]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/mach-versatile/core.c
Merge commit 'kumar/next' into merge
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mach-versatile / core.c
1 /*
2 * linux/arch/arm/mach-versatile/core.c
3 *
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #include <linux/init.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/platform_device.h>
25 #include <linux/sysdev.h>
26 #include <linux/interrupt.h>
27 #include <linux/amba/bus.h>
28 #include <linux/amba/clcd.h>
29 #include <linux/amba/pl061.h>
30 #include <linux/amba/mmci.h>
31 #include <linux/clocksource.h>
32 #include <linux/clockchips.h>
33 #include <linux/cnt32_to_63.h>
34 #include <linux/io.h>
35
36 #include <asm/clkdev.h>
37 #include <asm/system.h>
38 #include <mach/hardware.h>
39 #include <asm/irq.h>
40 #include <asm/leds.h>
41 #include <asm/hardware/arm_timer.h>
42 #include <asm/hardware/icst307.h>
43 #include <asm/hardware/vic.h>
44 #include <asm/mach-types.h>
45
46 #include <asm/mach/arch.h>
47 #include <asm/mach/flash.h>
48 #include <asm/mach/irq.h>
49 #include <asm/mach/time.h>
50 #include <asm/mach/map.h>
51
52 #include "core.h"
53 #include "clock.h"
54
55 /*
56 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
57 * is the (PA >> 12).
58 *
59 * Setup a VA for the Versatile Vectored Interrupt Controller.
60 */
61 #define __io_address(n) __io(IO_ADDRESS(n))
62 #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
63 #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
64
65 static void sic_mask_irq(unsigned int irq)
66 {
67 irq -= IRQ_SIC_START;
68 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
69 }
70
71 static void sic_unmask_irq(unsigned int irq)
72 {
73 irq -= IRQ_SIC_START;
74 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
75 }
76
77 static struct irq_chip sic_chip = {
78 .name = "SIC",
79 .ack = sic_mask_irq,
80 .mask = sic_mask_irq,
81 .unmask = sic_unmask_irq,
82 };
83
84 static void
85 sic_handle_irq(unsigned int irq, struct irq_desc *desc)
86 {
87 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
88
89 if (status == 0) {
90 do_bad_IRQ(irq, desc);
91 return;
92 }
93
94 do {
95 irq = ffs(status) - 1;
96 status &= ~(1 << irq);
97
98 irq += IRQ_SIC_START;
99
100 generic_handle_irq(irq);
101 } while (status);
102 }
103
104 #if 1
105 #define IRQ_MMCI0A IRQ_VICSOURCE22
106 #define IRQ_AACI IRQ_VICSOURCE24
107 #define IRQ_ETH IRQ_VICSOURCE25
108 #define PIC_MASK 0xFFD00000
109 #else
110 #define IRQ_MMCI0A IRQ_SIC_MMCI0A
111 #define IRQ_AACI IRQ_SIC_AACI
112 #define IRQ_ETH IRQ_SIC_ETH
113 #define PIC_MASK 0
114 #endif
115
116 void __init versatile_init_irq(void)
117 {
118 unsigned int i;
119
120 vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
121
122 set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
123
124 /* Do second interrupt controller */
125 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
126
127 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
128 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
129 set_irq_chip(i, &sic_chip);
130 set_irq_handler(i, handle_level_irq);
131 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
132 }
133 }
134
135 /*
136 * Interrupts on secondary controller from 0 to 8 are routed to
137 * source 31 on PIC.
138 * Interrupts from 21 to 31 are routed directly to the VIC on
139 * the corresponding number on primary controller. This is controlled
140 * by setting PIC_ENABLEx.
