]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/mach-versatile/core.c
Linux-2.6.12-rc2
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mach-versatile / core.c
1 /*
2 * linux/arch/arm/mach-versatile/core.c
3 *
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #include <linux/config.h>
22 #include <linux/init.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
27
28 #include <asm/system.h>
29 #include <asm/hardware.h>
30 #include <asm/io.h>
31 #include <asm/irq.h>
32 #include <asm/leds.h>
33 #include <asm/mach-types.h>
34 #include <asm/hardware/amba.h>
35 #include <asm/hardware/amba_clcd.h>
36 #include <asm/hardware/icst307.h>
37
38 #include <asm/mach/arch.h>
39 #include <asm/mach/flash.h>
40 #include <asm/mach/irq.h>
41 #include <asm/mach/time.h>
42 #include <asm/mach/map.h>
43 #include <asm/mach/mmc.h>
44
45 #include "core.h"
46 #include "clock.h"
47
48 /*
49 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
50 * is the (PA >> 12).
51 *
52 * Setup a VA for the Versatile Vectored Interrupt Controller.
53 */
54 #define VA_VIC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
55 #define VA_SIC_BASE IO_ADDRESS(VERSATILE_SIC_BASE)
56
57 static void vic_mask_irq(unsigned int irq)
58 {
59 irq -= IRQ_VIC_START;
60 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
61 }
62
63 static void vic_unmask_irq(unsigned int irq)
64 {
65 irq -= IRQ_VIC_START;
66 writel(1 << irq, VA_VIC_BASE + VIC_IRQ_ENABLE);
67 }
68
69 static struct irqchip vic_chip = {
70 .ack = vic_mask_irq,
71 .mask = vic_mask_irq,
72 .unmask = vic_unmask_irq,
73 };
74
75 static void sic_mask_irq(unsigned int irq)
76 {
77 irq -= IRQ_SIC_START;
78 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
79 }
80
81 static void sic_unmask_irq(unsigned int irq)
82 {
83 irq -= IRQ_SIC_START;
84 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
85 }
86
87 static struct irqchip sic_chip = {
88 .ack = sic_mask_irq,
89 .mask = sic_mask_irq,
90 .unmask = sic_unmask_irq,
91 };
92
93 static void
94 sic_handle_irq(unsigned int irq, struct irqdesc *desc, struct pt_regs *regs)
95 {
96 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
97
98 if (status == 0) {
99 do_bad_IRQ(irq, desc, regs);
100 return;
101 }
102
103 do {
104 irq = ffs(status) - 1;
105 status &= ~(1 << irq);
106
107 irq += IRQ_SIC_START;
108
109 desc = irq_desc + irq;
110 desc->handle(irq, desc, regs);
111 } while (status);
112 }
113
114 #if 1
115 #define IRQ_MMCI0A IRQ_VICSOURCE22
116 #define IRQ_AACI IRQ_VICSOURCE24
117 #define IRQ_ETH IRQ_VICSOURCE25
118 #define PIC_MASK 0xFFD00000
119 #else
120 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
121 #define IRQ_AACI IRQ_SIC_AACI
122 #define IRQ_ETH IRQ_SIC_ETH
123 #define PIC_MASK 0
124 #endif
125
126 void __init versatile_init_irq(void)
127 {
128 unsigned int i, value;
129
130 /* Disable all interrupts initially. */
131
132 writel(0, VA_VIC_BASE + VIC_INT_SELECT);
133 writel(0, VA_VIC_BASE + VIC_IRQ_ENABLE);
134 writel(~0, VA_VIC_BASE + VIC_IRQ_ENABLE_CLEAR);
