]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm/mm/dma-mapping.c
x86: Fix APIC ID sizing bug on larger systems, clean up MAX_APICS confusion
[mirror_ubuntu-jammy-kernel.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20
21 #include <asm/memory.h>
22 #include <asm/highmem.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/sizes.h>
26
27 static u64 get_coherent_dma_mask(struct device *dev)
28 {
29 u64 mask = ISA_DMA_THRESHOLD;
30
31 if (dev) {
32 mask = dev->coherent_dma_mask;
33
34 /*
35 * Sanity check the DMA mask - it must be non-zero, and
36 * must be able to be satisfied by a DMA allocation.
37 */
38 if (mask == 0) {
39 dev_warn(dev, "coherent DMA mask is unset\n");
40 return 0;
41 }
42
43 if ((~mask) & ISA_DMA_THRESHOLD) {
44 dev_warn(dev, "coherent DMA mask %#llx is smaller "
45 "than system GFP_DMA mask %#llx\n",
46 mask, (unsigned long long)ISA_DMA_THRESHOLD);
47 return 0;
48 }
49 }
50
51 return mask;
52 }
53
54 /*
55 * Allocate a DMA buffer for 'dev' of size 'size' using the
56 * specified gfp mask. Note that 'size' must be page aligned.
57 */
58 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
59 {
60 unsigned long order = get_order(size);
61 struct page *page, *p, *e;
62 void *ptr;
63 u64 mask = get_coherent_dma_mask(dev);
64
65 #ifdef CONFIG_DMA_API_DEBUG
66 u64 limit = (mask + 1) & ~mask;
67 if (limit && size >= limit) {
68 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
69 size, mask);
70 return NULL;
71 }
72 #endif
73
74 if (!mask)
75 return NULL;
76
77 if (mask < 0xffffffffULL)
78 gfp |= GFP_DMA;
79
80 page = alloc_pages(gfp, order);
81 if (!page)
82 return NULL;
83
84 /*
85 * Now split the huge page and free the excess pages
86 */
87 split_page(page, order);
88 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
89 __free_page(p);
90
91 /*
92 * Ensure that the allocated pages are zeroed, and that any data
93 * lurking in the kernel direct-mapped region is invalidated.
94 */
95 ptr = page_address(page);
96 memset(ptr, 0, size);
97 dmac_flush_range(ptr, ptr + size);
98 outer_flush_range(__pa(ptr), __pa(ptr) + size);
99
100 return page;
101 }
102
103 /*
104 * Free a DMA buffer. 'size' must be page aligned.
105 */
106 static void __dma_free_buffer(struct page *page, size_t size)
107 {
108 struct page *e = page + (size >> PAGE_SHIFT);
109
110 while (page < e) {
111 __free_page(page);
112 page++;
113 }
114 }
115
116 #ifdef CONFIG_MMU
117 /* Sanity check size */
118 #if (CONSISTENT_DMA_SIZE % SZ_2M)
119 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
120 #endif
121
122 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
123 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
124 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
125
126 /*
127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128 */
129 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
130
131 #include "vmregion.h"
132
133 static struct arm_vmregion_head consistent_head = {
134 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
135 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
136 .vm_start = CONSISTENT_BASE,
137 .vm_end = CONSISTENT_END,
138 };
139
140 #ifdef CONFIG_HUGETLB_PAGE
141 #error ARM Coherent DMA allocator does not (yet) support huge TLB
142 #endif
143
144 /*
145 * Initialise the consistent memory allocation.