141 */
142 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
143 }
144
145 static struct map_desc versatile_io_desc[] __initdata = {
146 {
147 .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
148 .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
149 .length = SZ_4K,
150 .type = MT_DEVICE
151 }, {
152 .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
153 .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
154 .length = SZ_4K,
155 .type = MT_DEVICE
156 }, {
157 .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
158 .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
159 .length = SZ_4K,
160 .type = MT_DEVICE
161 }, {
162 .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
163 .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
164 .length = SZ_4K * 9,
165 .type = MT_DEVICE
166 },
167 #ifdef CONFIG_MACH_VERSATILE_AB
168 {
169 .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
170 .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
171 .length = SZ_4K,
172 .type = MT_DEVICE
173 }, {
174 .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
175 .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
176 .length = SZ_64M,
177 .type = MT_DEVICE
178 },
179 #endif
180 #ifdef CONFIG_DEBUG_LL
181 {
182 .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
183 .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
184 .length = SZ_4K,
185 .type = MT_DEVICE
186 },
187 #endif
188 #ifdef CONFIG_PCI
189 {
190 .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
191 .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
192 .length = SZ_4K,
193 .type = MT_DEVICE
194 }, {
195 .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
196 .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
197 .length = VERSATILE_PCI_BASE_SIZE,
198 .type = MT_DEVICE
199 }, {
200 .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
201 .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
202 .length = VERSATILE_PCI_CFG_BASE_SIZE,
203 .type = MT_DEVICE
204 },
205 #if 0
206 {
207 .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
208 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
209 .length = SZ_16M,
210 .type = MT_DEVICE
211 }, {
212 .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
213 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
214 .length = SZ_16M,
215 .type = MT_DEVICE
216 }, {
217 .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
218 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
219 .length = SZ_16M,
220 .type = MT_DEVICE
221 },
222 #endif
223 #endif
224 };
225
226 void __init versatile_map_io(void)
227 {
228 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
229 }
230
231 #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
232
233 /*
234 * This is the Versatile sched_clock implementation. This has
235 * a resolution of 41.7ns, and a maximum value of about 35583 days.
236 *
237 * The return value is guaranteed to be monotonic in that range as
238 * long as there is always less than 89 seconds between successive
239 * calls to this function.
240 */
241 unsigned long long sched_clock(void)
242 {
243 unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
244
245 /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
246 v *= 125<<1;
247 do_div(v, 3<<1);
248
249 return v;
250 }
251
252
253 #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
254
255 static int versatile_flash_init(void)
256 {
257 u32 val;
258
259 val = __raw_readl(VERSATILE_FLASHCTRL);
260 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
261 __raw_writel(val, VERSATILE_FLASHCTRL);
262
263 return 0;
264 }
265
266 static void versatile_flash_exit(void)
267 {
268 u32 val;
269
270 val = __raw_readl(VERSATILE_FLASHCTRL);
271 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
272 __raw_writel(val, VERSATILE_FLASHCTRL);
273 }
274
275 static void versatile_flash_set_vpp(int on)
276 {
277 u32 val;
278
279 val = __raw_readl(VERSATILE_FLASHCTRL);
280 if (on)
281 val |= VERSATILE_FLASHPROG_FLVPPEN;
282 else
283 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