135 writel(0, VA_VIC_BASE + VIC_IRQ_STATUS);
136 writel(0, VA_VIC_BASE + VIC_ITCR);
137 writel(~0, VA_VIC_BASE + VIC_IRQ_SOFT_CLEAR);
138
139 /*
140 * Make sure we clear all existing interrupts
141 */
142 writel(0, VA_VIC_BASE + VIC_VECT_ADDR);
143 for (i = 0; i < 19; i++) {
144 value = readl(VA_VIC_BASE + VIC_VECT_ADDR);
145 writel(value, VA_VIC_BASE + VIC_VECT_ADDR);
146 }
147
148 for (i = 0; i < 16; i++) {
149 value = readl(VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
150 writel(value | VICVectCntl_Enable | i, VA_VIC_BASE + VIC_VECT_CNTL0 + (i * 4));
151 }
152
153 writel(32, VA_VIC_BASE + VIC_DEF_VECT_ADDR);
154
155 for (i = IRQ_VIC_START; i <= IRQ_VIC_END; i++) {
156 if (i != IRQ_VICSOURCE31) {
157 set_irq_chip(i, &vic_chip);
158 set_irq_handler(i, do_level_IRQ);
159 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
160 }
161 }
162
163 set_irq_handler(IRQ_VICSOURCE31, sic_handle_irq);
164 vic_unmask_irq(IRQ_VICSOURCE31);
165
166 /* Do second interrupt controller */
167 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
168
169 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
170 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
171 set_irq_chip(i, &sic_chip);
172 set_irq_handler(i, do_level_IRQ);
173 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
174 }
175 }
176
177 /*
178 * Interrupts on secondary controller from 0 to 8 are routed to
179 * source 31 on PIC.
180 * Interrupts from 21 to 31 are routed directly to the VIC on
181 * the corresponding number on primary controller. This is controlled
182 * by setting PIC_ENABLEx.
183 */
184 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
185 }
186
187 static struct map_desc versatile_io_desc[] __initdata = {
188 { IO_ADDRESS(VERSATILE_SYS_BASE), VERSATILE_SYS_BASE, SZ_4K, MT_DEVICE },
189 { IO_ADDRESS(VERSATILE_SIC_BASE), VERSATILE_SIC_BASE, SZ_4K, MT_DEVICE },
190 { IO_ADDRESS(VERSATILE_VIC_BASE), VERSATILE_VIC_BASE, SZ_4K, MT_DEVICE },
191 { IO_ADDRESS(VERSATILE_SCTL_BASE), VERSATILE_SCTL_BASE, SZ_4K * 9, MT_DEVICE },
192 #ifdef CONFIG_MACH_VERSATILE_AB
193 { IO_ADDRESS(VERSATILE_GPIO0_BASE), VERSATILE_GPIO0_BASE, SZ_4K, MT_DEVICE },
194 { IO_ADDRESS(VERSATILE_IB2_BASE), VERSATILE_IB2_BASE, SZ_64M, MT_DEVICE },
195 #endif
196 #ifdef CONFIG_DEBUG_LL
197 { IO_ADDRESS(VERSATILE_UART0_BASE), VERSATILE_UART0_BASE, SZ_4K, MT_DEVICE },
198 #endif
199 #ifdef FIXME
200 { PCI_MEMORY_VADDR, PHYS_PCI_MEM_BASE, SZ_16M, MT_DEVICE },
201 { PCI_CONFIG_VADDR, PHYS_PCI_CONFIG_BASE, SZ_16M, MT_DEVICE },
202 { PCI_V3_VADDR, PHYS_PCI_V3_BASE, SZ_512K, MT_DEVICE },
203 { PCI_IO_VADDR, PHYS_PCI_IO_BASE, SZ_64K, MT_DEVICE },
204 #endif
205 };
206
207 void __init versatile_map_io(void)
208 {
209 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
210 }
211
212 #define VERSATILE_REFCOUNTER (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
213
214 /*
215 * This is the Versatile sched_clock implementation. This has
216 * a resolution of 41.7ns, and a maximum value of about 179s.
