_SETUP_MASK);
1430 clk_writel(val, c->reg + PLL_MISC(c));
1431
1432 /* training */
1433 val = clk_readl(c->reg + PLL_MISC(c));
1434 if (force_training || (!(val & PLLE_MISC_READY)))
1435 tegra30_plle_training(c);
1436
1437 /* configure dividers, setup, disable SS */
1438 val = clk_readl(c->reg + PLL_BASE);
1439 val &= ~PLLE_BASE_DIV_MASK;
1440 val |= PLLE_BASE_DIV(sel->m, sel->n, sel->p, sel->cpcon);
1441 clk_writel(val, c->reg + PLL_BASE);
1442 c->mul = sel->n;
1443 c->div = sel->m * sel->p;
1444
1445 val = clk_readl(c->reg + PLL_MISC(c));
1446 val |= PLLE_MISC_SETUP_VALUE;
1447 val |= PLLE_MISC_LOCK_ENABLE;
1448 clk_writel(val, c->reg + PLL_MISC(c));
1449
1450 val = clk_readl(PLLE_SS_CTRL);
1451 val |= PLLE_SS_DISABLE;
1452 clk_writel(val, PLLE_SS_CTRL);
1453
1454 /* enable and lock PLLE*/
1455 val = clk_readl(c->reg + PLL_BASE);
1456 val |= (PLLE_BASE_CML_ENABLE | PLLE_BASE_ENABLE);
1457 clk_writel(val, c->reg + PLL_BASE);
1458
1459 tegra30_pll_clk_wait_for_lock(c, c->reg + PLL_MISC(c), PLLE_MISC_LOCK);
1460
1461 return 0;
1462 }
1463
1464 static int tegra30_plle_clk_enable(struct clk_hw *hw)
1465 {
1466 struct clk_tegra *c = to_clk_tegra(hw);
1467
1468 return tegra30_plle_configure(hw, !c->set);
1469 }
1470
1471 static unsigned long tegra30_plle_clk_recalc_rate(struct clk_hw *hw,
1472 unsigned long parent_rate)
1473 {
1474 struct clk_tegra *c = to_clk_tegra(hw);
1475 unsigned long rate = parent_rate;
1476 u32 val;
1477
1478 val = clk_readl(c->reg + PLL_BASE);
1479 c->mul = (val & PLLE_BASE_DIVN_MASK) >> PLLE_BASE_DIVN_SHIFT;
1480 c->div = (val & PLLE_BASE_DIVM_MASK) >> PLLE_BASE_DIVM_SHIFT;
1481 c->div *= (val & PLLE_BASE_DIVP_MASK) >> PLLE_BASE_DIVP_SHIFT;
1482
1483 if (c->mul != 0 && c->div != 0) {
1484 rate *= c->mul;
1485 rate += c->div - 1; /* round up */
1486 do_div(rate, c->div);
1487 }
1488 return rate;
1489 }
1490
1491 struct clk_ops tegra30_plle_ops = {
1492 .is_enabled = tegra30_plle_clk_is_enabled,
1493 .enable = tegra30_plle_clk_enable,
1494 .disable = tegra30_plle_clk_disable,
1495 .recalc_rate = tegra30_plle_clk_recalc_rate,
1496 };
1497
1498 /* Clock divider ops */
1499 static int tegra30_pll_div_clk_is_enabled(struct clk_hw *hw)
1500 {
1501 struct clk_tegra *c = to_clk_tegra(hw);
1502
1503 if (c->flags & DIV_U71) {
1504 u32 val = clk_readl(c->reg);
1505 val >>= c->reg_shift;
1506 c->state = (val & PLL_OUT_CLKEN) ? ON : OFF;
1507 if (!(val & PLL_OUT_RESET_DISABLE))
1508 c->state = OFF;
1509 } else {
1510 c->state = ON;
1511 }
1512 return c->state;
1513 }
1514
1515 static int tegra30_pll_div_clk_enable(struct clk_hw *hw)
1516 {
1517 struct clk_tegra *c = to_clk_tegra(hw);
1518 u32 val;
1519 u32 new_val;
1520
1521 pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
1522 if (c->flags & DIV_U71) {
1523 val = clk_readl(c->reg);
1524 new_val = val >> c->reg_shift;
1525 new_val &= 0xFFFF;
1526
1527 new_val |= PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE;
1528
1529 val &= ~(0xFFFF << c->reg_shift);
1530 val |= new_val << c->reg_shift;
1531 clk_writel_delay(val, c->reg);
1532 return 0;
