]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm/mm/dma-mapping.c
powerpc/cacheinfo: Remove double free
[mirror_ubuntu-hirsute-kernel.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/genalloc.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
29 #include <linux/cma.h>
30
31 #include <asm/memory.h>
32 #include <asm/highmem.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/mach/arch.h>
36 #include <asm/dma-iommu.h>
37 #include <asm/mach/map.h>
38 #include <asm/system_info.h>
39 #include <asm/dma-contiguous.h>
40
41 #include "dma.h"
42 #include "mm.h"
43
44 struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
51 int coherent_flag;
52 };
53
54 struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60 };
61
62 #define NORMAL 0
63 #define COHERENT 1
64
65 struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69 };
70
71 struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
74 struct arm_dma_allocator *allocator;
75 };
76
77 static LIST_HEAD(arm_dma_bufs);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81 {
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95 }
96
97 /*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
108 */
109 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 size_t, enum dma_data_direction);
111 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
113
114 /**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
128 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 unsigned long offset, size_t size, enum dma_data_direction dir,
130 unsigned long attrs)
131 {
132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135 }
136
137 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
139 unsigned long attrs)
140 {
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142 }
143
144 /**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
158 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 size_t size, enum dma_data_direction dir, unsigned long attrs)
160 {
161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
164 }
165
166 static void arm_dma_sync_single_for_cpu(struct device *dev,
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168 {
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 __dma_page_dev_to_cpu(page, offset, size, dir);
172 }
173
174 static void arm_dma_sync_single_for_device(struct device *dev,
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176 {
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 __dma_page_cpu_to_dev(page, offset, size, dir);
180 }
181
182 const struct dma_map_ops arm_dma_ops = {
183 .alloc = arm_dma_alloc,
184 .free = arm_dma_free,
185 .mmap = arm_dma_mmap,
186 .get_sgtable = arm_dma_get_sgtable,
187 .map_page = arm_dma_map_page,
188 .unmap_page = arm_dma_unmap_page,
189 .map_sg = arm_dma_map_sg,
190 .unmap_sg = arm_dma_unmap_sg,
191 .map_resource = dma_direct_map_resource,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196 .dma_supported = arm_dma_supported,
197 };
198 EXPORT_SYMBOL(arm_dma_ops);
199
200 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
201 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
202 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
203 dma_addr_t handle, unsigned long attrs);
204 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
205 void *cpu_addr, dma_addr_t dma_addr, size_t size,
206 unsigned long attrs);
207
208 const struct dma_map_ops arm_coherent_dma_ops = {
209 .alloc = arm_coherent_dma_alloc,
210 .free = arm_coherent_dma_free,
211 .mmap = arm_coherent_dma_mmap,
212 .get_sgtable = arm_dma_get_sgtable,
213 .map_page = arm_coherent_dma_map_page,
214 .map_sg = arm_dma_map_sg,
215 .map_resource = dma_direct_map_resource,
216 .dma_supported = arm_dma_supported,
217 };
218 EXPORT_SYMBOL(arm_coherent_dma_ops);
219
220 static int __dma_supported(struct device *dev, u64 mask, bool warn)
221 {
222 unsigned long max_dma_pfn;
223
224 /*
225 * If the mask allows for more memory than we can address,
226 * and we actually have that much memory, then we must
227 * indicate that DMA to this device is not supported.
228 */
229 if (sizeof(mask) != sizeof(dma_addr_t) &&
230 mask > (dma_addr_t)~0 &&
231 dma_to_pfn(dev, ~0) < max_pfn - 1) {
232 if (warn) {
233 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
234 mask);
235 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
236 }
237 return 0;
238 }
239
240 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
241
242 /*
243 * Translate the device's DMA mask to a PFN limit. This
244 * PFN number includes the page which we can DMA to.
245 */
246 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
247 if (warn)
248 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
249 mask,
250 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
251 max_dma_pfn + 1);
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static u64 get_coherent_dma_mask(struct device *dev)
259 {
260 u64 mask = (u64)DMA_BIT_MASK(32);
261
262 if (dev) {
263 mask = dev->coherent_dma_mask;
264
265 /*
266 * Sanity check the DMA mask - it must be non-zero, and
267 * must be able to be satisfied by a DMA allocation.
268 */
269 if (mask == 0) {
270 dev_warn(dev, "coherent DMA mask is unset\n");
271 return 0;
272 }
273
274 if (!__dma_supported(dev, mask, true))
275 return 0;
276 }
277
278 return mask;
279 }
280
281 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
282 {
283 /*
284 * Ensure that the allocated pages are zeroed, and that any data
285 * lurking in the kernel direct-mapped region is invalidated.
286 */
287 if (PageHighMem(page)) {
288 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
289 phys_addr_t end = base + size;
290 while (size > 0) {
291 void *ptr = kmap_atomic(page);
292 memset(ptr, 0, PAGE_SIZE);
293 if (coherent_flag != COHERENT)
294 dmac_flush_range(ptr, ptr + PAGE_SIZE);
295 kunmap_atomic(ptr);
296 page++;
297 size -= PAGE_SIZE;
298 }
299 if (coherent_flag != COHERENT)
300 outer_flush_range(base, end);
301 } else {
302 void *ptr = page_address(page);
303 memset(ptr, 0, size);
304 if (coherent_flag != COHERENT) {
305 dmac_flush_range(ptr, ptr + size);
306 outer_flush_range(__pa(ptr), __pa(ptr) + size);
307 }
308 }
309 }
310
311 /*
312 * Allocate a DMA buffer for 'dev' of size 'size' using the
313 * specified gfp mask. Note that 'size' must be page aligned.
314 */
315 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
316 gfp_t gfp, int coherent_flag)
317 {
318 unsigned long order = get_order(size);
319 struct page *page, *p, *e;
320
321 page = alloc_pages(gfp, order);
322 if (!page)
323 return NULL;
324
325 /*
326 * Now split the huge page and free the excess pages
327 */
328 split_page(page, order);
329 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
330 __free_page(p);
331
332 __dma_clear_buffer(page, size, coherent_flag);
333
334 return page;
335 }
336
337 /*
338 * Free a DMA buffer. 'size' must be page aligned.
339 */
340 static void __dma_free_buffer(struct page *page, size_t size)
341 {
342 struct page *e = page + (size >> PAGE_SHIFT);
343
344 while (page < e) {
345 __free_page(page);
346 page++;
347 }
348 }
349
350 static void *__alloc_from_contiguous(struct device *dev, size_t size,
351 pgprot_t prot, struct page **ret_page,
352 const void *caller, bool want_vaddr,
353 int coherent_flag, gfp_t gfp);
354
355 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
356 pgprot_t prot, struct page **ret_page,
357 const void *caller, bool want_vaddr);
358
359 static void *
360 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
361 const void *caller)
362 {
363 /*
364 * DMA allocation can be mapped to user space, so lets
365 * set VM_USERMAP flags too.
366 */
367 return dma_common_contiguous_remap(page, size,
368 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
369 prot, caller);
370 }
371
372 static void __dma_free_remap(void *cpu_addr, size_t size)
373 {
374 dma_common_free_remap(cpu_addr, size,
375 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
376 }
377
378 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
379 static struct gen_pool *atomic_pool __ro_after_init;
380
381 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
382
383 static int __init early_coherent_pool(char *p)
384 {
385 atomic_pool_size = memparse(p, &p);
386 return 0;
387 }
388 early_param("coherent_pool", early_coherent_pool);
389
390 /*
391 * Initialise the coherent pool for atomic allocations.
392 */
393 static int __init atomic_pool_init(void)
394 {
395 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
396 gfp_t gfp = GFP_KERNEL | GFP_DMA;
397 struct page *page;
398 void *ptr;
399
400 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
401 if (!atomic_pool)
402 goto out;
403 /*
404 * The atomic pool is only used for non-coherent allocations
405 * so we must pass NORMAL for coherent_flag.