284 __raw_writel(val, VERSATILE_FLASHCTRL);
285 }
286
287 static struct flash_platform_data versatile_flash_data = {
288 .map_name = "cfi_probe",
289 .width = 4,
290 .init = versatile_flash_init,
291 .exit = versatile_flash_exit,
292 .set_vpp = versatile_flash_set_vpp,
293 };
294
295 static struct resource versatile_flash_resource = {
296 .start = VERSATILE_FLASH_BASE,
297 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
298 .flags = IORESOURCE_MEM,
299 };
300
301 static struct platform_device versatile_flash_device = {
302 .name = "armflash",
303 .id = 0,
304 .dev = {
305 .platform_data = &versatile_flash_data,
306 },
307 .num_resources = 1,
308 .resource = &versatile_flash_resource,
309 };
310
311 static struct resource smc91x_resources[] = {
312 [0] = {
313 .start = VERSATILE_ETH_BASE,
314 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
315 .flags = IORESOURCE_MEM,
316 },
317 [1] = {
318 .start = IRQ_ETH,
319 .end = IRQ_ETH,
320 .flags = IORESOURCE_IRQ,
321 },
322 };
323
324 static struct platform_device smc91x_device = {
325 .name = "smc91x",
326 .id = 0,
327 .num_resources = ARRAY_SIZE(smc91x_resources),
328 .resource = smc91x_resources,
329 };
330
331 static struct resource versatile_i2c_resource = {
332 .start = VERSATILE_I2C_BASE,
333 .end = VERSATILE_I2C_BASE + SZ_4K - 1,
334 .flags = IORESOURCE_MEM,
335 };
336
337 static struct platform_device versatile_i2c_device = {
338 .name = "versatile-i2c",
339 .id = 0,
340 .num_resources = 1,
341 .resource = &versatile_i2c_resource,
342 };
343
344 static struct i2c_board_info versatile_i2c_board_info[] = {
345 {
346 I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
347 },
348 };
349
350 static int __init versatile_i2c_init(void)
351 {
352 return i2c_register_board_info(0, versatile_i2c_board_info,
353 ARRAY_SIZE(versatile_i2c_board_info));
354 }
355 arch_initcall(versatile_i2c_init);
356
357 #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
358
359 unsigned int mmc_status(struct device *dev)
360 {
361 struct amba_device *adev = container_of(dev, struct amba_device, dev);
362 u32 mask;
363
364 if (adev->res.start == VERSATILE_MMCI0_BASE)
365 mask = 1;
366 else
367 mask = 2;
368
369 return readl(VERSATILE_SYSMCI) & mask;
370 }
371
372 static struct mmci_platform_data mmc0_plat_data = {
373 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
374 .status = mmc_status,
375 .gpio_wp = -1,
376 .gpio_cd = -1,
377 };
378
379 /*
380 * Clock handling
381 */
382 static const struct icst307_params versatile_oscvco_params = {
383 .ref = 24000,
384 .vco_max = 200000,
385 .vd_min = 4 + 8,
386 .vd_max = 511 + 8,
387 .rd_min = 1 + 2,
388 .rd_max = 127 + 2,
389 };
390
391 static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
392 {
393 void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
394 void __iomem *sys_lock = sys + VERSATILE_SYS_LOCK_OFFSET;
395 u32 val;
396
397 val = readl(sys + clk->oscoff) & ~0x7ffff;
398 val |= vco.v | (vco.r << 9) | (vco.s << 16);
399
400 writel(0xa05f, sys_lock);
401 writel(val, sys + clk->oscoff);
402 writel(0, sys_lock);
403 }
404
405 static struct clk osc4_clk = {
406 .params = &versatile_oscvco_params,
407 .oscoff = VERSATILE_SYS_OSCCLCD_OFFSET,
408 .setvco = versatile_oscvco_set,
409 };
410
411 /*
412 * These are fixed clocks.
413 */
414 static struct clk ref24_clk = {
415 .rate = 24000000,
416 };
417
418 static struct clk_lookup lookups[] = {
419 { /* UART0 */
420 .dev_id = "dev:f1",
421 .clk = &ref24_clk,
422 }, { /* UART1 */
423 .dev_id = "dev:f2",
424 .clk = &ref24_clk,
425 }, { /* UART2 */
426 .dev_id = "dev:f3",
427 .clk = &ref24_clk,
428 }, { /* UART3 */
429 .dev_id = "fpga:09",
430 .clk = &ref24_clk,
431 }, { /* KMI0 */
432 .dev_id = "fpga:06",
433 .clk = &ref24_clk,
434 }, { /* KMI1 */
435 .dev_id = "fpga:07",
436 .clk = &ref24_clk,
437 }, { /* MMC0 */
438 .dev_id = "fpga:05",
439 .clk = &ref24_clk,
440 }, { /* MMC1 */
441 .dev_id = "fpga:0b",
442 .clk = &ref24_clk,
443 }, { /* CLCD */
444 .dev_id = "dev:20",
445 .clk = &osc4_clk,
446 }
447 };
448
449 /*
450 * CLCD support.