217 */
218 unsigned long long sched_clock(void)
219 {
220 unsigned long long v;
221
222 v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
223 do_div(v, 3);
224
225 return v;
226 }
227
228
229 #define VERSATILE_FLASHCTRL (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
230
231 static int versatile_flash_init(void)
232 {
233 u32 val;
234
235 val = __raw_readl(VERSATILE_FLASHCTRL);
236 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
237 __raw_writel(val, VERSATILE_FLASHCTRL);
238
239 return 0;
240 }
241
242 static void versatile_flash_exit(void)
243 {
244 u32 val;
245
246 val = __raw_readl(VERSATILE_FLASHCTRL);
247 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
248 __raw_writel(val, VERSATILE_FLASHCTRL);
249 }
250
251 static void versatile_flash_set_vpp(int on)
252 {
253 u32 val;
254
255 val = __raw_readl(VERSATILE_FLASHCTRL);
256 if (on)
257 val |= VERSATILE_FLASHPROG_FLVPPEN;
258 else
259 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
260 __raw_writel(val, VERSATILE_FLASHCTRL);
261 }
262
263 static struct flash_platform_data versatile_flash_data = {
264 .map_name = "cfi_probe",
265 .width = 4,
266 .init = versatile_flash_init,
267 .exit = versatile_flash_exit,
268 .set_vpp = versatile_flash_set_vpp,
269 };
270
271 static struct resource versatile_flash_resource = {
272 .start = VERSATILE_FLASH_BASE,
273 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE,
274 .flags = IORESOURCE_MEM,
275 };
276
277 static struct platform_device versatile_flash_device = {
278 .name = "armflash",
279 .id = 0,
280 .dev = {
281 .platform_data = &versatile_flash_data,
282 },
283 .num_resources = 1,
284 .resource = &versatile_flash_resource,
285 };
286
287 static struct resource smc91x_resources[] = {
288 [0] = {
289 .start = VERSATILE_ETH_BASE,
290 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
291 .flags = IORESOURCE_MEM,
292 },
293 [1] = {
294 .start = IRQ_ETH,
295 .end = IRQ_ETH,
296 .flags = IORESOURCE_IRQ,
297 },
298 };
299
300 static struct platform_device smc91x_device = {
301 .name = "smc91x",
302 .id = 0,
303 .num_resources = ARRAY_SIZE(smc91x_resources),
304 .resource = smc91x_resources,
305 };
306
307 #define VERSATILE_SYSMCI (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
308
309 unsigned int mmc_status(struct device *dev)
310 {
311 struct amba_device *adev = container_of(dev, struct amba_device, dev);
312 u32 mask;
313
314 if (adev->res.start == VERSATILE_MMCI0_BASE)
315 mask = 1;
316 else
317 mask = 2;
318
319 return readl(VERSATILE_SYSMCI) & mask;
320 }
321
322 static struct mmc_platform_data mmc0_plat_data = {
323 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
324 .status = mmc_status,
325 };
326
327 /*
328 * Clock handling
329 */
330 static const struct icst307_params versatile_oscvco_params = {
331 .ref = 24000,
332 .vco_max = 200000,
333 .vd_min = 4 + 8,
334 .vd_max = 511 + 8,
335 .rd_min = 1 + 2,
336 .rd_max = 127 + 2,
337 };
338
339 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
340 {
341 unsigned long sys_lock = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
342 #if defined(CONFIG_ARCH_VERSATILE_PB)
343 unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC4_OFFSET;
344 #elif defined(CONFIG_MACH_VERSATILE_AB)
345 unsigned long sys_osc = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSC1_OFFSET;
346 #endif
347 u32 val;
348
349 val = readl(sys_osc) & ~0x7ffff;
350 val |= vco.v | (vco.r << 9) | (vco.s << 16);
351
352 writel(0xa05f, sys_lock);
353 writel(val, sys_osc);
354 writel(0, sys_lock);
355 }
356
357 static struct clk versatile_clcd_clk = {
358 .name = "CLCDCLK",
359 .params = &versatile_oscvco_params,
360 .setvco = versatile_oscvco_set,
361 };
362
363 /*
364 * CLCD support.