1533 } else if (c->flags & DIV_2) {
1534 return 0;
1535 }
1536 return -EINVAL;
1537 }
1538
1539 static void tegra30_pll_div_clk_disable(struct clk_hw *hw)
1540 {
1541 struct clk_tegra *c = to_clk_tegra(hw);
1542 u32 val;
1543 u32 new_val;
1544
1545 pr_debug("%s: %s\n", __func__, __clk_get_name(hw->clk));
1546 if (c->flags & DIV_U71) {
1547 val = clk_readl(c->reg);
1548 new_val = val >> c->reg_shift;
1549 new_val &= 0xFFFF;
1550
1551 new_val &= ~(PLL_OUT_CLKEN | PLL_OUT_RESET_DISABLE);
1552
1553 val &= ~(0xFFFF << c->reg_shift);
1554 val |= new_val << c->reg_shift;
1555 clk_writel_delay(val, c->reg);
1556 }
1557 }
1558
1559 static int tegra30_pll_div_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1560 unsigned long parent_rate)
1561 {
1562 struct clk_tegra *c = to_clk_tegra(hw);
1563 u32 val;
1564 u32 new_val;
1565 int divider_u71;
1566
1567 if (c->flags & DIV_U71) {
1568 divider_u71 = clk_div71_get_divider(
1569 parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
1570 if (divider_u71 >= 0) {
1571 val = clk_readl(c->reg);
1572 new_val = val >> c->reg_shift;
1573 new_val &= 0xFFFF;
1574 if (c->flags & DIV_U71_FIXED)
1575 new_val |= PLL_OUT_OVERRIDE;
1576 new_val &= ~PLL_OUT_RATIO_MASK;
1577 new_val |= divider_u71 << PLL_OUT_RATIO_SHIFT;
1578
1579 val &= ~(0xFFFF << c->reg_shift);
1580 val |= new_val << c->reg_shift;
1581 clk_writel_delay(val, c->reg);
1582 c->div = divider_u71 + 2;
1583 c->mul = 2;
1584 c->fixed_rate = rate;
1585 return 0;
1586 }
1587 } else if (c->flags & DIV_2) {
1588 c->fixed_rate = rate;
1589 return 0;
1590 }
1591
1592 return -EINVAL;
1593 }
1594
1595 static unsigned long tegra30_pll_div_clk_recalc_rate(struct clk_hw *hw,
1596 unsigned long parent_rate)
1597 {
1598 struct clk_tegra *c = to_clk_tegra(hw);
1599 u64 rate = parent_rate;
1600
1601 if (c->flags & DIV_U71) {
1602 u32 divu71;
1603 u32 val = clk_readl(c->reg);
1604 val >>= c->reg_shift;
1605
1606 divu71 = (val & PLL_OUT_RATIO_MASK) >> PLL_OUT_RATIO_SHIFT;
1607 c->div = (divu71 + 2);
1608 c->mul = 2;
1609 } else if (c->flags & DIV_2) {
1610 if (c->flags & (PLLD | PLLX)) {
1611 c->div = 2;
1612 c->mul = 1;
1613 } else
1614 BUG();
1615 } else {
1616 c->div = 1;
1617 c->mul = 1;
1618 }
1619 if (c->mul != 0 && c->div != 0) {
1620 rate *= c->mul;
1621 rate += c->div - 1; /* round up */
1622 do_div(rate, c->div);
1623 }
1624
1625 return rate;
1626 }
1627
1628 static long tegra30_pll_div_clk_round_rate(struct clk_hw *hw,
1629 unsigned long rate, unsigned long *prate)
1630 {
1631 struct clk_tegra *c = to_clk_tegra(hw);
1632 unsigned long parent_rate = __clk_get_rate(__clk_get_parent(hw->clk));
1633 int divider;
1634
1635 if (prate)
1636 parent_rate = *prate;
1637
1638 if (c->flags & DIV_U71) {
1639 divider = clk_div71_get_divider(
1640 parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
1641 if (divider < 0)
1642 return divider;
1643 return DIV_ROUND_UP(parent_rate * 2, divider + 2);
1644 } else if (c->flags & DIV_2) {
1645 *prate = rate * 2;
1646 return rate;
1647 }
1648
1649 return -EINVAL;
1650 }
1651
1652 struct clk_ops tegra30_pll_div_ops = {