451 */
452 #define SYS_CLCD_MODE_MASK (3 << 0)
453 #define SYS_CLCD_MODE_888 (0 << 0)
454 #define SYS_CLCD_MODE_5551 (1 << 0)
455 #define SYS_CLCD_MODE_565_RLSB (2 << 0)
456 #define SYS_CLCD_MODE_565_BLSB (3 << 0)
457 #define SYS_CLCD_NLCDIOON (1 << 2)
458 #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
459 #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
460 #define SYS_CLCD_ID_MASK (0x1f << 8)
461 #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
462 #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
463 #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
464 #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
465 #define SYS_CLCD_ID_VGA (0x1f << 8)
466
467 static struct clcd_panel vga = {
468 .mode = {
469 .name = "VGA",
470 .refresh = 60,
471 .xres = 640,
472 .yres = 480,
473 .pixclock = 39721,
474 .left_margin = 40,
475 .right_margin = 24,
476 .upper_margin = 32,
477 .lower_margin = 11,
478 .hsync_len = 96,
479 .vsync_len = 2,
480 .sync = 0,
481 .vmode = FB_VMODE_NONINTERLACED,
482 },
483 .width = -1,
484 .height = -1,
485 .tim2 = TIM2_BCD | TIM2_IPC,
486 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
487 .bpp = 16,
488 };
489
490 static struct clcd_panel sanyo_3_8_in = {
491 .mode = {
492 .name = "Sanyo QVGA",
493 .refresh = 116,
494 .xres = 320,
495 .yres = 240,
496 .pixclock = 100000,
497 .left_margin = 6,
498 .right_margin = 6,
499 .upper_margin = 5,
500 .lower_margin = 5,
501 .hsync_len = 6,
502 .vsync_len = 6,
503 .sync = 0,
504 .vmode = FB_VMODE_NONINTERLACED,
505 },
506 .width = -1,
507 .height = -1,
508 .tim2 = TIM2_BCD,
509 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
510 .bpp = 16,
511 };
512
513 static struct clcd_panel sanyo_2_5_in = {
514 .mode = {
515 .name = "Sanyo QVGA Portrait",
516 .refresh = 116,
517 .xres = 240,
518 .yres = 320,
519 .pixclock = 100000,
520 .left_margin = 20,
521 .right_margin = 10,
522 .upper_margin = 2,
523 .lower_margin = 2,
524 .hsync_len = 10,
525 .vsync_len = 2,
526 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
527 .vmode = FB_VMODE_NONINTERLACED,
528 },
529 .width = -1,
530 .height = -1,
531 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
532 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
533 .bpp = 16,
534 };
535
536 static struct clcd_panel epson_2_2_in = {
537 .mode = {
538 .name = "Epson QCIF",
539 .refresh = 390,
540 .xres = 176,
541 .yres = 220,
542 .pixclock = 62500,
543 .left_margin = 3,
544 .right_margin = 2,
545 .upper_margin = 1,
546 .lower_margin = 0,
547 .hsync_len = 3,
548 .vsync_len = 2,
549 .sync = 0,
550 .vmode = FB_VMODE_NONINTERLACED,
551 },
552 .width = -1,
553 .height = -1,
554 .tim2 = TIM2_BCD | TIM2_IPC,
555 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
556 .bpp = 16,
557 };
558
559 /*
560 * Detect which LCD panel is connected, and return the appropriate
561 * clcd_panel structure. Note: we do not have any information on
562 * the required timings for the 8.4in panel, so we presently assume
563 * VGA timings.
564 */
565 static struct clcd_panel *versatile_clcd_panel(void)
566 {
567 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
568 struct clcd_panel *panel = &vga;
569 u32 val;
570
571 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
572 if (val == SYS_CLCD_ID_SANYO_3_8)
573 panel = &sanyo_3_8_in;
574 else if (val == SYS_CLCD_ID_SANYO_2_5)
575 panel = &sanyo_2_5_in;
576 else if (val == SYS_CLCD_ID_EPSON_2_2)
577 panel = &epson_2_2_in;
578 else if (val == SYS_CLCD_ID_VGA)
579 panel = &vga;
580 else {
581 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
582 val);
583 panel = &vga;
584 }
585
586 return panel;
587 }
588
589 /*
590 * Disable all display connectors on the interface module.