365 */
366 #define SYS_CLCD_MODE_MASK (3 << 0)
367 #define SYS_CLCD_MODE_888 (0 << 0)
368 #define SYS_CLCD_MODE_5551 (1 << 0)
369 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
370 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
371 #define SYS_CLCD_NLCDIOON (1 << 2)
372 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
373 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
374 #define SYS_CLCD_ID_MASK (0x1f << 8)
375 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
376 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
377 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
378 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
379 #define SYS_CLCD_ID_VGA (0x1f << 8)
380
381 static struct clcd_panel vga = {
382 .mode = {
383 .name = "VGA",
384 .refresh = 60,
385 .xres = 640,
386 .yres = 480,
387 .pixclock = 39721,
388 .left_margin = 40,
389 .right_margin = 24,
390 .upper_margin = 32,
391 .lower_margin = 11,
392 .hsync_len = 96,
393 .vsync_len = 2,
394 .sync = 0,
395 .vmode = FB_VMODE_NONINTERLACED,
396 },
397 .width = -1,
398 .height = -1,
399 .tim2 = TIM2_BCD | TIM2_IPC,
400 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
401 .bpp = 16,
402 };
403
404 static struct clcd_panel sanyo_3_8_in = {
405 .mode = {
406 .name = "Sanyo QVGA",
407 .refresh = 116,
408 .xres = 320,
409 .yres = 240,
410 .pixclock = 100000,
411 .left_margin = 6,
412 .right_margin = 6,
413 .upper_margin = 5,
414 .lower_margin = 5,
415 .hsync_len = 6,
416 .vsync_len = 6,
417 .sync = 0,
418 .vmode = FB_VMODE_NONINTERLACED,
419 },
420 .width = -1,
421 .height = -1,
422 .tim2 = TIM2_BCD,
423 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
424 .bpp = 16,
425 };
426
427 static struct clcd_panel sanyo_2_5_in = {
428 .mode = {
429 .name = "Sanyo QVGA Portrait",
430 .refresh = 116,
431 .xres = 240,
432 .yres = 320,
433 .pixclock = 100000,
434 .left_margin = 20,
435 .right_margin = 10,
436 .upper_margin = 2,
437 .lower_margin = 2,
438 .hsync_len = 10,
439 .vsync_len = 2,
440 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
441 .vmode = FB_VMODE_NONINTERLACED,
442 },
443 .width = -1,
444 .height = -1,
445 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
446 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
447 .bpp = 16,
448 };
449
450 static struct clcd_panel epson_2_2_in = {
451 .mode = {
452 .name = "Epson QCIF",
453 .refresh = 390,
454 .xres = 176,
455 .yres = 220,
456 .pixclock = 62500,
457 .left_margin = 3,
458 .right_margin = 2,
459 .upper_margin = 1,
460 .lower_margin = 0,
461 .hsync_len = 3,
462 .vsync_len = 2,
463 .sync = 0,
464 .vmode = FB_VMODE_NONINTERLACED,
465 },
466 .width = -1,
467 .height = -1,
468 .tim2 = TIM2_BCD | TIM2_IPC,
469 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
470 .bpp = 16,
471 };
472
473 /*
474 * Detect which LCD panel is connected, and return the appropriate
475 * clcd_panel structure. Note: we do not have any information on
476 * the required timings for the 8.4in panel, so we presently assume
477 * VGA timings.
478 */
479 static struct clcd_panel *versatile_clcd_panel(void)
480 {
481 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
482 struct clcd_panel *panel = &vga;
483 u32 val;
484
485 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
486 if (val == SYS_CLCD_ID_SANYO_3_8)
487 panel = &sanyo_3_8_in;
488 else if (val == SYS_CLCD_ID_SANYO_2_5)
489 panel = &sanyo_2_5_in;
490 else if (val == SYS_CLCD_ID_EPSON_2_2)
491 panel = &epson_2_2_in;
492 else if (val == SYS_CLCD_ID_VGA)
493 panel = &vga;
494 else {
495 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
496 val);
497 panel = &vga;
498 }
499
500 return panel;
501 }
502
503 /*
504 * Disable all display connectors on the interface module.