406 */
407 if (dev_get_cma_area(NULL))
408 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
409 &page, atomic_pool_init, true, NORMAL,
410 GFP_KERNEL);
411 else
412 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
413 &page, atomic_pool_init, true);
414 if (ptr) {
415 int ret;
416
417 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
418 page_to_phys(page),
419 atomic_pool_size, -1);
420 if (ret)
421 goto destroy_genpool;
422
423 gen_pool_set_algo(atomic_pool,
424 gen_pool_first_fit_order_align,
425 NULL);
426 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
427 atomic_pool_size / 1024);
428 return 0;
429 }
430
431 destroy_genpool:
432 gen_pool_destroy(atomic_pool);
433 atomic_pool = NULL;
434 out:
435 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
436 atomic_pool_size / 1024);
437 return -ENOMEM;
438 }
439 /*
440 * CMA is activated by core_initcall, so we must be called after it.
441 */
442 postcore_initcall(atomic_pool_init);
443
444 struct dma_contig_early_reserve {
445 phys_addr_t base;
446 unsigned long size;
447 };
448
449 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
450
451 static int dma_mmu_remap_num __initdata;
452
453 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
454 {
455 dma_mmu_remap[dma_mmu_remap_num].base = base;
456 dma_mmu_remap[dma_mmu_remap_num].size = size;
457 dma_mmu_remap_num++;
458 }
459
460 void __init dma_contiguous_remap(void)
461 {
462 int i;
463 for (i = 0; i < dma_mmu_remap_num; i++) {
464 phys_addr_t start = dma_mmu_remap[i].base;
465 phys_addr_t end = start + dma_mmu_remap[i].size;
466 struct map_desc map;
467 unsigned long addr;
468
469 if (end > arm_lowmem_limit)
470 end = arm_lowmem_limit;
471 if (start >= end)
472 continue;
473
474 map.pfn = __phys_to_pfn(start);
475 map.virtual = __phys_to_virt(start);
476 map.length = end - start;
477 map.type = MT_MEMORY_DMA_READY;
478
479 /*
480 * Clear previous low-memory mapping to ensure that the
481 * TLB does not see any conflicting entries, then flush
482 * the TLB of the old entries before creating new mappings.
483 *
484 * This ensures that any speculatively loaded TLB entries
485 * (even though they may be rare) can not cause any problems,
486 * and ensures that this code is architecturally compliant.
487 */
488 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
489 addr += PMD_SIZE)
490 pmd_clear(pmd_off_k(addr));
491
492 flush_tlb_kernel_range(__phys_to_virt(start),
493 __phys_to_virt(end));
494
495 iotable_init(&map, 1);
496 }
497 }
498
499 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
500 void *data)
501 {
502 struct page *page = virt_to_page(addr);
503 pgprot_t prot = *(pgprot_t *)data;
504
505 set_pte_ext(pte, mk_pte(page, prot), 0);
506 return 0;
507 }
508
509 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
510 {
511 unsigned long start = (unsigned long) page_address(page);
512 unsigned end = start + size;
513
514 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
515 flush_tlb_kernel_range(start, end);
516 }
517
518 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
519 pgprot_t prot, struct page **ret_page,
520 const void *caller, bool want_vaddr)
521 {
522 struct page *page;
523 void *ptr = NULL;
524 /*
525 * __alloc_remap_buffer is only called when the device is
526 * non-coherent
527 */
528 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
529 if (!page)
530 return NULL;
531 if (!want_vaddr)
532 goto out;
533
534 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
535 if (!ptr) {
536 __dma_free_buffer(page, size);
537 return NULL;
538 }
539
540 out:
541 *ret_page = page;
542 return ptr;
543 }
544
545 static void *__alloc_from_pool(size_t size, struct page **ret_page)
546 {
547 unsigned long val;
548 void *ptr = NULL;
549
550 if (!atomic_pool) {
551 WARN(1, "coherent pool not initialised!\n");
552 return NULL;
553 }
554
555 val = gen_pool_alloc(atomic_pool, size);
556 if (val) {
557 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
558
559 *ret_page = phys_to_page(phys);
560 ptr = (void *)val;
561 }
562
563 return ptr;
564 }
565
566 static bool __in_atomic_pool(void *start, size_t size)
567 {
568 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
569 }
570
571 static int __free_from_pool(void *start, size_t size)
572 {
573 if (!__in_atomic_pool(start, size))
574 return 0;
575
576 gen_pool_free(atomic_pool, (unsigned long)start, size);
577
578 return 1;
579 }
580
581 static void *__alloc_from_contiguous(struct device *dev, size_t size,
582 pgprot_t prot, struct page **ret_page,
583 const void *caller, bool want_vaddr,
584 int coherent_flag, gfp_t gfp)
585 {
586 unsigned long order = get_order(size);
587 size_t count = size >> PAGE_SHIFT;
588 struct page *page;
589 void *ptr = NULL;
590
591 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
592 if (!page)
593 return NULL;
594
595 __dma_clear_buffer(page, size, coherent_flag);
596
597 if (!want_vaddr)
598 goto out;
599
600 if (PageHighMem(page)) {
601 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
602 if (!ptr) {
603 dma_release_from_contiguous(dev, page, count);
604 return NULL;
605 }
606 } else {
607 __dma_remap(page, size, prot);
608 ptr = page_address(page);
609 }
610
611 out:
612 *ret_page = page;
613 return ptr;
614 }
615
616 static void __free_from_contiguous(struct device *dev, struct page *page,
617 void *cpu_addr, size_t size, bool want_vaddr)
618 {
619 if (want_vaddr) {
620 if (PageHighMem(page))
621 __dma_free_remap(cpu_addr, size);
622 else
623 __dma_remap(page, size, PAGE_KERNEL);
624 }
625 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
626 }
627
628 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
629 {
630 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
631 pgprot_writecombine(prot) :
632 pgprot_dmacoherent(prot);
633 return prot;
634 }
635
636 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
637 struct page **ret_page)
638 {
639 struct page *page;
640 /* __alloc_simple_buffer is only called when the device is coherent */
641 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
642 if (!page)
643 return NULL;
644
645 *ret_page = page;
646 return page_address(page);
647 }
648
649 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
650 struct page **ret_page)
651 {
652 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
653 ret_page);
654 }
655
656 static void simple_allocator_free(struct arm_dma_free_args *args)
657 {
658 __dma_free_buffer(args->page, args->size);
659 }
660
661 static struct arm_dma_allocator simple_allocator = {
662 .alloc = simple_allocator_alloc,
663 .free = simple_allocator_free,
664 };
665
666 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
667 struct page **ret_page)
668 {
669 return __alloc_from_contiguous(args->dev, args->size, args->prot,
670 ret_page, args->caller,
671 args->want_vaddr, args->coherent_flag,
672 args->gfp);
673 }
674
675 static void cma_allocator_free(struct arm_dma_free_args *args)
676 {
677 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
678 args->size, args->want_vaddr);
679 }
680
681 static struct arm_dma_allocator cma_allocator = {
682 .alloc = cma_allocator_alloc,
683 .free = cma_allocator_free,
684 };
685
686 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
687 struct page **ret_page)
688 {
689 return __alloc_from_pool(args->size, ret_page);
690 }
691
692 static void pool_allocator_free(struct arm_dma_free_args *args)
693 {
694 __free_from_pool(args->cpu_addr, args->size);
695 }
696
697 static struct arm_dma_allocator pool_allocator = {
698 .alloc = pool_allocator_alloc,
699 .free = pool_allocator_free,
700 };
701
702 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
703 struct page **ret_page)
704 {
705 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
706 args->prot, ret_page, args->caller,
707 args->want_vaddr);
708 }
709
710 static void remap_allocator_free(struct arm_dma_free_args *args)
711 {
712 if (args->want_vaddr)
713 __dma_free_remap(args->cpu_addr, args->size);
714
715 __dma_free_buffer(args->page, args->size);
716 }
717
718 static struct arm_dma_allocator remap_allocator = {
719 .alloc = remap_allocator_alloc,
720 .free = remap_allocator_free,
721 };
722
723 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
724 gfp_t gfp, pgprot_t prot, bool is_coherent,
725 unsigned long attrs, const void *caller)
726 {
727 u64 mask = get_coherent_dma_mask(dev);
728 struct page *page = NULL;
729 void *addr;
730 bool allowblock, cma;
731 struct arm_dma_buffer *buf;
732 struct arm_dma_alloc_args args = {
733 .dev = dev,
734 .size = PAGE_ALIGN(size),
735 .gfp = gfp,
736 .prot = prot,
737 .caller = caller,
738 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
739 .coherent_flag = is_coherent ? COHERENT : NORMAL,
740 };
741
742 #ifdef CONFIG_DMA_API_DEBUG
743 u64 limit = (mask + 1) & ~mask;
744 if (limit && size >= limit) {
745 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
746 size, mask);
747 return NULL;
748 }
749 #endif
750
751 if (!mask)
752 return NULL;
753
754 buf = kzalloc(sizeof(*buf),
755 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
756 if (!buf)
757 return NULL;
758
759 if (mask < 0xffffffffULL)
760 gfp |= GFP_DMA;
761
762 /*
763 * Following is a work-around (a.k.a. hack) to prevent pages
764 * with __GFP_COMP being passed to split_page() which cannot
765 * handle them. The real problem is that this flag probably
766 * should be 0 on ARM as it is not supported on this
767 * platform; see CONFIG_HUGETLBFS.