591 */
592 static void versatile_clcd_disable(struct clcd_fb *fb)
593 {
594 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
595 u32 val;
596
597 val = readl(sys_clcd);
598 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
599 writel(val, sys_clcd);
600
601 #ifdef CONFIG_MACH_VERSATILE_AB
602 /*
603 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
604 */
605 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
606 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
607 unsigned long ctrl;
608
609 ctrl = readl(versatile_ib2_ctrl);
610 ctrl &= ~0x01;
611 writel(ctrl, versatile_ib2_ctrl);
612 }
613 #endif
614 }
615
616 /*
617 * Enable the relevant connector on the interface module.
618 */
619 static void versatile_clcd_enable(struct clcd_fb *fb)
620 {
621 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
622 u32 val;
623
624 val = readl(sys_clcd);
625 val &= ~SYS_CLCD_MODE_MASK;
626
627 switch (fb->fb.var.green.length) {
628 case 5:
629 val |= SYS_CLCD_MODE_5551;
630 break;
631 case 6:
632 val |= SYS_CLCD_MODE_565_RLSB;
633 break;
634 case 8:
635 val |= SYS_CLCD_MODE_888;
636 break;
637 }
638
639 /*
640 * Set the MUX
641 */
642 writel(val, sys_clcd);
643
644 /*
645 * And now enable the PSUs
646 */
647 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
648 writel(val, sys_clcd);
649
650 #ifdef CONFIG_MACH_VERSATILE_AB
651 /*
652 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
653 */
654 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
655 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
656 unsigned long ctrl;
657
658 ctrl = readl(versatile_ib2_ctrl);
659 ctrl |= 0x01;
660 writel(ctrl, versatile_ib2_ctrl);
661 }
662 #endif
663 }
664
665 static unsigned long framesize = SZ_1M;
666
667 static int versatile_clcd_setup(struct clcd_fb *fb)
668 {
669 dma_addr_t dma;
670
671 fb->panel = versatile_clcd_panel();
672
673 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
674 &dma, GFP_KERNEL);
675 if (!fb->fb.screen_base) {
676 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
677 return -ENOMEM;
678 }
679
680 fb->fb.fix.smem_start = dma;
681 fb->fb.fix.smem_len = framesize;
682
683 return 0;
684 }
685
686 static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
687 {
688 return dma_mmap_writecombine(&fb->dev->dev, vma,
689 fb->fb.screen_base,
690 fb->fb.fix.smem_start,
691 fb->fb.fix.smem_len);
692 }
693
694 static void versatile_clcd_remove(struct clcd_fb *fb)
695 {
696 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
697 fb->fb.screen_base, fb->fb.fix.smem_start);
698 }
699
700 static struct clcd_board clcd_plat_data = {
701 .name = "Versatile",
702 .check = clcdfb_check,
703 .decode = clcdfb_decode,
704 .disable = versatile_clcd_disable,
705 .enable = versatile_clcd_enable,
706 .setup = versatile_clcd_setup,
707 .mmap = versatile_clcd_mmap,
708 .remove = versatile_clcd_remove,
709 };
710
711 static struct pl061_platform_data gpio0_plat_data = {
712 .gpio_base = 0,
713 .irq_base = IRQ_GPIO0_START,
714 };
715
716 static struct pl061_platform_data gpio1_plat_data = {
717 .gpio_base = 8,
718 .irq_base = IRQ_GPIO1_START,
719 };
720
721 #define AACI_IRQ { IRQ_AACI, NO_IRQ }
722 #define AACI_DMA { 0x80, 0x81 }
723 #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
724 #define MMCI0_DMA { 0x84, 0 }
725 #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
726 #define KMI0_DMA { 0, 0 }
727 #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
728 #define KMI1_DMA { 0, 0 }
729
730 /*
731 * These devices are connected directly to the multi-layer AHB switch
732 */
733 #define SMC_IRQ { NO_IRQ, NO_IRQ }
734 #define SMC_DMA { 0, 0 }
735 #define MPMC_IRQ { NO_IRQ, NO_IRQ }
736 #define MPMC_DMA { 0, 0 }
737 #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
738 #define CLCD_DMA { 0, 0 }
739 #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
740 #define DMAC_DMA { 0, 0 }
741
742 /*
743 * These devices are connected via the core APB bridge
744 */
745 #define SCTL_IRQ { NO_IRQ, NO_IRQ }