505 */
506 static void versatile_clcd_disable(struct clcd_fb *fb)
507 {
508 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
509 u32 val;
510
511 val = readl(sys_clcd);
512 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
513 writel(val, sys_clcd);
514
515 #ifdef CONFIG_MACH_VERSATILE_AB
516 /*
517 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
518 */
519 if (fb->panel == &sanyo_2_5_in) {
520 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
521 unsigned long ctrl;
522
523 ctrl = readl(versatile_ib2_ctrl);
524 ctrl &= ~0x01;
525 writel(ctrl, versatile_ib2_ctrl);
526 }
527 #endif
528 }
529
530 /*
531 * Enable the relevant connector on the interface module.
532 */
533 static void versatile_clcd_enable(struct clcd_fb *fb)
534 {
535 unsigned long sys_clcd = IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
536 u32 val;
537
538 val = readl(sys_clcd);
539 val &= ~SYS_CLCD_MODE_MASK;
540
541 switch (fb->fb.var.green.length) {
542 case 5:
543 val |= SYS_CLCD_MODE_5551;
544 break;
545 case 6:
546 val |= SYS_CLCD_MODE_565_BLSB;
547 break;
548 case 8:
549 val |= SYS_CLCD_MODE_888;
550 break;
551 }
552
553 /*
554 * Set the MUX
555 */
556 writel(val, sys_clcd);
557
558 /*
559 * And now enable the PSUs
560 */
561 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
562 writel(val, sys_clcd);
563
564 #ifdef CONFIG_MACH_VERSATILE_AB
565 /*
566 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
567 */
568 if (fb->panel == &sanyo_2_5_in) {
569 unsigned long versatile_ib2_ctrl = IO_ADDRESS(VERSATILE_IB2_CTRL);
570 unsigned long ctrl;
571
572 ctrl = readl(versatile_ib2_ctrl);
573 ctrl |= 0x01;
574 writel(ctrl, versatile_ib2_ctrl);
575 }
576 #endif
577 }
578
579 static unsigned long framesize = SZ_1M;
580
581 static int versatile_clcd_setup(struct clcd_fb *fb)
582 {
583 dma_addr_t dma;
584
585 fb->panel = versatile_clcd_panel();
586
587 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
588 &dma, GFP_KERNEL);
589 if (!fb->fb.screen_base) {
590 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
591 return -ENOMEM;
592 }
593
594 fb->fb.fix.smem_start = dma;
595 fb->fb.fix.smem_len = framesize;
596
597 return 0;
598 }
599
600 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
601 {
602 return dma_mmap_writecombine(&fb->dev->dev, vma,
603 fb->fb.screen_base,
604 fb->fb.fix.smem_start,
605 fb->fb.fix.smem_len);
606 }
607
608 static void versatile_clcd_remove(struct clcd_fb *fb)
609 {
610 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
611 fb->fb.screen_base, fb->fb.fix.smem_start);
612 }
613
614 static struct clcd_board clcd_plat_data = {
615 .name = "Versatile",
616 .check = clcdfb_check,
617 .decode = clcdfb_decode,
618 .disable = versatile_clcd_disable,
619 .enable = versatile_clcd_enable,
620 .setup = versatile_clcd_setup,
621 .mmap = versatile_clcd_mmap,
622 .remove = versatile_clcd_remove,
623 };
624
625 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
626 #define AACI_DMA { 0x80, 0x81 }
627 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
628 #define MMCI0_DMA { 0x84, 0 }
629 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
630 #define KMI0_DMA { 0, 0 }
631 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
632 #define KMI1_DMA { 0, 0 }
633
634 /*
635 * These devices are connected directly to the multi-layer AHB switch
636 */
637 #define SMC_IRQ { NO_IRQ, NO_IRQ }
638 #define SMC_DMA { 0, 0 }
639 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
640 #define MPMC_DMA { 0, 0 }
641 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
642 #define CLCD_DMA { 0, 0 }
643 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
644 #define DMAC_DMA { 0, 0 }
645
646 /*
647 * These devices are connected via the core APB bridge
648 */
649 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
650 #define SCTL_DMA { 0, 0 }
651 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
652 #define WATCHDOG_DMA { 0, 0 }
653 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
654 #define GPIO0_DMA { 0, 0 }
655 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
656 #define GPIO1_DMA { 0, 0 }
657 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
658 #define RTC_DMA { 0, 0 }
659
660 /*
661 * These devices are connected via the DMA APB bridge
662 */