768 */
769 gfp &= ~(__GFP_COMP);
770 args.gfp = gfp;
771
772 *handle = DMA_MAPPING_ERROR;
773 allowblock = gfpflags_allow_blocking(gfp);
774 cma = allowblock ? dev_get_cma_area(dev) : false;
775
776 if (cma)
777 buf->allocator = &cma_allocator;
778 else if (is_coherent)
779 buf->allocator = &simple_allocator;
780 else if (allowblock)
781 buf->allocator = &remap_allocator;
782 else
783 buf->allocator = &pool_allocator;
784
785 addr = buf->allocator->alloc(&args, &page);
786
787 if (page) {
788 unsigned long flags;
789
790 *handle = pfn_to_dma(dev, page_to_pfn(page));
791 buf->virt = args.want_vaddr ? addr : page;
792
793 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
794 list_add(&buf->list, &arm_dma_bufs);
795 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
796 } else {
797 kfree(buf);
798 }
799
800 return args.want_vaddr ? addr : page;
801 }
802
803 /*
804 * Allocate DMA-coherent memory space and return both the kernel remapped
805 * virtual and bus address for that space.
806 */
807 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
808 gfp_t gfp, unsigned long attrs)
809 {
810 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
811
812 return __dma_alloc(dev, size, handle, gfp, prot, false,
813 attrs, __builtin_return_address(0));
814 }
815
816 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
817 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
818 {
819 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
820 attrs, __builtin_return_address(0));
821 }
822
823 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
824 void *cpu_addr, dma_addr_t dma_addr, size_t size,
825 unsigned long attrs)
826 {
827 int ret = -ENXIO;
828 unsigned long nr_vma_pages = vma_pages(vma);
829 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
830 unsigned long pfn = dma_to_pfn(dev, dma_addr);
831 unsigned long off = vma->vm_pgoff;
832
833 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
834 return ret;
835
836 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
837 ret = remap_pfn_range(vma, vma->vm_start,
838 pfn + off,
839 vma->vm_end - vma->vm_start,
840 vma->vm_page_prot);
841 }
842
843 return ret;
844 }
845
846 /*
847 * Create userspace mapping for the DMA-coherent memory.
848 */
849 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
850 void *cpu_addr, dma_addr_t dma_addr, size_t size,
851 unsigned long attrs)
852 {
853 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
854 }
855
856 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
857 void *cpu_addr, dma_addr_t dma_addr, size_t size,
858 unsigned long attrs)
859 {
860 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
861 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
862 }
863
864 /*
865 * Free a buffer as defined by the above mapping.
866 */
867 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
868 dma_addr_t handle, unsigned long attrs,
869 bool is_coherent)
870 {
871 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
872 struct arm_dma_buffer *buf;
873 struct arm_dma_free_args args = {
874 .dev = dev,
875 .size = PAGE_ALIGN(size),
876 .cpu_addr = cpu_addr,
877 .page = page,
878 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
879 };
880
881 buf = arm_dma_buffer_find(cpu_addr);
882 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
883 return;
884
885 buf->allocator->free(&args);
886 kfree(buf);
887 }
888
889 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
890 dma_addr_t handle, unsigned long attrs)
891 {
892 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
893 }
894
895 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
896 dma_addr_t handle, unsigned long attrs)
897 {
898 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
899 }
900
901 /*
902 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
903 * that the intention is to allow exporting memory allocated via the
904 * coherent DMA APIs through the dma_buf API, which only accepts a
905 * scattertable. This presents a couple of problems:
906 * 1. Not all memory allocated via the coherent DMA APIs is backed by
907 * a struct page
908 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
909 * as we will try to flush the memory through a different alias to that
910 * actually being used (and the flushes are redundant.)
911 */
912 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
913 void *cpu_addr, dma_addr_t handle, size_t size,
914 unsigned long attrs)
915 {
916 unsigned long pfn = dma_to_pfn(dev, handle);
917 struct page *page;
918 int ret;
919
920 /* If the PFN is not valid, we do not have a struct page */
921 if (!pfn_valid(pfn))
922 return -ENXIO;
923
924 page = pfn_to_page(pfn);
925
926 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
927 if (unlikely(ret))
928 return ret;
929
930 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
931 return 0;
932 }
933
934 static void dma_cache_maint_page(struct page *page, unsigned long offset,
935 size_t size, enum dma_data_direction dir,
936 void (*op)(const void *, size_t, int))
937 {
938 unsigned long pfn;
939 size_t left = size;
940
941 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
942 offset %= PAGE_SIZE;
943
944 /*
945 * A single sg entry may refer to multiple physically contiguous
946 * pages. But we still need to process highmem pages individually.
947 * If highmem is not configured then the bulk of this loop gets
948 * optimized out.
949 */
950 do {
951 size_t len = left;
952 void *vaddr;
953
954 page = pfn_to_page(pfn);
955
956 if (PageHighMem(page)) {
957 if (len + offset > PAGE_SIZE)
958 len = PAGE_SIZE - offset;
959
960 if (cache_is_vipt_nonaliasing()) {
961 vaddr = kmap_atomic(page);
962 op(vaddr + offset, len, dir);
963 kunmap_atomic(vaddr);
964 } else {
965 vaddr = kmap_high_get(page);
966 if (vaddr) {
967 op(vaddr + offset, len, dir);
968 kunmap_high(page);
969 }
970 }
971 } else {
972 vaddr = page_address(page) + offset;
973 op(vaddr, len, dir);
974 }
975 offset = 0;
976 pfn++;
977 left -= len;
978 } while (left);
979 }
980
981 /*
982 * Make an area consistent for devices.
983 * Note: Drivers should NOT use this function directly, as it will break
984 * platforms with CONFIG_DMABOUNCE.