1653 .is_enabled = tegra30_pll_div_clk_is_enabled,
1654 .enable = tegra30_pll_div_clk_enable,
1655 .disable = tegra30_pll_div_clk_disable,
1656 .set_rate = tegra30_pll_div_clk_set_rate,
1657 .recalc_rate = tegra30_pll_div_clk_recalc_rate,
1658 .round_rate = tegra30_pll_div_clk_round_rate,
1659 };
1660
1661 /* Periph clk ops */
1662 static inline u32 periph_clk_source_mask(struct clk_tegra *c)
1663 {
1664 if (c->flags & MUX8)
1665 return 7 << 29;
1666 else if (c->flags & MUX_PWM)
1667 return 3 << 28;
1668 else if (c->flags & MUX_CLK_OUT)
1669 return 3 << (c->u.periph.clk_num + 4);
1670 else if (c->flags & PLLD)
1671 return PLLD_BASE_DSIB_MUX_MASK;
1672 else
1673 return 3 << 30;
1674 }
1675
1676 static inline u32 periph_clk_source_shift(struct clk_tegra *c)
1677 {
1678 if (c->flags & MUX8)
1679 return 29;
1680 else if (c->flags & MUX_PWM)
1681 return 28;
1682 else if (c->flags & MUX_CLK_OUT)
1683 return c->u.periph.clk_num + 4;
1684 else if (c->flags & PLLD)
1685 return PLLD_BASE_DSIB_MUX_SHIFT;
1686 else
1687 return 30;
1688 }
1689
1690 static int tegra30_periph_clk_is_enabled(struct clk_hw *hw)
1691 {
1692 struct clk_tegra *c = to_clk_tegra(hw);
1693
1694 c->state = ON;
1695 if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
1696 c->state = OFF;
1697 if (!(c->flags & PERIPH_NO_RESET))
1698 if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) & PERIPH_CLK_TO_BIT(c))
1699 c->state = OFF;
1700 return c->state;
1701 }
1702
1703 static int tegra30_periph_clk_enable(struct clk_hw *hw)
1704 {
1705 struct clk_tegra *c = to_clk_tegra(hw);
1706
1707 tegra_periph_clk_enable_refcount[c->u.periph.clk_num]++;
1708 if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 1)
1709 return 0;
1710
1711 clk_writel_delay(PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_SET_REG(c));
1712 if (!(c->flags & PERIPH_NO_RESET) &&
1713 !(c->flags & PERIPH_MANUAL_RESET)) {
1714 if (clk_readl(PERIPH_CLK_TO_RST_REG(c)) &
1715 PERIPH_CLK_TO_BIT(c)) {
1716 udelay(5); /* reset propagation delay */
1717 clk_writel(PERIPH_CLK_TO_BIT(c),
1718 PERIPH_CLK_TO_RST_CLR_REG(c));
1719 }
1720 }
1721 return 0;
1722 }
1723
1724 static void tegra30_periph_clk_disable(struct clk_hw *hw)
1725 {
1726 struct clk_tegra *c = to_clk_tegra(hw);
1727 unsigned long val;
1728
1729 tegra_periph_clk_enable_refcount[c->u.periph.clk_num]--;
1730
1731 if (tegra_periph_clk_enable_refcount[c->u.periph.clk_num] > 0)
1732 return;
1733
1734 /* If peripheral is in the APB bus then read the APB bus to
1735 * flush the write operation in apb bus. This will avoid the
1736 * peripheral access after disabling clock*/
1737 if (c->flags & PERIPH_ON_APB)
1738 val = chipid_readl();
1739
1740 clk_writel_delay(PERIPH_CLK_TO_BIT(c), PERIPH_CLK_TO_ENB_CLR_REG(c));
1741 }
1742
1743 void tegra30_periph_clk_reset(struct clk_hw *hw, bool assert)
1744 {
1745 struct clk_tegra *c = to_clk_tegra(hw);
1746 unsigned long val;
1747
1748 if (!(c->flags & PERIPH_NO_RESET)) {
1749 if (assert) {
1750 /* If peripheral is in the APB bus then read the APB
1751 * bus to flush the write operation in apb bus. This