746 #define SCTL_DMA { 0, 0 }
747 #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
748 #define WATCHDOG_DMA { 0, 0 }
749 #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
750 #define GPIO0_DMA { 0, 0 }
751 #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
752 #define GPIO1_DMA { 0, 0 }
753 #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
754 #define RTC_DMA { 0, 0 }
755
756 /*
757 * These devices are connected via the DMA APB bridge
758 */
759 #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
760 #define SCI_DMA { 7, 6 }
761 #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
762 #define UART0_DMA { 15, 14 }
763 #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
764 #define UART1_DMA { 13, 12 }
765 #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
766 #define UART2_DMA { 11, 10 }
767 #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
768 #define SSP_DMA { 9, 8 }
769
770 /* FPGA Primecells */
771 AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
772 AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
773 AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
774 AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
775
776 /* DevChip Primecells */
777 AMBA_DEVICE(smc, "dev:00", SMC, NULL);
778 AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
779 AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
780 AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
781 AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
782 AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
783 AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
784 AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
785 AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
786 AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
787 AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
788 AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
789 AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
790 AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
791
792 static struct amba_device *amba_devs[] __initdata = {
793 &dmac_device,
794 &uart0_device,
795 &uart1_device,
796 &uart2_device,
797 &smc_device,
798 &mpmc_device,
799 &clcd_device,
800 &sctl_device,
801 &wdog_device,
802 &gpio0_device,
803 &gpio1_device,
804 &rtc_device,
805 &sci0_device,
806 &ssp0_device,
807 &aaci_device,
808 &mmc0_device,
809 &kmi0_device,
810 &kmi1_device,
811 };
812
813 #ifdef CONFIG_LEDS
814 #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
815
816 static void versatile_leds_event(led_event_t ledevt)
817 {
818 unsigned long flags;
819 u32 val;
820
821 local_irq_save(flags);
822 val = readl(VA_LEDS_BASE);
823
824 switch (ledevt) {
825 case led_idle_start:
826 val = val & ~VERSATILE_SYS_LED0;
827 break;
828
829 case led_idle_end:
830 val = val | VERSATILE_SYS_LED0;
831 break;
832
833 case led_timer:
834 val = val ^ VERSATILE_SYS_LED1;
835 break;
836
837 case led_halted:
838 val = 0;
839 break;
840
841 default:
842 break;
843 }
844
845 writel(val, VA_LEDS_BASE);
846 local_irq_restore(flags);
847 }
848 #endif /* CONFIG_LEDS */
849
850 void __init versatile_init(void)
851 {
852 int i;
853
854 clkdev_add_table(lookups, ARRAY_SIZE(lookups));
855
856 platform_device_register(&versatile_flash_device);
857 platform_device_register(&versatile_i2c_device);
858 platform_device_register(&smc91x_device);
859
860 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
861 struct amba_device *d = amba_devs[i];
862 amba_device_register(d, &iomem_resource);
863 }
864
865 #ifdef CONFIG_LEDS
866 leds_event = versatile_leds_event;
867 #endif
868 }
869
870 /*
871 * Where is the timer (VA)?
872 */
873 #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
874 #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
875 #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
876 #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
877 #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
878
879 /*
880 * How long is the timer interval?