985 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
986 */
987 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
988 size_t size, enum dma_data_direction dir)
989 {
990 phys_addr_t paddr;
991
992 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
993
994 paddr = page_to_phys(page) + off;
995 if (dir == DMA_FROM_DEVICE) {
996 outer_inv_range(paddr, paddr + size);
997 } else {
998 outer_clean_range(paddr, paddr + size);
999 }
1000 /* FIXME: non-speculating: flush on bidirectional mappings? */
1001 }
1002
1003 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1004 size_t size, enum dma_data_direction dir)
1005 {
1006 phys_addr_t paddr = page_to_phys(page) + off;
1007
1008 /* FIXME: non-speculating: not required */
1009 /* in any case, don't bother invalidating if DMA to device */
1010 if (dir != DMA_TO_DEVICE) {
1011 outer_inv_range(paddr, paddr + size);
1012
1013 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1014 }
1015
1016 /*
1017 * Mark the D-cache clean for these pages to avoid extra flushing.
1018 */
1019 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1020 unsigned long pfn;
1021 size_t left = size;
1022
1023 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1024 off %= PAGE_SIZE;
1025 if (off) {
1026 pfn++;
1027 left -= PAGE_SIZE - off;
1028 }
1029 while (left >= PAGE_SIZE) {
1030 page = pfn_to_page(pfn++);
1031 set_bit(PG_dcache_clean, &page->flags);
1032 left -= PAGE_SIZE;
1033 }
1034 }
1035 }
1036
1037 /**
1038 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1039 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1040 * @sg: list of buffers
1041 * @nents: number of buffers to map
1042 * @dir: DMA transfer direction
1043 *
1044 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1045 * This is the scatter-gather version of the dma_map_single interface.
1046 * Here the scatter gather list elements are each tagged with the
1047 * appropriate dma address and length. They are obtained via
1048 * sg_dma_{address,length}.
1049 *
1050 * Device ownership issues as mentioned for dma_map_single are the same
1051 * here.
1052 */
1053 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1054 enum dma_data_direction dir, unsigned long attrs)
1055 {
1056 const struct dma_map_ops *ops = get_dma_ops(dev);
1057 struct scatterlist *s;
1058 int i, j;
1059
1060 for_each_sg(sg, s, nents, i) {
1061 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1062 s->dma_length = s->length;
1063 #endif
1064 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1065 s->length, dir, attrs);
1066 if (dma_mapping_error(dev, s->dma_address))
1067 goto bad_mapping;
1068 }
1069 return nents;
1070
1071 bad_mapping:
1072 for_each_sg(sg, s, i, j)
1073 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1074 return 0;
1075 }
1076
1077 /**
1078 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1079 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1080 * @sg: list of buffers
1081 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1082 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1083 *
1084 * Unmap a set of streaming mode DMA translations. Again, CPU access
1085 * rules concerning calls here are the same as for dma_unmap_single().
1086 */
1087 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1088 enum dma_data_direction dir, unsigned long attrs)
1089 {
1090 const struct dma_map_ops *ops = get_dma_ops(dev);
1091 struct scatterlist *s;
1092
1093 int i;
1094
1095 for_each_sg(sg, s, nents, i)
1096 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1097 }
1098
1099 /**
1100 * arm_dma_sync_sg_for_cpu
1101 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1102 * @sg: list of buffers
1103 * @nents: number of buffers to map (returned from dma_map_sg)
1104 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1105 */
1106 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1107 int nents, enum dma_data_direction dir)
1108 {
1109 const struct dma_map_ops *ops = get_dma_ops(dev);
1110 struct scatterlist *s;
1111 int i;
1112
1113 for_each_sg(sg, s, nents, i)
1114 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1115 dir);
1116 }
1117
1118 /**
1119 * arm_dma_sync_sg_for_device
1120 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1121 * @sg: list of buffers
1122 * @nents: number of buffers to map (returned from dma_map_sg)
1123 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1124 */
1125 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1126 int nents, enum dma_data_direction dir)
1127 {
1128 const struct dma_map_ops *ops = get_dma_ops(dev);
1129 struct scatterlist *s;
1130 int i;
1131
1132 for_each_sg(sg, s, nents, i)
1133 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1134 dir);
1135 }
1136
1137 /*
1138 * Return whether the given device DMA address mask can be supported
1139 * properly. For example, if your device can only drive the low 24-bits
1140 * during bus mastering, then you would pass 0x00ffffff as the mask
1141 * to this function.
1142 */
1143 int arm_dma_supported(struct device *dev, u64 mask)
1144 {
1145 return __dma_supported(dev, mask, false);
1146 }
1147
1148 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1149 {
1150 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1151 }
1152
1153 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1154
1155 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1156 {
1157 int prot = 0;
1158
1159 if (attrs & DMA_ATTR_PRIVILEGED)
1160 prot |= IOMMU_PRIV;
1161
1162 switch (dir) {
1163 case DMA_BIDIRECTIONAL:
1164 return prot | IOMMU_READ | IOMMU_WRITE;
1165 case DMA_TO_DEVICE:
1166 return prot | IOMMU_READ;
1167 case DMA_FROM_DEVICE:
1168 return prot | IOMMU_WRITE;
1169 default:
1170 return prot;
1171 }
1172 }
1173
1174 /* IOMMU */
1175
1176 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1177
1178 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1179 size_t size)
1180 {
1181 unsigned int order = get_order(size);
1182 unsigned int align = 0;
1183 unsigned int count, start;
1184 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1185 unsigned long flags;
1186 dma_addr_t iova;
1187 int i;
1188
1189 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1190 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1191
1192 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193 align = (1 << order) - 1;
1194
1195 spin_lock_irqsave(&mapping->lock, flags);
1196 for (i = 0; i < mapping->nr_bitmaps; i++) {
1197 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1198 mapping->bits, 0, count, align);
1199
1200 if (start > mapping->bits)
1201 continue;
1202
1203 bitmap_set(mapping->bitmaps[i], start, count);
1204 break;
1205 }
1206
1207 /*
1208 * No unused range found. Try to extend the existing mapping
1209 * and perform a second attempt to reserve an IO virtual
1210 * address range of size bytes.
1211 */
1212 if (i == mapping->nr_bitmaps) {
1213 if (extend_iommu_mapping(mapping)) {
1214 spin_unlock_irqrestore(&mapping->lock, flags);
1215 return DMA_MAPPING_ERROR;
1216 }
1217
1218 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1219 mapping->bits, 0, count, align);
1220
1221 if (start > mapping->bits) {
1222 spin_unlock_irqrestore(&mapping->lock, flags);
1223 return DMA_MAPPING_ERROR;
1224 }
1225
1226 bitmap_set(mapping->bitmaps[i], start, count);
1227 }
1228 spin_unlock_irqrestore(&mapping->lock, flags);
1229
1230 iova = mapping->base + (mapping_size * i);
1231 iova += start << PAGE_SHIFT;
1232
1233 return iova;
1234 }
1235
1236 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1237 dma_addr_t addr, size_t size)
1238 {
1239 unsigned int start, count;
1240 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1241 unsigned long flags;
1242 dma_addr_t bitmap_base;
1243 u32 bitmap_index;
1244
1245 if (!size)
1246 return;
1247
1248 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1249 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1250
1251 bitmap_base = mapping->base + mapping_size * bitmap_index;
1252
1253 start = (addr - bitmap_base) >> PAGE_SHIFT;
1254
1255 if (addr + size > bitmap_base + mapping_size) {
1256 /*
1257 * The address range to be freed reaches into the iova
1258 * range of the next bitmap. This should not happen as
1259 * we don't allow this in __alloc_iova (at the
1260 * moment).