1752 * will avoid the peripheral access after disabling
1753 * clock */
1754 if (c->flags & PERIPH_ON_APB)
1755 val = chipid_readl();
1756
1757 clk_writel(PERIPH_CLK_TO_BIT(c),
1758 PERIPH_CLK_TO_RST_SET_REG(c));
1759 } else
1760 clk_writel(PERIPH_CLK_TO_BIT(c),
1761 PERIPH_CLK_TO_RST_CLR_REG(c));
1762 }
1763 }
1764
1765 static int tegra30_periph_clk_set_parent(struct clk_hw *hw, u8 index)
1766 {
1767 struct clk_tegra *c = to_clk_tegra(hw);
1768 u32 val;
1769
1770 if (!(c->flags & MUX))
1771 return (index == 0) ? 0 : (-EINVAL);
1772
1773 val = clk_readl(c->reg);
1774 val &= ~periph_clk_source_mask(c);
1775 val |= (index << periph_clk_source_shift(c));
1776 clk_writel_delay(val, c->reg);
1777 return 0;
1778 }
1779
1780 static u8 tegra30_periph_clk_get_parent(struct clk_hw *hw)
1781 {
1782 struct clk_tegra *c = to_clk_tegra(hw);
1783 u32 val = clk_readl(c->reg);
1784 int source = (val & periph_clk_source_mask(c)) >>
1785 periph_clk_source_shift(c);
1786
1787 if (!(c->flags & MUX))
1788 return 0;
1789
1790 return source;
1791 }
1792
1793 static int tegra30_periph_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1794 unsigned long parent_rate)
1795 {
1796 struct clk_tegra *c = to_clk_tegra(hw);
1797 u32 val;
1798 int divider;
1799
1800 if (c->flags & DIV_U71) {
1801 divider = clk_div71_get_divider(
1802 parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
1803 if (divider >= 0) {
1804 val = clk_readl(c->reg);
1805 val &= ~PERIPH_CLK_SOURCE_DIVU71_MASK;
1806 val |= divider;
1807 if (c->flags & DIV_U71_UART) {
1808 if (divider)
1809 val |= PERIPH_CLK_UART_DIV_ENB;
1810 else
1811 val &= ~PERIPH_CLK_UART_DIV_ENB;
1812 }
1813 clk_writel_delay(val, c->reg);
1814 c->div = divider + 2;
1815 c->mul = 2;
1816 return 0;
1817 }
1818 } else if (c->flags & DIV_U16) {
1819 divider = clk_div16_get_divider(parent_rate, rate);
1820 if (divider >= 0) {
1821 val = clk_readl(c->reg);
1822 val &= ~PERIPH_CLK_SOURCE_DIVU16_MASK;
1823 val |= divider;
1824 clk_writel_delay(val, c->reg);
1825 c->div = divider + 1;
1826 c->mul = 1;
1827 return 0;
1828 }
1829 } else if (parent_rate <= rate) {
1830 c->div = 1;
1831 c->mul = 1;
1832 return 0;
1833 }
1834 return -EINVAL;
1835 }
1836
1837 static long tegra30_periph_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1838 unsigned long *prate)
1839 {
1840 struct clk_tegra *c = to_clk_tegra(hw);
1841 unsigned long parent_rate = __clk_get_rate(__clk_get_parent(hw->clk));
1842 int divider;
1843
1844 if (prate)
1845 parent_rate = *prate;
1846
1847 if (c->flags & DIV_U71) {
1848 divider = clk_div71_get_divider(
1849 parent_rate, rate, c->flags, ROUND_DIVIDER_UP);
1850 if (divider < 0)
1851 return divider;
1852
1853 return DIV_ROUND_UP(parent_rate * 2, divider + 2);
1854 } else if (c->flags & DIV_U16) {
1855 divider = clk_div16_get_divider(parent_rate, rate);
1856 if (divider < 0)
1857 return divider;
1858 return DIV_ROUND_UP(parent_rate, divider + 1);
1859 }
1860 return -EINVAL;
1861 }
1862
1863 static unsigned long tegra30_periph_clk_recalc_rate(struct clk_hw *hw,