146 */
147 static int __init consistent_init(void)
148 {
149 int ret = 0;
150 pgd_t *pgd;
151 pmd_t *pmd;
152 pte_t *pte;
153 int i = 0;
154 u32 base = CONSISTENT_BASE;
155
156 do {
157 pgd = pgd_offset(&init_mm, base);
158 pmd = pmd_alloc(&init_mm, pgd, base);
159 if (!pmd) {
160 printk(KERN_ERR "%s: no pmd tables\n", __func__);
161 ret = -ENOMEM;
162 break;
163 }
164 WARN_ON(!pmd_none(*pmd));
165
166 pte = pte_alloc_kernel(pmd, base);
167 if (!pte) {
168 printk(KERN_ERR "%s: no pte tables\n", __func__);
169 ret = -ENOMEM;
170 break;
171 }
172
173 consistent_pte[i++] = pte;
174 base += (1 << PGDIR_SHIFT);
175 } while (base < CONSISTENT_END);
176
177 return ret;
178 }
179
180 core_initcall(consistent_init);
181
182 static void *
183 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
184 {
185 struct arm_vmregion *c;
186 size_t align;
187 int bit;
188
189 if (!consistent_pte[0]) {
190 printk(KERN_ERR "%s: not initialised\n", __func__);
191 dump_stack();
192 return NULL;
193 }
194
195 /*
196 * Align the virtual region allocation - maximum alignment is
197 * a section size, minimum is a page size. This helps reduce
198 * fragmentation of the DMA space, and also prevents allocations
199 * smaller than a section from crossing a section boundary.
200 */
201 bit = fls(size - 1);
202 if (bit > SECTION_SHIFT)
203 bit = SECTION_SHIFT;
204 align = 1 << bit;
205
206 /*
207 * Allocate a virtual address in the consistent mapping region.
208 */
209 c = arm_vmregion_alloc(&consistent_head, align, size,
210 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
211 if (c) {
212 pte_t *pte;
213 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
214 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
215
216 pte = consistent_pte[idx] + off;
217 c->vm_pages = page;
218
219 do {
220 BUG_ON(!pte_none(*pte));
221
222 set_pte_ext(pte, mk_pte(page, prot), 0);
223 page++;
224 pte++;
225 off++;
226 if (off >= PTRS_PER_PTE) {
227 off = 0;
228 pte = consistent_pte[++idx];
229 }
230 } while (size -= PAGE_SIZE);
231
232 dsb();
233
234 return (void *)c->vm_start;
235 }
236 return NULL;
237 }
238
239 static void __dma_free_remap(void *cpu_addr, size_t size)
240 {
241 struct arm_vmregion *c;
242 unsigned long addr;
243 pte_t *ptep;
244 int idx;
245 u32 off;
246
247 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
248 if (!c) {
249 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
250 __func__, cpu_addr);
251 dump_stack();
252 return;
253 }
254
255 if ((c->vm_end - c->vm_start) != size) {
256 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
257 __func__, c->vm_end - c->vm_start, size);
258 dump_stack();
259 size = c->vm_end - c->vm_start;
260 }
261
262 idx = CONSISTENT_PTE_INDEX(c->vm_start);
263 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
264 ptep = consistent_pte[idx] + off;
265 addr = c->vm_start;
266 do {
267 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
268
269 ptep++;
270 addr += PAGE_SIZE;
271 off++;
272 if (off >= PTRS_PER_PTE) {
273 off = 0;
274 ptep = consistent_pte[++idx];
275 }
276
277 if (pte_none(pte) || !pte_present(pte))
278 printk(KERN_CRIT "%s: bad page in kernel page table\n",
279 __func__);
280 } while (size -= PAGE_SIZE);
281
282 flush_tlb_kernel_range(c->vm_start, c->vm_end);
283
284 arm_vmregion_free(&consistent_head, c);
285 }
286
287 #else /* !CONFIG_MMU */
288
289 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
290 #define __dma_free_remap(addr, size) do { } while (0)
291
292 #endif /* CONFIG_MMU */
293
294 static void *
295 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
296 pgprot_t prot)
297 {
298 struct page *page;
299 void *addr;
300
301 *handle = ~0;
302 size = PAGE_ALIGN(size);
303
304 page = __dma_alloc_buffer(dev, size, gfp);
305 if (!page)
306 return NULL;
307
308 if (!arch_is_coherent())
309 addr = __dma_alloc_remap(page, size, gfp, prot);
310 else
311 addr = page_address(page);
312
313 if (addr)
314 *handle = page_to_dma(dev, page);
315
316 return addr;
317 }
318
319 /*
320 * Allocate DMA-coherent memory space and return both the kernel remapped
321 * virtual and bus address for that space.
322 */
323 void *
324 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
325 {
326 void *memory;
327
328 if (dma_alloc_from_coherent(dev, size, handle, &memory))
329 return memory;
330
331 return __dma_alloc(dev, size, handle, gfp,
332 pgprot_dmacoherent(pgprot_kernel));
333 }
334 EXPORT_SYMBOL(dma_alloc_coherent);
335
336 /*
337 * Allocate a writecombining region, in much the same way as
338 * dma_alloc_coherent above.