1261 */
1262 BUG();
1263 } else
1264 count = size >> PAGE_SHIFT;
1265
1266 spin_lock_irqsave(&mapping->lock, flags);
1267 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1268 spin_unlock_irqrestore(&mapping->lock, flags);
1269 }
1270
1271 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1272 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1273
1274 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1275 gfp_t gfp, unsigned long attrs,
1276 int coherent_flag)
1277 {
1278 struct page **pages;
1279 int count = size >> PAGE_SHIFT;
1280 int array_size = count * sizeof(struct page *);
1281 int i = 0;
1282 int order_idx = 0;
1283
1284 if (array_size <= PAGE_SIZE)
1285 pages = kzalloc(array_size, GFP_KERNEL);
1286 else
1287 pages = vzalloc(array_size);
1288 if (!pages)
1289 return NULL;
1290
1291 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1292 {
1293 unsigned long order = get_order(size);
1294 struct page *page;
1295
1296 page = dma_alloc_from_contiguous(dev, count, order,
1297 gfp & __GFP_NOWARN);
1298 if (!page)
1299 goto error;
1300
1301 __dma_clear_buffer(page, size, coherent_flag);
1302
1303 for (i = 0; i < count; i++)
1304 pages[i] = page + i;
1305
1306 return pages;
1307 }
1308
1309 /* Go straight to 4K chunks if caller says it's OK. */
1310 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1311 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1312
1313 /*
1314 * IOMMU can map any pages, so himem can also be used here
1315 */
1316 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1317
1318 while (count) {
1319 int j, order;
1320
1321 order = iommu_order_array[order_idx];
1322
1323 /* Drop down when we get small */
1324 if (__fls(count) < order) {
1325 order_idx++;
1326 continue;
1327 }
1328
1329 if (order) {
1330 /* See if it's easy to allocate a high-order chunk */
1331 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1332
1333 /* Go down a notch at first sign of pressure */
1334 if (!pages[i]) {
1335 order_idx++;
1336 continue;
1337 }
1338 } else {
1339 pages[i] = alloc_pages(gfp, 0);
1340 if (!pages[i])
1341 goto error;
1342 }
1343
1344 if (order) {
1345 split_page(pages[i], order);
1346 j = 1 << order;
1347 while (--j)
1348 pages[i + j] = pages[i] + j;
1349 }
1350
1351 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1352 i += 1 << order;
1353 count -= 1 << order;
1354 }
1355
1356 return pages;
1357 error:
1358 while (i--)
1359 if (pages[i])
1360 __free_pages(pages[i], 0);
1361 kvfree(pages);
1362 return NULL;
1363 }
1364
1365 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1366 size_t size, unsigned long attrs)
1367 {
1368 int count = size >> PAGE_SHIFT;
1369 int i;
1370
1371 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1372 dma_release_from_contiguous(dev, pages[0], count);
1373 } else {
1374 for (i = 0; i < count; i++)
1375 if (pages[i])
1376 __free_pages(pages[i], 0);
1377 }
1378
1379 kvfree(pages);
1380 return 0;
1381 }
1382
1383 /*
1384 * Create a CPU mapping for a specified pages
1385 */
1386 static void *
1387 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1388 const void *caller)
1389 {
1390 return dma_common_pages_remap(pages, size,
1391 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1392 }
1393
1394 /*
1395 * Create a mapping in device IO address space for specified pages
1396 */
1397 static dma_addr_t
1398 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1399 unsigned long attrs)
1400 {
1401 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1402 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1403 dma_addr_t dma_addr, iova;
1404 int i;
1405
1406 dma_addr = __alloc_iova(mapping, size);
1407 if (dma_addr == DMA_MAPPING_ERROR)
1408 return dma_addr;
1409
1410 iova = dma_addr;
1411 for (i = 0; i < count; ) {
1412 int ret;
1413
1414 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1415 phys_addr_t phys = page_to_phys(pages[i]);
1416 unsigned int len, j;
1417
1418 for (j = i + 1; j < count; j++, next_pfn++)
1419 if (page_to_pfn(pages[j]) != next_pfn)
1420 break;
1421
1422 len = (j - i) << PAGE_SHIFT;
1423 ret = iommu_map(mapping->domain, iova, phys, len,
1424 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1425 if (ret < 0)
1426 goto fail;
1427 iova += len;
1428 i = j;
1429 }
1430 return dma_addr;
1431 fail:
1432 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1433 __free_iova(mapping, dma_addr, size);
1434 return DMA_MAPPING_ERROR;
1435 }
1436
1437 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1438 {
1439 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1440
1441 /*
1442 * add optional in-page offset from iova to size and align
1443 * result to page size
1444 */
1445 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1446 iova &= PAGE_MASK;
1447
1448 iommu_unmap(mapping->domain, iova, size);
1449 __free_iova(mapping, iova, size);
1450 return 0;
1451 }
1452
1453 static struct page **__atomic_get_pages(void *addr)
1454 {
1455 struct page *page;
1456 phys_addr_t phys;
1457
1458 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1459 page = phys_to_page(phys);
1460
1461 return (struct page **)page;
1462 }
1463
1464 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1465 {
1466 struct vm_struct *area;
1467
1468 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1469 return __atomic_get_pages(cpu_addr);
1470
1471 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1472 return cpu_addr;
1473
1474 area = find_vm_area(cpu_addr);
1475 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1476 return area->pages;
1477 return NULL;
1478 }
1479
1480 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1481 dma_addr_t *handle, int coherent_flag,
1482 unsigned long attrs)
1483 {
1484 struct page *page;
1485 void *addr;
1486
1487 if (coherent_flag == COHERENT)
1488 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1489 else
1490 addr = __alloc_from_pool(size, &page);
1491 if (!addr)
1492 return NULL;
1493
1494 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1495 if (*handle == DMA_MAPPING_ERROR)
1496 goto err_mapping;
1497
1498 return addr;
1499
1500 err_mapping:
1501 __free_from_pool(addr, size);
1502 return NULL;
1503 }
1504
1505 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1506 dma_addr_t handle, size_t size, int coherent_flag)
1507 {
1508 __iommu_remove_mapping(dev, handle, size);
1509 if (coherent_flag == COHERENT)
1510 __dma_free_buffer(virt_to_page(cpu_addr), size);
1511 else
1512 __free_from_pool(cpu_addr, size);
1513 }
1514
1515 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1516 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1517 int coherent_flag)
1518 {
1519 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1520 struct page **pages;
1521 void *addr = NULL;
1522
1523 *handle = DMA_MAPPING_ERROR;
1524 size = PAGE_ALIGN(size);
1525
1526 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1527 return __iommu_alloc_simple(dev, size, gfp, handle,
1528 coherent_flag, attrs);
1529
1530 /*
1531 * Following is a work-around (a.k.a. hack) to prevent pages
1532 * with __GFP_COMP being passed to split_page() which cannot
1533 * handle them. The real problem is that this flag probably
1534 * should be 0 on ARM as it is not supported on this
1535 * platform; see CONFIG_HUGETLBFS.
1536 */
1537 gfp &= ~(__GFP_COMP);
1538
1539 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1540 if (!pages)
1541 return NULL;
1542
1543 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1544 if (*handle == DMA_MAPPING_ERROR)
1545 goto err_buffer;
1546
1547 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1548 return pages;
1549
1550 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1551 __builtin_return_address(0));
1552 if (!addr)
1553 goto err_mapping;
1554
1555 return addr;
1556
1557 err_mapping:
1558 __iommu_remove_mapping(dev, *handle, size);
1559 err_buffer:
1560 __iommu_free_buffer(dev, pages, size, attrs);
1561 return NULL;
1562 }
1563
1564 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1565 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1566 {
1567 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1568 }
1569
1570 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1571 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1572 {
1573 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1574 }
1575
1576 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1577 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1578 unsigned long attrs)
1579 {
1580 unsigned long uaddr = vma->vm_start;
1581 unsigned long usize = vma->vm_end - vma->vm_start;
1582 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1583 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1584 unsigned long off = vma->vm_pgoff;
1585
1586 if (!pages)
1587 return -ENXIO;
1588
1589 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1590 return -ENXIO;
1591
1592 pages += off;
1593
1594 do {
1595 int ret = vm_insert_page(vma, uaddr, *pages++);
1596 if (ret) {
1597 pr_err("Remapping memory failed: %d\n", ret);
1598 return ret;
1599 }
1600 uaddr += PAGE_SIZE;
1601 usize -= PAGE_SIZE;
1602 } while (usize > 0);
1603
1604 return 0;
1605 }
1606 static int arm_iommu_mmap_attrs(struct device *dev,
1607 struct vm_area_struct *vma, void *cpu_addr,
1608 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1609 {
1610 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1611
1612 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1613 }
1614
1615 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1616 struct vm_area_struct *vma, void *cpu_addr,
1617 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1618 {
1619 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1620 }
1621
1622 /*
1623 * free a page as defined by the above mapping.