663 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
664 #define SCI_DMA { 7, 6 }
665 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
666 #define UART0_DMA { 15, 14 }
667 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
668 #define UART1_DMA { 13, 12 }
669 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
670 #define UART2_DMA { 11, 10 }
671 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
672 #define SSP_DMA { 9, 8 }
673
674 /* FPGA Primecells */
675 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
676 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
677 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
678 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
679
680 /* DevChip Primecells */
681 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
682 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
683 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
684 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
685 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
686 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
687 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
688 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
689 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
690 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
691 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
692 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
693 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
694 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
695
696 static struct amba_device *amba_devs[] __initdata = {
697 &dmac_device,
698 &uart0_device,
699 &uart1_device,
700 &uart2_device,
701 &smc_device,
702 &mpmc_device,
703 &clcd_device,
704 &sctl_device,
705 &wdog_device,
706 &gpio0_device,
707 &gpio1_device,
708 &rtc_device,
709 &sci0_device,
710 &ssp0_device,
711 &aaci_device,
712 &mmc0_device,
713 &kmi0_device,
714 &kmi1_device,
715 };
716
717 #ifdef CONFIG_LEDS
718 #define VA_LEDS_BASE (IO_ADDRESS(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
719
720 static void versatile_leds_event(led_event_t ledevt)
721 {
722 unsigned long flags;
723 u32 val;
724
725 local_irq_save(flags);
726 val = readl(VA_LEDS_BASE);
727
728 switch (ledevt) {
729 case led_idle_start:
730 val = val & ~VERSATILE_SYS_LED0;
731 break;
732
733 case led_idle_end:
734 val = val | VERSATILE_SYS_LED0;
735 break;
736
737 case led_timer:
738 val = val ^ VERSATILE_SYS_LED1;
739 break;
740
741 case led_halted:
742 val = 0;
743 break;
744
745 default:
746 break;
747 }
748
749 writel(val, VA_LEDS_BASE);
750 local_irq_restore(flags);
751 }
752 #endif /* CONFIG_LEDS */
753
754 void __init versatile_init(void)
755 {
756 int i;
757
758 clk_register(&versatile_clcd_clk);
759
760 platform_device_register(&versatile_flash_device);
761 platform_device_register(&smc91x_device);
762
763 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
764 struct amba_device *d = amba_devs[i];
765 amba_device_register(d, &iomem_resource);
766 }
767
768 #ifdef CONFIG_LEDS
769 leds_event = versatile_leds_event;
770 #endif
771 }
772
773 /*
774 * Where is the timer (VA)?
775 */
776 #define TIMER0_VA_BASE IO_ADDRESS(VERSATILE_TIMER0_1_BASE)
777 #define TIMER1_VA_BASE (IO_ADDRESS(VERSATILE_TIMER0_1_BASE) + 0x20)
778 #define TIMER2_VA_BASE IO_ADDRESS(VERSATILE_TIMER2_3_BASE)
779 #define TIMER3_VA_BASE (IO_ADDRESS(VERSATILE_TIMER2_3_BASE) + 0x20)
780 #define VA_IC_BASE IO_ADDRESS(VERSATILE_VIC_BASE)
781
782 /*
783 * How long is the timer interval?
784 */
785 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
786 #if TIMER_INTERVAL >= 0x100000
787 #define TIMER_RELOAD (TIMER_INTERVAL >> 8) /* Divide by 256 */
788 #define TIMER_CTRL 0x88 /* Enable, Clock / 256 */
789 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
790 #elif TIMER_INTERVAL >= 0x10000
791 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
792 #define TIMER_CTRL 0x84 /* Enable, Clock / 16 */
793 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
794 #else
795 #define TIMER_RELOAD (TIMER_INTERVAL)
796 #define TIMER_CTRL 0x80 /* Enable */
797 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
798 #endif
799
800 #define TIMER_CTRL_IE (1 << 5) /* Interrupt Enable */
801
802 /*
803 * What does it look like?