339 */
340 void *
341 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
342 {
343 return __dma_alloc(dev, size, handle, gfp,
344 pgprot_writecombine(pgprot_kernel));
345 }
346 EXPORT_SYMBOL(dma_alloc_writecombine);
347
348 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
349 void *cpu_addr, dma_addr_t dma_addr, size_t size)
350 {
351 int ret = -ENXIO;
352 #ifdef CONFIG_MMU
353 unsigned long user_size, kern_size;
354 struct arm_vmregion *c;
355
356 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
357
358 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
359 if (c) {
360 unsigned long off = vma->vm_pgoff;
361
362 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
363
364 if (off < kern_size &&
365 user_size <= (kern_size - off)) {
366 ret = remap_pfn_range(vma, vma->vm_start,
367 page_to_pfn(c->vm_pages) + off,
368 user_size << PAGE_SHIFT,
369 vma->vm_page_prot);
370 }
371 }
372 #endif /* CONFIG_MMU */
373
374 return ret;
375 }
376
377 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
378 void *cpu_addr, dma_addr_t dma_addr, size_t size)
379 {
380 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
381 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
382 }
383 EXPORT_SYMBOL(dma_mmap_coherent);
384
385 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
386 void *cpu_addr, dma_addr_t dma_addr, size_t size)
387 {
388 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
389 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
390 }
391 EXPORT_SYMBOL(dma_mmap_writecombine);
392
393 /*
394 * free a page as defined by the above mapping.
395 * Must not be called with IRQs disabled.
396 */
397 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
398 {
399 WARN_ON(irqs_disabled());
400
401 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
402 return;
403
404 size = PAGE_ALIGN(size);
405
406 if (!arch_is_coherent())
407 __dma_free_remap(cpu_addr, size);
408
409 __dma_free_buffer(dma_to_page(dev, handle), size);
410 }
411 EXPORT_SYMBOL(dma_free_coherent);
412
413 /*
414 * Make an area consistent for devices.
415 * Note: Drivers should NOT use this function directly, as it will break
416 * platforms with CONFIG_DMABOUNCE.
417 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
418 */
419 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
420 enum dma_data_direction dir)
421 {
422 unsigned long paddr;
423
424 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
425
426 dmac_map_area(kaddr, size, dir);
427
428 paddr = __pa(kaddr);
429 if (dir == DMA_FROM_DEVICE) {
430 outer_inv_range(paddr, paddr + size);
431 } else {
432 outer_clean_range(paddr, paddr + size);
433 }
434 /* FIXME: non-speculating: flush on bidirectional mappings? */
435 }
436 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
437
438 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
439 enum dma_data_direction dir)
440 {
441 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
442
443 /* FIXME: non-speculating: not required */
444 /* don't bother invalidating if DMA to device */
445 if (dir != DMA_TO_DEVICE) {
446 unsigned long paddr = __pa(kaddr);
447 outer_inv_range(paddr, paddr + size);
448 }
449
450 dmac_unmap_area(kaddr, size, dir);
451 }
452 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
453
454 static void dma_cache_maint_page(struct page *page, unsigned long offset,
455 size_t size, enum dma_data_direction dir,
456 void (*op)(const void *, size_t, int))
457 {
458 /*
459 * A single sg entry may refer to multiple physically contiguous
460 * pages. But we still need to process highmem pages individually.
461 * If highmem is not configured then the bulk of this loop gets
462 * optimized out.