1624 * Must not be called with IRQs disabled.
1625 */
1626 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1627 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1628 {
1629 struct page **pages;
1630 size = PAGE_ALIGN(size);
1631
1632 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1633 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1634 return;
1635 }
1636
1637 pages = __iommu_get_pages(cpu_addr, attrs);
1638 if (!pages) {
1639 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1640 return;
1641 }
1642
1643 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1644 dma_common_free_remap(cpu_addr, size,
1645 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1646 }
1647
1648 __iommu_remove_mapping(dev, handle, size);
1649 __iommu_free_buffer(dev, pages, size, attrs);
1650 }
1651
1652 void arm_iommu_free_attrs(struct device *dev, size_t size,
1653 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1654 {
1655 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1656 }
1657
1658 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1659 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1660 {
1661 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1662 }
1663
1664 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1665 void *cpu_addr, dma_addr_t dma_addr,
1666 size_t size, unsigned long attrs)
1667 {
1668 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1669 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1670
1671 if (!pages)
1672 return -ENXIO;
1673
1674 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1675 GFP_KERNEL);
1676 }
1677
1678 /*
1679 * Map a part of the scatter-gather list into contiguous io address space
1680 */
1681 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1682 size_t size, dma_addr_t *handle,
1683 enum dma_data_direction dir, unsigned long attrs,
1684 bool is_coherent)
1685 {
1686 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1687 dma_addr_t iova, iova_base;
1688 int ret = 0;
1689 unsigned int count;
1690 struct scatterlist *s;
1691 int prot;
1692
1693 size = PAGE_ALIGN(size);
1694 *handle = DMA_MAPPING_ERROR;
1695
1696 iova_base = iova = __alloc_iova(mapping, size);
1697 if (iova == DMA_MAPPING_ERROR)
1698 return -ENOMEM;
1699
1700 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1701 phys_addr_t phys = page_to_phys(sg_page(s));
1702 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1703
1704 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1705 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1706
1707 prot = __dma_info_to_prot(dir, attrs);
1708
1709 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1710 if (ret < 0)
1711 goto fail;
1712 count += len >> PAGE_SHIFT;
1713 iova += len;
1714 }
1715 *handle = iova_base;
1716
1717 return 0;
1718 fail:
1719 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1720 __free_iova(mapping, iova_base, size);
1721 return ret;
1722 }
1723
1724 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1725 enum dma_data_direction dir, unsigned long attrs,
1726 bool is_coherent)
1727 {
1728 struct scatterlist *s = sg, *dma = sg, *start = sg;
1729 int i, count = 0;
1730 unsigned int offset = s->offset;
1731 unsigned int size = s->offset + s->length;
1732 unsigned int max = dma_get_max_seg_size(dev);
1733
1734 for (i = 1; i < nents; i++) {
1735 s = sg_next(s);
1736
1737 s->dma_address = DMA_MAPPING_ERROR;
1738 s->dma_length = 0;
1739
1740 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1741 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1742 dir, attrs, is_coherent) < 0)
1743 goto bad_mapping;
1744
1745 dma->dma_address += offset;
1746 dma->dma_length = size - offset;
1747
1748 size = offset = s->offset;
1749 start = s;
1750 dma = sg_next(dma);
1751 count += 1;
1752 }
1753 size += s->length;
1754 }
1755 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1756 is_coherent) < 0)
1757 goto bad_mapping;
1758
1759 dma->dma_address += offset;
1760 dma->dma_length = size - offset;
1761
1762 return count+1;
1763
1764 bad_mapping:
1765 for_each_sg(sg, s, count, i)
1766 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1767 return 0;
1768 }
1769
1770 /**
1771 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1772 * @dev: valid struct device pointer
1773 * @sg: list of buffers
1774 * @nents: number of buffers to map
1775 * @dir: DMA transfer direction
1776 *
1777 * Map a set of i/o coherent buffers described by scatterlist in streaming
1778 * mode for DMA. The scatter gather list elements are merged together (if
1779 * possible) and tagged with the appropriate dma address and length. They are
1780 * obtained via sg_dma_{address,length}.
1781 */
1782 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1783 int nents, enum dma_data_direction dir, unsigned long attrs)
1784 {
1785 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1786 }
1787
1788 /**
1789 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1790 * @dev: valid struct device pointer
1791 * @sg: list of buffers
1792 * @nents: number of buffers to map
1793 * @dir: DMA transfer direction
1794 *
1795 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1796 * The scatter gather list elements are merged together (if possible) and
1797 * tagged with the appropriate dma address and length. They are obtained via
1798 * sg_dma_{address,length}.
1799 */
1800 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1801 int nents, enum dma_data_direction dir, unsigned long attrs)
1802 {
1803 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1804 }
1805
1806 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1807 int nents, enum dma_data_direction dir,
1808 unsigned long attrs, bool is_coherent)
1809 {
1810 struct scatterlist *s;
1811 int i;
1812
1813 for_each_sg(sg, s, nents, i) {
1814 if (sg_dma_len(s))
1815 __iommu_remove_mapping(dev, sg_dma_address(s),
1816 sg_dma_len(s));
1817 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1818 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1819 s->length, dir);
1820 }
1821 }
1822
1823 /**
1824 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1825 * @dev: valid struct device pointer
1826 * @sg: list of buffers
1827 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1828 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1829 *
1830 * Unmap a set of streaming mode DMA translations. Again, CPU access
1831 * rules concerning calls here are the same as for dma_unmap_single().
1832 */
1833 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1834 int nents, enum dma_data_direction dir,
1835 unsigned long attrs)
1836 {
1837 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1838 }
1839
1840 /**
1841 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1842 * @dev: valid struct device pointer
1843 * @sg: list of buffers
1844 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846 *
1847 * Unmap a set of streaming mode DMA translations. Again, CPU access
1848 * rules concerning calls here are the same as for dma_unmap_single().