881 */
882 #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
883 #if TIMER_INTERVAL >= 0x100000
884 #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
885 #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
886 #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
887 #elif TIMER_INTERVAL >= 0x10000
888 #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
889 #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
890 #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
891 #else
892 #define TIMER_RELOAD (TIMER_INTERVAL)
893 #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
894 #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
895 #endif
896
897 static void timer_set_mode(enum clock_event_mode mode,
898 struct clock_event_device *clk)
899 {
900 unsigned long ctrl;
901
902 switch(mode) {
903 case CLOCK_EVT_MODE_PERIODIC:
904 writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
905
906 ctrl = TIMER_CTRL_PERIODIC;
907 ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
908 break;
909 case CLOCK_EVT_MODE_ONESHOT:
910 /* period set, and timer enabled in 'next_event' hook */
911 ctrl = TIMER_CTRL_ONESHOT;
912 ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
913 break;
914 case CLOCK_EVT_MODE_UNUSED:
915 case CLOCK_EVT_MODE_SHUTDOWN:
916 default:
917 ctrl = 0;
918 }
919
920 writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
921 }
922
923 static int timer_set_next_event(unsigned long evt,
924 struct clock_event_device *unused)
925 {
926 unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
927
928 writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
929 writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
930
931 return 0;
932 }
933
934 static struct clock_event_device timer0_clockevent = {
935 .name = "timer0",
936 .shift = 32,
937 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
938 .set_mode = timer_set_mode,
939 .set_next_event = timer_set_next_event,
940 };
941
942 /*
943 * IRQ handler for the timer
944 */
945 static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
946 {
947 struct clock_event_device *evt = &timer0_clockevent;
948
949 writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
950
951 evt->event_handler(evt);
952
953 return IRQ_HANDLED;
954 }
955
956 static struct irqaction versatile_timer_irq = {
957 .name = "Versatile Timer Tick",
958 .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
959 .handler = versatile_timer_interrupt,
960 };
961
962 static cycle_t versatile_get_cycles(struct clocksource *cs)
963 {
964 return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
965 }
966
967 static struct clocksource clocksource_versatile = {
968 .name = "timer3",
969 .rating = 200,
970 .read = versatile_get_cycles,
971 .mask = CLOCKSOURCE_MASK(32),
972 .shift = 20,
973 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
974 };
975
976 static int __init versatile_clocksource_init(void)
977 {
978 /* setup timer3 as free-running clocksource */
979 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
980 writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
981 writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
982 writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
983 TIMER3_VA_BASE + TIMER_CTRL);
984
985 clocksource_versatile.mult =
986 clocksource_khz2mult(1000, clocksource_versatile.shift);
987 clocksource_register(&clocksource_versatile);
988
989 return 0;
990 }
991
992 /*
993 * Set up timer interrupt, and return the current time in seconds.
994 */
995 static void __init versatile_timer_init(void)
996 {
997 u32 val;
998
999 /*
1000 * set clock frequency:
1001 * VERSATILE_REFCLK is 32KHz
1002 * VERSATILE_TIMCLK is 1MHz
1003 */
1004 val = readl(__io_address(VERSATILE_SCTL_BASE));
1005 writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
1006 (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
1007 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
1008 (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
1009 __io_address(VERSATILE_SCTL_BASE));
1010
1011 /*
1012 * Initialise to a known state (all timers off)
1013 */
1014 writel(0, TIMER0_VA_BASE + TIMER_CTRL);
1015 writel(0, TIMER1_VA_BASE + TIMER_CTRL);
1016 writel(0, TIMER2_VA_BASE + TIMER_CTRL);
1017 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
1018
1019 /*
1020 * Make irqs happen for the system timer
1021 */
1022 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
1023
1024 versatile_clocksource_init();
1025
1026 timer0_clockevent.mult =
1027 div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
1028 timer0_clockevent.max_delta_ns =
1029 clockevent_delta2ns(0xffffffff, &timer0_clockevent);
1030 timer0_clockevent.min_delta_ns =
1031 clockevent_delta2ns(0xf, &timer0_clockevent);
1032
1033 timer0_clockevent.cpumask = cpumask_of(0);
1034 clockevents_register_device(&timer0_clockevent);
1035 }
1036
1037 struct sys_timer versatile_timer = {
1038 .init = versatile_timer_init,
1039 };
1040