463 */
464 size_t left = size;
465 do {
466 size_t len = left;
467 void *vaddr;
468
469 if (PageHighMem(page)) {
470 if (len + offset > PAGE_SIZE) {
471 if (offset >= PAGE_SIZE) {
472 page += offset / PAGE_SIZE;
473 offset %= PAGE_SIZE;
474 }
475 len = PAGE_SIZE - offset;
476 }
477 vaddr = kmap_high_get(page);
478 if (vaddr) {
479 vaddr += offset;
480 op(vaddr, len, dir);
481 kunmap_high(page);
482 } else if (cache_is_vipt()) {
483 pte_t saved_pte;
484 vaddr = kmap_high_l1_vipt(page, &saved_pte);
485 op(vaddr + offset, len, dir);
486 kunmap_high_l1_vipt(page, saved_pte);
487 }
488 } else {
489 vaddr = page_address(page) + offset;
490 op(vaddr, len, dir);
491 }
492 offset = 0;
493 page++;
494 left -= len;
495 } while (left);
496 }
497
498 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
499 size_t size, enum dma_data_direction dir)
500 {
501 unsigned long paddr;
502
503 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
504
505 paddr = page_to_phys(page) + off;
506 if (dir == DMA_FROM_DEVICE) {
507 outer_inv_range(paddr, paddr + size);
508 } else {
509 outer_clean_range(paddr, paddr + size);
510 }
511 /* FIXME: non-speculating: flush on bidirectional mappings? */
512 }
513 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
514
515 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
516 size_t size, enum dma_data_direction dir)
517 {
518 unsigned long paddr = page_to_phys(page) + off;
519
520 /* FIXME: non-speculating: not required */
521 /* don't bother invalidating if DMA to device */
522 if (dir != DMA_TO_DEVICE)
523 outer_inv_range(paddr, paddr + size);
524
525 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
526
527 /*
528 * Mark the D-cache clean for this page to avoid extra flushing.
529 */
530 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
531 set_bit(PG_dcache_clean, &page->flags);
532 }
533 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
534
535 /**
536 * dma_map_sg - map a set of SG buffers for streaming mode DMA
537 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
538 * @sg: list of buffers
539 * @nents: number of buffers to map
540 * @dir: DMA transfer direction
541 *
542 * Map a set of buffers described by scatterlist in streaming mode for DMA.
543 * This is the scatter-gather version of the dma_map_single interface.
544 * Here the scatter gather list elements are each tagged with the
545 * appropriate dma address and length. They are obtained via
546 * sg_dma_{address,length}.
547 *
548 * Device ownership issues as mentioned for dma_map_single are the same
549 * here.
550 */
551 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
552 enum dma_data_direction dir)
553 {
554 struct scatterlist *s;
555 int i, j;
556
557 for_each_sg(sg, s, nents, i) {
558 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
559 s->length, dir);
560 if (dma_mapping_error(dev, s->dma_address))
561 goto bad_mapping;
562 }
563 return nents;
564
565 bad_mapping:
566 for_each_sg(sg, s, i, j)
567 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
568 return 0;
569 }
570 EXPORT_SYMBOL(dma_map_sg);
571
572 /**
573 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
574 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
575 * @sg: list of buffers
576 * @nents: number of buffers to unmap (returned from dma_map_sg)
577 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
578 *
579 * Unmap a set of streaming mode DMA translations. Again, CPU access
580 * rules concerning calls here are the same as for dma_unmap_single().
581 */
582 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
583 enum dma_data_direction dir)
584 {
585 struct scatterlist *s;
586 int i;
587
588 for_each_sg(sg, s, nents, i)
589 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
590 }
591 EXPORT_SYMBOL(dma_unmap_sg);
592
593 /**
594 * dma_sync_sg_for_cpu
595 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
596 * @sg: list of buffers
597 * @nents: number of buffers to map (returned from dma_map_sg)
598 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
599 */
600 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
601 int nents, enum dma_data_direction dir)
602 {
603 struct scatterlist *s;
604 int i;
605
606 for_each_sg(sg, s, nents, i) {
607 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
608 sg_dma_len(s), dir))
609 continue;
610
611 __dma_page_dev_to_cpu(sg_page(s), s->offset,
612 s->length, dir);
613 }
614 }
615 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
616
617 /**
618 * dma_sync_sg_for_device
619 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
620 * @sg: list of buffers
621 * @nents: number of buffers to map (returned from dma_map_sg)
622 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
623 */
624 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
625 int nents, enum dma_data_direction dir)
626 {
627 struct scatterlist *s;
628 int i;
629
630 for_each_sg(sg, s, nents, i) {
631 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
632 sg_dma_len(s), dir))
633 continue;
634
635 __dma_page_cpu_to_dev(sg_page(s), s->offset,
636 s->length, dir);
637 }
638 }
639 EXPORT_SYMBOL(dma_sync_sg_for_device);