1849 */
1850 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1851 enum dma_data_direction dir,
1852 unsigned long attrs)
1853 {
1854 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1855 }
1856
1857 /**
1858 * arm_iommu_sync_sg_for_cpu
1859 * @dev: valid struct device pointer
1860 * @sg: list of buffers
1861 * @nents: number of buffers to map (returned from dma_map_sg)
1862 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1863 */
1864 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1865 int nents, enum dma_data_direction dir)
1866 {
1867 struct scatterlist *s;
1868 int i;
1869
1870 for_each_sg(sg, s, nents, i)
1871 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1872
1873 }
1874
1875 /**
1876 * arm_iommu_sync_sg_for_device
1877 * @dev: valid struct device pointer
1878 * @sg: list of buffers
1879 * @nents: number of buffers to map (returned from dma_map_sg)
1880 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1881 */
1882 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1883 int nents, enum dma_data_direction dir)
1884 {
1885 struct scatterlist *s;
1886 int i;
1887
1888 for_each_sg(sg, s, nents, i)
1889 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1890 }
1891
1892
1893 /**
1894 * arm_coherent_iommu_map_page
1895 * @dev: valid struct device pointer
1896 * @page: page that buffer resides in
1897 * @offset: offset into page for start of buffer
1898 * @size: size of buffer to map
1899 * @dir: DMA transfer direction
1900 *
1901 * Coherent IOMMU aware version of arm_dma_map_page()
1902 */
1903 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1904 unsigned long offset, size_t size, enum dma_data_direction dir,
1905 unsigned long attrs)
1906 {
1907 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1908 dma_addr_t dma_addr;
1909 int ret, prot, len = PAGE_ALIGN(size + offset);
1910
1911 dma_addr = __alloc_iova(mapping, len);
1912 if (dma_addr == DMA_MAPPING_ERROR)
1913 return dma_addr;
1914
1915 prot = __dma_info_to_prot(dir, attrs);
1916
1917 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1918 if (ret < 0)
1919 goto fail;
1920
1921 return dma_addr + offset;
1922 fail:
1923 __free_iova(mapping, dma_addr, len);
1924 return DMA_MAPPING_ERROR;
1925 }
1926
1927 /**
1928 * arm_iommu_map_page
1929 * @dev: valid struct device pointer
1930 * @page: page that buffer resides in
1931 * @offset: offset into page for start of buffer
1932 * @size: size of buffer to map
1933 * @dir: DMA transfer direction
1934 *
1935 * IOMMU aware version of arm_dma_map_page()
1936 */
1937 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1938 unsigned long offset, size_t size, enum dma_data_direction dir,
1939 unsigned long attrs)
1940 {
1941 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1942 __dma_page_cpu_to_dev(page, offset, size, dir);
1943
1944 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1945 }
1946
1947 /**
1948 * arm_coherent_iommu_unmap_page
1949 * @dev: valid struct device pointer
1950 * @handle: DMA address of buffer
1951 * @size: size of buffer (same as passed to dma_map_page)
1952 * @dir: DMA transfer direction (same as passed to dma_map_page)
1953 *
1954 * Coherent IOMMU aware version of arm_dma_unmap_page()
1955 */
1956 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1957 size_t size, enum dma_data_direction dir, unsigned long attrs)
1958 {
1959 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1960 dma_addr_t iova = handle & PAGE_MASK;
1961 int offset = handle & ~PAGE_MASK;
1962 int len = PAGE_ALIGN(size + offset);
1963
1964 if (!iova)
1965 return;
1966
1967 iommu_unmap(mapping->domain, iova, len);
1968 __free_iova(mapping, iova, len);
1969 }
1970
1971 /**
1972 * arm_iommu_unmap_page
1973 * @dev: valid struct device pointer
1974 * @handle: DMA address of buffer
1975 * @size: size of buffer (same as passed to dma_map_page)
1976 * @dir: DMA transfer direction (same as passed to dma_map_page)
1977 *
1978 * IOMMU aware version of arm_dma_unmap_page()
1979 */
1980 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1981 size_t size, enum dma_data_direction dir, unsigned long attrs)
1982 {
1983 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984 dma_addr_t iova = handle & PAGE_MASK;
1985 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986 int offset = handle & ~PAGE_MASK;
1987 int len = PAGE_ALIGN(size + offset);
1988
1989 if (!iova)
1990 return;
1991
1992 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1993 __dma_page_dev_to_cpu(page, offset, size, dir);
1994
1995 iommu_unmap(mapping->domain, iova, len);
1996 __free_iova(mapping, iova, len);
1997 }
1998
1999 /**
2000 * arm_iommu_map_resource - map a device resource for DMA
2001 * @dev: valid struct device pointer
2002 * @phys_addr: physical address of resource
2003 * @size: size of resource to map
2004 * @dir: DMA transfer direction
2005 */
2006 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2007 phys_addr_t phys_addr, size_t size,
2008 enum dma_data_direction dir, unsigned long attrs)
2009 {
2010 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2011 dma_addr_t dma_addr;
2012 int ret, prot;
2013 phys_addr_t addr = phys_addr & PAGE_MASK;
2014 unsigned int offset = phys_addr & ~PAGE_MASK;
2015 size_t len = PAGE_ALIGN(size + offset);
2016
2017 dma_addr = __alloc_iova(mapping, len);
2018 if (dma_addr == DMA_MAPPING_ERROR)
2019 return dma_addr;
2020
2021 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2022
2023 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2024 if (ret < 0)
2025 goto fail;
2026
2027 return dma_addr + offset;
2028 fail:
2029 __free_iova(mapping, dma_addr, len);
2030 return DMA_MAPPING_ERROR;
2031 }
2032
2033 /**
2034 * arm_iommu_unmap_resource - unmap a device DMA resource
2035 * @dev: valid struct device pointer
2036 * @dma_handle: DMA address to resource
2037 * @size: size of resource to map
2038 * @dir: DMA transfer direction
2039 */
2040 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2041 size_t size, enum dma_data_direction dir,
2042 unsigned long attrs)
2043 {
2044 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2045 dma_addr_t iova = dma_handle & PAGE_MASK;
2046 unsigned int offset = dma_handle & ~PAGE_MASK;
2047 size_t len = PAGE_ALIGN(size + offset);
2048
2049 if (!iova)
2050 return;
2051
2052 iommu_unmap(mapping->domain, iova, len);
2053 __free_iova(mapping, iova, len);
2054 }
2055
2056 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2057 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2058 {
2059 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2060 dma_addr_t iova = handle & PAGE_MASK;
2061 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2062 unsigned int offset = handle & ~PAGE_MASK;
2063
2064 if (!iova)
2065 return;
2066
2067 __dma_page_dev_to_cpu(page, offset, size, dir);
2068 }
2069
2070 static void arm_iommu_sync_single_for_device(struct device *dev,
2071 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2072 {
2073 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2074 dma_addr_t iova = handle & PAGE_MASK;
2075 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2076 unsigned int offset = handle & ~PAGE_MASK;
2077
2078 if (!iova)
2079 return;
2080
2081 __dma_page_cpu_to_dev(page, offset, size, dir);
2082 }
2083
2084 const struct dma_map_ops iommu_ops = {
2085 .alloc = arm_iommu_alloc_attrs,
2086 .free = arm_iommu_free_attrs,
2087 .mmap = arm_iommu_mmap_attrs,
2088 .get_sgtable = arm_iommu_get_sgtable,
2089
2090 .map_page = arm_iommu_map_page,
2091 .unmap_page = arm_iommu_unmap_page,
2092 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2093 .sync_single_for_device = arm_iommu_sync_single_for_device,
2094
2095 .map_sg = arm_iommu_map_sg,
2096 .unmap_sg = arm_iommu_unmap_sg,
2097 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2098 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2099
2100 .map_resource = arm_iommu_map_resource,
2101 .unmap_resource = arm_iommu_unmap_resource,
2102
2103 .dma_supported = arm_dma_supported,
2104 };
2105
2106 const struct dma_map_ops iommu_coherent_ops = {
2107 .alloc = arm_coherent_iommu_alloc_attrs,
2108 .free = arm_coherent_iommu_free_attrs,
2109 .mmap = arm_coherent_iommu_mmap_attrs,
2110 .get_sgtable = arm_iommu_get_sgtable,
2111
2112 .map_page = arm_coherent_iommu_map_page,
2113 .unmap_page = arm_coherent_iommu_unmap_page,
2114
2115 .map_sg = arm_coherent_iommu_map_sg,
2116 .unmap_sg = arm_coherent_iommu_unmap_sg,
2117
2118 .map_resource = arm_iommu_map_resource,
2119 .unmap_resource = arm_iommu_unmap_resource,
2120
2121 .dma_supported = arm_dma_supported,
2122 };
2123
2124 /**
2125 * arm_iommu_create_mapping
2126 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2127 * @base: start address of the valid IO address space
2128 * @size: maximum size of the valid IO address space
2129 *
2130 * Creates a mapping structure which holds information about used/unused
2131 * IO address ranges, which is required to perform memory allocation and
2132 * mapping with IOMMU aware functions.