804 */
805 typedef struct TimerStruct {
806 unsigned long TimerLoad;
807 unsigned long TimerValue;
808 unsigned long TimerControl;
809 unsigned long TimerClear;
810 } TimerStruct_t;
811
812 /*
813 * Returns number of ms since last clock interrupt. Note that interrupts
814 * will have been disabled by do_gettimeoffset()
815 */
816 static unsigned long versatile_gettimeoffset(void)
817 {
818 volatile TimerStruct_t *timer0 = (TimerStruct_t *)TIMER0_VA_BASE;
819 unsigned long ticks1, ticks2, status;
820
821 /*
822 * Get the current number of ticks. Note that there is a race
823 * condition between us reading the timer and checking for
824 * an interrupt. We get around this by ensuring that the
825 * counter has not reloaded between our two reads.
826 */
827 ticks2 = timer0->TimerValue & 0xffff;
828 do {
829 ticks1 = ticks2;
830 status = __raw_readl(VA_IC_BASE + VIC_IRQ_RAW_STATUS);
831 ticks2 = timer0->TimerValue & 0xffff;
832 } while (ticks2 > ticks1);
833
834 /*
835 * Number of ticks since last interrupt.
836 */
837 ticks1 = TIMER_RELOAD - ticks2;
838
839 /*
840 * Interrupt pending? If so, we've reloaded once already.
841 *
842 * FIXME: Need to check this is effectively timer 0 that expires
843 */
844 if (status & IRQMASK_TIMERINT0_1)
845 ticks1 += TIMER_RELOAD;
846
847 /*
848 * Convert the ticks to usecs
849 */
850 return TICKS2USECS(ticks1);
851 }
852
853 /*
854 * IRQ handler for the timer
855 */
856 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
857 {
858 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
859
860 write_seqlock(&xtime_lock);
861
862 // ...clear the interrupt
863 timer0->TimerClear = 1;
864
865 timer_tick(regs);
866
867 write_sequnlock(&xtime_lock);
868
869 return IRQ_HANDLED;
870 }
871
872 static struct irqaction versatile_timer_irq = {
873 .name = "Versatile Timer Tick",
874 .flags = SA_INTERRUPT,
875 .handler = versatile_timer_interrupt
876 };
877
878 /*
879 * Set up timer interrupt, and return the current time in seconds.
880 */
881 static void __init versatile_timer_init(void)
882 {
883 volatile TimerStruct_t *timer0 = (volatile TimerStruct_t *)TIMER0_VA_BASE;
884 volatile TimerStruct_t *timer1 = (volatile TimerStruct_t *)TIMER1_VA_BASE;
885 volatile TimerStruct_t *timer2 = (volatile TimerStruct_t *)TIMER2_VA_BASE;
886 volatile TimerStruct_t *timer3 = (volatile TimerStruct_t *)TIMER3_VA_BASE;
887
888 /*
889 * set clock frequency:
890 * VERSATILE_REFCLK is 32KHz
891 * VERSATILE_TIMCLK is 1MHz
892 */
893 *(volatile unsigned int *)IO_ADDRESS(VERSATILE_SCTL_BASE) |=
894 ((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
895 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) | (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel));
896
897 /*
898 * Initialise to a known state (all timers off)
899 */
900 timer0->TimerControl = 0;
901 timer1->TimerControl = 0;
902 timer2->TimerControl = 0;
903 timer3->TimerControl = 0;
904
905 timer0->TimerLoad = TIMER_RELOAD;
906 timer0->TimerValue = TIMER_RELOAD;
907 timer0->TimerControl = TIMER_CTRL | 0x40 | TIMER_CTRL_IE; /* periodic + IE */
908
909 /*
910 * Make irqs happen for the system timer
911 */
912 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
913 }
914
915 struct sys_timer versatile_timer = {
916 .init = versatile_timer_init,
917 .offset = versatile_gettimeoffset,
918 };