1864 unsigned long parent_rate)
1865 {
1866 struct clk_tegra *c = to_clk_tegra(hw);
1867 u64 rate = parent_rate;
1868 u32 val = clk_readl(c->reg);
1869
1870 if (c->flags & DIV_U71) {
1871 u32 divu71 = val & PERIPH_CLK_SOURCE_DIVU71_MASK;
1872 if ((c->flags & DIV_U71_UART) &&
1873 (!(val & PERIPH_CLK_UART_DIV_ENB))) {
1874 divu71 = 0;
1875 }
1876 if (c->flags & DIV_U71_IDLE) {
1877 val &= ~(PERIPH_CLK_SOURCE_DIVU71_MASK <<
1878 PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
1879 val |= (PERIPH_CLK_SOURCE_DIVIDLE_VAL <<
1880 PERIPH_CLK_SOURCE_DIVIDLE_SHIFT);
1881 clk_writel(val, c->reg);
1882 }
1883 c->div = divu71 + 2;
1884 c->mul = 2;
1885 } else if (c->flags & DIV_U16) {
1886 u32 divu16 = val & PERIPH_CLK_SOURCE_DIVU16_MASK;
1887 c->div = divu16 + 1;
1888 c->mul = 1;
1889 } else {
1890 c->div = 1;
1891 c->mul = 1;
1892 }
1893
1894 if (c->mul != 0 && c->div != 0) {
1895 rate *= c->mul;
1896 rate += c->div - 1; /* round up */
1897 do_div(rate, c->div);
1898 }
1899 return rate;
1900 }
1901
1902 struct clk_ops tegra30_periph_clk_ops = {
1903 .is_enabled = tegra30_periph_clk_is_enabled,
1904 .enable = tegra30_periph_clk_enable,
1905 .disable = tegra30_periph_clk_disable,
1906 .set_parent = tegra30_periph_clk_set_parent,
1907 .get_parent = tegra30_periph_clk_get_parent,
1908 .set_rate = tegra30_periph_clk_set_rate,
1909 .round_rate = tegra30_periph_clk_round_rate,
1910 .recalc_rate = tegra30_periph_clk_recalc_rate,
1911 };
1912
1913 static int tegra30_dsib_clk_set_parent(struct clk_hw *hw, u8 index)
1914 {
1915 struct clk *d = clk_get_sys(NULL, "pll_d");
1916 /* The DSIB parent selection bit is in PLLD base
1917 register - can not do direct r-m-w, must be
1918 protected by PLLD lock */
1919 tegra_clk_cfg_ex(
1920 d, TEGRA_CLK_PLLD_MIPI_MUX_SEL, index);
1921
1922 return 0;
1923 }
1924
1925 struct clk_ops tegra30_dsib_clk_ops = {
1926 .is_enabled = tegra30_periph_clk_is_enabled,
1927 .enable = &tegra30_periph_clk_enable,
1928 .disable = &tegra30_periph_clk_disable,
1929 .set_parent = &tegra30_dsib_clk_set_parent,
1930 .get_parent = &tegra30_periph_clk_get_parent,
1931 .set_rate = &tegra30_periph_clk_set_rate,
1932 .round_rate = &tegra30_periph_clk_round_rate,
1933 .recalc_rate = &tegra30_periph_clk_recalc_rate,
1934 };
1935
1936 /* Periph extended clock configuration ops */
1937 int tegra30_vi_clk_cfg_ex(struct clk_hw *hw,
1938 enum tegra_clk_ex_param p, u32 setting)
1939 {
1940 struct clk_tegra *c = to_clk_tegra(hw);
1941
1942 if (p == TEGRA_CLK_VI_INP_SEL) {
1943 u32 val = clk_readl(c->reg);
1944 val &= ~PERIPH_CLK_VI_SEL_EX_MASK;
1945 val |= (setting << PERIPH_CLK_VI_SEL_EX_SHIFT) &
1946 PERIPH_CLK_VI_SEL_EX_MASK;
1947 clk_writel(val, c->reg);
1948 return 0;
1949 }
1950 return -EINVAL;
1951 }
1952
1953 int tegra30_nand_clk_cfg_ex(struct clk_hw *hw,
1954 enum tegra_clk_ex_param p, u32 setting)
1955 {
1956 struct clk_tegra *c = to_clk_tegra(hw);
1957
1958 if (p == TEGRA_CLK_NAND_PAD_DIV2_ENB) {
1959 u32 val = clk_readl(c->reg);
1960 if (setting)
1961 val |= PERIPH_CLK_NAND_DIV_EX_ENB;
1962 else
1963 val &= ~PERIPH_CLK_NAND_DIV_EX_ENB;