2133 *
2134 * The client device need to be attached to the mapping with
2135 * arm_iommu_attach_device function.
2136 */
2137 struct dma_iommu_mapping *
2138 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2139 {
2140 unsigned int bits = size >> PAGE_SHIFT;
2141 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2142 struct dma_iommu_mapping *mapping;
2143 int extensions = 1;
2144 int err = -ENOMEM;
2145
2146 /* currently only 32-bit DMA address space is supported */
2147 if (size > DMA_BIT_MASK(32) + 1)
2148 return ERR_PTR(-ERANGE);
2149
2150 if (!bitmap_size)
2151 return ERR_PTR(-EINVAL);
2152
2153 if (bitmap_size > PAGE_SIZE) {
2154 extensions = bitmap_size / PAGE_SIZE;
2155 bitmap_size = PAGE_SIZE;
2156 }
2157
2158 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2159 if (!mapping)
2160 goto err;
2161
2162 mapping->bitmap_size = bitmap_size;
2163 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2164 GFP_KERNEL);
2165 if (!mapping->bitmaps)
2166 goto err2;
2167
2168 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2169 if (!mapping->bitmaps[0])
2170 goto err3;
2171
2172 mapping->nr_bitmaps = 1;
2173 mapping->extensions = extensions;
2174 mapping->base = base;
2175 mapping->bits = BITS_PER_BYTE * bitmap_size;
2176
2177 spin_lock_init(&mapping->lock);
2178
2179 mapping->domain = iommu_domain_alloc(bus);
2180 if (!mapping->domain)
2181 goto err4;
2182
2183 kref_init(&mapping->kref);
2184 return mapping;
2185 err4:
2186 kfree(mapping->bitmaps[0]);
2187 err3:
2188 kfree(mapping->bitmaps);
2189 err2:
2190 kfree(mapping);
2191 err:
2192 return ERR_PTR(err);
2193 }
2194 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2195
2196 static void release_iommu_mapping(struct kref *kref)
2197 {
2198 int i;
2199 struct dma_iommu_mapping *mapping =
2200 container_of(kref, struct dma_iommu_mapping, kref);
2201
2202 iommu_domain_free(mapping->domain);
2203 for (i = 0; i < mapping->nr_bitmaps; i++)
2204 kfree(mapping->bitmaps[i]);
2205 kfree(mapping->bitmaps);
2206 kfree(mapping);
2207 }
2208
2209 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2210 {
2211 int next_bitmap;
2212
2213 if (mapping->nr_bitmaps >= mapping->extensions)
2214 return -EINVAL;
2215
2216 next_bitmap = mapping->nr_bitmaps;
2217 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2218 GFP_ATOMIC);
2219 if (!mapping->bitmaps[next_bitmap])
2220 return -ENOMEM;
2221
2222 mapping->nr_bitmaps++;
2223
2224 return 0;
2225 }
2226
2227 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2228 {
2229 if (mapping)
2230 kref_put(&mapping->kref, release_iommu_mapping);
2231 }
2232 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2233
2234 static int __arm_iommu_attach_device(struct device *dev,
2235 struct dma_iommu_mapping *mapping)
2236 {
2237 int err;
2238
2239 err = iommu_attach_device(mapping->domain, dev);
2240 if (err)
2241 return err;
2242
2243 kref_get(&mapping->kref);
2244 to_dma_iommu_mapping(dev) = mapping;
2245
2246 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2247 return 0;
2248 }
2249
2250 /**
2251 * arm_iommu_attach_device
2252 * @dev: valid struct device pointer
2253 * @mapping: io address space mapping structure (returned from
2254 * arm_iommu_create_mapping)
2255 *
2256 * Attaches specified io address space mapping to the provided device.
2257 * This replaces the dma operations (dma_map_ops pointer) with the
2258 * IOMMU aware version.
2259 *
2260 * More than one client might be attached to the same io address space
2261 * mapping.
2262 */
2263 int arm_iommu_attach_device(struct device *dev,
2264 struct dma_iommu_mapping *mapping)
2265 {
2266 int err;
2267
2268 err = __arm_iommu_attach_device(dev, mapping);
2269 if (err)
2270 return err;
2271
2272 set_dma_ops(dev, &iommu_ops);
2273 return 0;
2274 }
2275 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2276
2277 /**
2278 * arm_iommu_detach_device
2279 * @dev: valid struct device pointer
2280 *
2281 * Detaches the provided device from a previously attached map.
2282 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2283 */
2284 void arm_iommu_detach_device(struct device *dev)
2285 {
2286 struct dma_iommu_mapping *mapping;
2287
2288 mapping = to_dma_iommu_mapping(dev);
2289 if (!mapping) {
2290 dev_warn(dev, "Not attached\n");
2291 return;
2292 }
2293
2294 iommu_detach_device(mapping->domain, dev);
2295 kref_put(&mapping->kref, release_iommu_mapping);
2296 to_dma_iommu_mapping(dev) = NULL;
2297 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2298
2299 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2300 }
2301 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2302
2303 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2304 {
2305 return coherent ? &iommu_coherent_ops : &iommu_ops;
2306 }
2307
2308 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2309 const struct iommu_ops *iommu)
2310 {
2311 struct dma_iommu_mapping *mapping;
2312
2313 if (!iommu)
2314 return false;
2315
2316 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2317 if (IS_ERR(mapping)) {
2318 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2319 size, dev_name(dev));
2320 return false;
2321 }
2322
2323 if (__arm_iommu_attach_device(dev, mapping)) {
2324 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2325 dev_name(dev));
2326 arm_iommu_release_mapping(mapping);
2327 return false;
2328 }
2329
2330 return true;
2331 }
2332
2333 static void arm_teardown_iommu_dma_ops(struct device *dev)
2334 {
2335 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2336
2337 if (!mapping)
2338 return;
2339
2340 arm_iommu_detach_device(dev);
2341 arm_iommu_release_mapping(mapping);
2342 }
2343
2344 #else
2345
2346 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2347 const struct iommu_ops *iommu)
2348 {
2349 return false;
2350 }
2351
2352 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2353
2354 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2355
2356 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2357
2358 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2359 const struct iommu_ops *iommu, bool coherent)
2360 {
2361 const struct dma_map_ops *dma_ops;
2362
2363 dev->archdata.dma_coherent = coherent;
2364
2365 /*
2366 * Don't override the dma_ops if they have already been set. Ideally
2367 * this should be the only location where dma_ops are set, remove this
2368 * check when all other callers of set_dma_ops will have disappeared.
2369 */
2370 if (dev->dma_ops)
2371 return;
2372
2373 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2374 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2375 else
2376 dma_ops = arm_get_dma_map_ops(coherent);
2377
2378 set_dma_ops(dev, dma_ops);
2379
2380 #ifdef CONFIG_XEN
2381 if (xen_initial_domain()) {
2382 dev->archdata.dev_dma_ops = dev->dma_ops;
2383 dev->dma_ops = xen_dma_ops;
2384 }
2385 #endif
2386 dev->archdata.dma_ops_setup = true;
2387 }
2388
2389 void arch_teardown_dma_ops(struct device *dev)
2390 {
2391 if (!dev->archdata.dma_ops_setup)
2392 return;
2393
2394 arm_teardown_iommu_dma_ops(dev);
2395 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2396 set_dma_ops(dev, NULL);
2397 }