1964 clk_writel(val, c->reg);
1965 return 0;
1966 }
1967 return -EINVAL;
1968 }
1969
1970 int tegra30_dtv_clk_cfg_ex(struct clk_hw *hw,
1971 enum tegra_clk_ex_param p, u32 setting)
1972 {
1973 struct clk_tegra *c = to_clk_tegra(hw);
1974
1975 if (p == TEGRA_CLK_DTV_INVERT) {
1976 u32 val = clk_readl(c->reg);
1977 if (setting)
1978 val |= PERIPH_CLK_DTV_POLARITY_INV;
1979 else
1980 val &= ~PERIPH_CLK_DTV_POLARITY_INV;
1981 clk_writel(val, c->reg);
1982 return 0;
1983 }
1984 return -EINVAL;
1985 }
1986
1987 /* Output clock ops */
1988
1989 static DEFINE_SPINLOCK(clk_out_lock);
1990
1991 static int tegra30_clk_out_is_enabled(struct clk_hw *hw)
1992 {
1993 struct clk_tegra *c = to_clk_tegra(hw);
1994 u32 val = pmc_readl(c->reg);
1995
1996 c->state = (val & (0x1 << c->u.periph.clk_num)) ? ON : OFF;
1997 c->mul = 1;
1998 c->div = 1;
1999 return c->state;
2000 }
2001
2002 static int tegra30_clk_out_enable(struct clk_hw *hw)
2003 {
2004 struct clk_tegra *c = to_clk_tegra(hw);
2005 u32 val;
2006 unsigned long flags;
2007
2008 spin_lock_irqsave(&clk_out_lock, flags);
2009 val = pmc_readl(c->reg);
2010 val |= (0x1 << c->u.periph.clk_num);
2011 pmc_writel(val, c->reg);
2012 spin_unlock_irqrestore(&clk_out_lock, flags);
2013
2014 return 0;
2015 }
2016
2017 static void tegra30_clk_out_disable(struct clk_hw *hw)
2018 {
2019 struct clk_tegra *c = to_clk_tegra(hw);
2020 u32 val;
2021 unsigned long flags;
2022
2023 spin_lock_irqsave(&clk_out_lock, flags);
2024 val = pmc_readl(c->reg);
2025 val &= ~(0x1 << c->u.periph.clk_num);
2026 pmc_writel(val, c->reg);
2027 spin_unlock_irqrestore(&clk_out_lock, flags);
2028 }
2029
2030 static int tegra30_clk_out_set_parent(struct clk_hw *hw, u8 index)
2031 {
2032 struct clk_tegra *c = to_clk_tegra(hw);
2033 u32 val;
2034 unsigned long flags;
2035
2036 spin_lock_irqsave(&clk_out_lock, flags);
2037 val = pmc_readl(c->reg);
2038 val &= ~periph_clk_source_mask(c);
2039 val |= (index << periph_clk_source_shift(c));
2040 pmc_writel(val, c->reg);
2041 spin_unlock_irqrestore(&clk_out_lock, flags);
2042
2043 return 0;
2044 }
2045
2046 static u8 tegra30_clk_out_get_parent(struct clk_hw *hw)
2047 {
2048 struct clk_tegra *c = to_clk_tegra(hw);
2049 u32 val = pmc_readl(c->reg);
2050 int source;
2051
2052 source = (val & periph_clk_source_mask(c)) >>
2053 periph_clk_source_shift(c);
2054 return source;
2055 }
2056
2057 struct clk_ops tegra_clk_out_ops = {
2058 .is_enabled = tegra30_clk_out_is_enabled,
2059 .enable = tegra30_clk_out_enable,
2060 .disable = tegra30_clk_out_disable,
2061 .set_parent = tegra30_clk_out_set_parent,
2062 .get_parent = tegra30_clk_out_get_parent,
2063 .recalc_rate = tegra30_clk_fixed_recalc_rate,
2064 };
2065
2066 /* Clock doubler ops */
2067 static int tegra30_clk_double_is_enabled(struct clk_hw *hw)
2068 {
2069 struct clk_tegra *c = to_clk_tegra(hw);
2070
2071 c->state = ON;
2072 if (!(clk_readl(PERIPH_CLK_TO_ENB_REG(c)) & PERIPH_CLK_TO_BIT(c)))
2073 c->state = OFF;
2074 return c->state;
2075 };
2076
2077 static int tegra30_clk_double_set_rate(struct clk_hw *hw, unsigned long rate,
2078 unsigned long parent_rate)
2079 {
2080 struct clk_tegra *c = to_clk_tegra(hw);
2081 u32 val;
2082
2083 if (rate == parent_rate) {
2084 val = clk_readl(c->reg) | (0x1 << c->reg_shift);
2085 clk_writel(val, c->reg);
2086 c->mul = 1;
2087 c->div = 1;
2088 return 0;
2089 } else if (rate == 2 * parent_rate) {
2090 val = clk_readl(c->reg) & (~(0x1 << c->reg_shift));
2091 clk_writel(val, c->reg);
2092 c->mul = 2;
2093 c->div = 1;
2094 return 0;
2095 }
2096 return -EINVAL;
2097 }
2098
2099 static unsigned long tegra30_clk_double_recalc_rate(struct clk_hw *hw,
2100 unsigned long parent_rate)
2101 {
2102 struct clk_tegra *c = to_clk_tegra(hw);
2103 u64 rate = parent_rate;
2104
2105 u32 val = clk_readl(c->reg);
2106 c->mul = val & (0x1 << c->reg_shift) ? 1 : 2;
2107 c->div = 1;
2108
2109 if (c->mul != 0 && c->div != 0) {
2110 rate *= c->mul;
2111 rate += c->div - 1; /* round up */
2112 do_div(rate, c->div);
2113 }
2114
2115 return rate;
2116 }
2117
2118 static long tegra30_clk_double_round_rate(struct clk_hw *hw, unsigned long rate,
2119 unsigned long *prate)
2120 {
2121 unsigned long output_rate = *prate;
2122
2123 do_div(output_rate, 2);
2124 return output_rate;
2125 }
2126
2127 struct clk_ops tegra30_clk_double_ops = {
2128 .is_enabled = tegra30_clk_double_is_enabled,
2129 .enable = tegra30_periph_clk_enable,
2130 .disable = tegra30_periph_clk_disable,
2131 .recalc_rate = tegra30_clk_double_recalc_rate,
2132 .round_rate = tegra30_clk_double_round_rate,
2133 .set_rate = tegra30_clk_double_set_rate,
2134 };
2135
2136 /* Audio sync clock ops */
2137 struct clk_ops tegra_sync_source_ops = {
2138 .recalc_rate = tegra30_clk_fixed_recalc_rate,
2139 };
2140
2141 static int tegra30_audio_sync_clk_is_enabled(struct clk_hw *hw)
2142 {
2143 struct clk_tegra *c = to_clk_tegra(hw);
2144 u32 val = clk_readl(c->reg);
2145 c->state = (val & AUDIO_SYNC_DISABLE_BIT) ? OFF : ON;
2146 return c->state;
2147 }
2148
2149 static int tegra30_audio_sync_clk_enable(struct clk_hw *hw)
2150 {
2151 struct clk_tegra *c = to_clk_tegra(hw);
2152 u32 val = clk_readl(c->reg);
2153 clk_writel((val & (~AUDIO_SYNC_DISABLE_BIT)), c->reg);
2154 return 0;
2155 }
2156
2157 static void tegra30_audio_sync_clk_disable(struct clk_hw *hw)
2158 {
2159 struct clk_tegra *c = to_clk_tegra(hw);
2160 u32 val = clk_readl(c->reg);
2161 clk_writel((val | AUDIO_SYNC_DISABLE_BIT), c->reg);
2162 }
2163
2164 static int tegra30_audio_sync_clk_set_parent(struct clk_hw *hw, u8 index)
2165 {
2166 struct clk_tegra *c = to_clk_tegra(hw);
2167 u32 val;
2168
2169 val = clk_readl(c->reg);
2170 val &= ~AUDIO_SYNC_SOURCE_MASK;
2171 val |= index;
2172
2173 clk_writel(val, c->reg);
2174 return 0;
2175 }
2176
2177 static u8 tegra30_audio_sync_clk_get_parent(struct clk_hw *hw)
2178 {
2179 struct clk_tegra *c = to_clk_tegra(hw);
2180 u32 val = clk_readl(c->reg);
2181 int source;
2182
2183 source = val & AUDIO_SYNC_SOURCE_MASK;
2184 return source;
2185 }
2186
2187 struct clk_ops tegra30_audio_sync_clk_ops = {
2188 .is_enabled = tegra30_audio_sync_clk_is_enabled,
2189 .enable = tegra30_audio_sync_clk_enable,
2190 .disable = tegra30_audio_sync_clk_disable,
2191 .set_parent = tegra30_audio_sync_clk_set_parent,
2192 .get_parent = tegra30_audio_sync_clk_get_parent,
2193 .recalc_rate = tegra30_clk_fixed_recalc_rate,
2194 };
2195
2196 /* cml0 (pcie), and cml1 (sata) clock ops */
2197 static int tegra30_cml_clk_is_enabled(struct clk_hw *hw)
2198 {
2199 struct clk_tegra *c = to_clk_tegra(hw);
2200 u32 val = clk_readl(c->reg);
2201 c->state = val & (0x1 << c->u.periph.clk_num) ? ON : OFF;
2202 return c->state;
2203 }
2204
2205 static int tegra30_cml_clk_enable(struct clk_hw *hw)
2206 {
2207 struct clk_tegra *c = to_clk_tegra(hw);
2208
2209 u32 val = clk_readl(c->reg);
2210 val |= (0x1 << c->u.periph.clk_num);
2211 clk_writel(val, c->reg);
2212
2213 return 0;
2214 }
2215
2216 static void tegra30_cml_clk_disable(struct clk_hw *hw)
2217 {
2218 struct clk_tegra *c = to_clk_tegra(hw);
2219
2220 u32 val = clk_readl(c->reg);
2221 val &= ~(0x1 << c->u.periph.clk_num);
2222 clk_writel(val, c->reg);
2223 }
2224
2225 struct clk_ops tegra_cml_clk_ops = {
2226 .is_enabled = tegra30_cml_clk_is_enabled,
2227 .enable = tegra30_cml_clk_enable,
2228 .disable = tegra30_cml_clk_disable,
2229 .recalc_rate = tegra30_clk_fixed_recalc_rate,
2230 };
2231
2232 struct clk_ops tegra_pciex_clk_ops = {
2233 .recalc_rate = tegra30_clk_fixed_recalc_rate,
2234 };
2235
2236 /* Tegra30 CPU clock and reset control functions */
2237 static void tegra30_wait_cpu_in_reset(u32 cpu)
2238 {
2239 unsigned int reg;
2240
2241 do {
2242 reg = readl(reg_clk_base +
2243 TEGRA30_CLK_RST_CONTROLLER_CPU_CMPLX_STATUS);
2244 cpu_relax();
2245 } while (!(reg & (1 << cpu))); /* check CPU been reset or not */
2246
2247 return;
2248 }
2249
2250 static void tegra30_put_cpu_in_reset(u32 cpu)
2251 {
2252 writel(CPU_RESET(cpu),
2253 reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_SET);
2254 dmb();
2255 }
2256
2257 static void tegra30_cpu_out_of_reset(u32 cpu)
2258 {
2259 writel(CPU_RESET(cpu),
2260 reg_clk_base + TEGRA_CLK_RST_CONTROLLER_RST_CPU_CMPLX_CLR);
2261 wmb();
2262 }
2263
2264 static void tegra30_enable_cpu_clock(u32 cpu)
2265 {
2266 unsigned int reg;
2267
2268 writel(CPU_CLOCK(cpu),
2269 reg_clk_base + TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR);
2270 reg = readl(reg_clk_base +
2271 TEGRA30_CLK_RST_CONTROLLER_CLK_CPU_CMPLX_CLR);
2272 }
2273
2274 static void tegra30_disable_cpu_clock(u32 cpu)
2275 {
2276
2277 unsigned int reg;
2278
2279 reg = readl(reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
2280 writel(reg | CPU_CLOCK(cpu),
2281 reg_clk_base + TEGRA_CLK_RST_CONTROLLER_CLK_CPU_CMPLX);
2282 }
2283
2284 static struct tegra_cpu_car_ops tegra30_cpu_car_ops = {
2285 .wait_for_reset = tegra30_wait_cpu_in_reset,
2286 .put_in_reset = tegra30_put_cpu_in_reset,
2287 .out_of_reset = tegra30_cpu_out_of_reset,
2288 .enable_clock = tegra30_enable_cpu_clock,
2289 .disable_clock = tegra30_disable_cpu_clock,
2290 };
2291
2292 void __init tegra30_cpu_car_ops_init(void)
2293 {
2294 tegra_cpu_car_ops = &tegra30_cpu_car_ops;
2295 }