]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/mm/dma-mapping.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "dma.h"
43 #include "mm.h"
44
45 /*
46 * The DMA API is built upon the notion of "buffer ownership". A buffer
47 * is either exclusively owned by the CPU (and therefore may be accessed
48 * by it) or exclusively owned by the DMA device. These helper functions
49 * represent the transitions between these two ownership states.
50 *
51 * Note, however, that on later ARMs, this notion does not work due to
52 * speculative prefetches. We model our approach on the assumption that
53 * the CPU does do speculative prefetches, which means we clean caches
54 * before transfers and delay cache invalidation until transfer completion.
55 *
56 */
57 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
58 size_t, enum dma_data_direction);
59 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
60 size_t, enum dma_data_direction);
61
62 /**
63 * arm_dma_map_page - map a portion of a page for streaming DMA
64 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
65 * @page: page that buffer resides in
66 * @offset: offset into page for start of buffer
67 * @size: size of buffer to map
68 * @dir: DMA transfer direction
69 *
70 * Ensure that any data held in the cache is appropriately discarded
71 * or written back.
72 *
73 * The device owns this memory once this call has completed. The CPU
74 * can regain ownership by calling dma_unmap_page().
75 */
76 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
77 unsigned long offset, size_t size, enum dma_data_direction dir,
78 struct dma_attrs *attrs)
79 {
80 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
81 __dma_page_cpu_to_dev(page, offset, size, dir);
82 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
83 }
84
85 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
86 unsigned long offset, size_t size, enum dma_data_direction dir,
87 struct dma_attrs *attrs)
88 {
89 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
90 }
91
92 /**
93 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
94 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
95 * @handle: DMA address of buffer
96 * @size: size of buffer (same as passed to dma_map_page)
97 * @dir: DMA transfer direction (same as passed to dma_map_page)
98 *
99 * Unmap a page streaming mode DMA translation. The handle and size
100 * must match what was provided in the previous dma_map_page() call.
101 * All other usages are undefined.
102 *
103 * After this call, reads by the CPU to the buffer are guaranteed to see
104 * whatever the device wrote there.
105 */
106 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
107 size_t size, enum dma_data_direction dir,
108 struct dma_attrs *attrs)
109 {
110 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
111 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
112 handle & ~PAGE_MASK, size, dir);
113 }
114
115 static void arm_dma_sync_single_for_cpu(struct device *dev,
116 dma_addr_t handle, size_t size, enum dma_data_direction dir)
117 {
118 unsigned int offset = handle & (PAGE_SIZE - 1);
119 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
120 __dma_page_dev_to_cpu(page, offset, size, dir);
121 }
122
123 static void arm_dma_sync_single_for_device(struct device *dev,
124 dma_addr_t handle, size_t size, enum dma_data_direction dir)
125 {
126 unsigned int offset = handle & (PAGE_SIZE - 1);
127 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
128 __dma_page_cpu_to_dev(page, offset, size, dir);
129 }
130
131 struct dma_map_ops arm_dma_ops = {
132 .alloc = arm_dma_alloc,
133 .free = arm_dma_free,
134 .mmap = arm_dma_mmap,
135 .get_sgtable = arm_dma_get_sgtable,
136 .map_page = arm_dma_map_page,
137 .unmap_page = arm_dma_unmap_page,
138 .map_sg = arm_dma_map_sg,
139 .unmap_sg = arm_dma_unmap_sg,
140 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
141 .sync_single_for_device = arm_dma_sync_single_for_device,
142 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
143 .sync_sg_for_device = arm_dma_sync_sg_for_device,
144 .set_dma_mask = arm_dma_set_mask,
145 };
146 EXPORT_SYMBOL(arm_dma_ops);
147
148 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
149 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
150 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
151 dma_addr_t handle, struct dma_attrs *attrs);
152 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
153 void *cpu_addr, dma_addr_t dma_addr, size_t size,
154 struct dma_attrs *attrs);
155
156 struct dma_map_ops arm_coherent_dma_ops = {
157 .alloc = arm_coherent_dma_alloc,
158 .free = arm_coherent_dma_free,
159 .mmap = arm_coherent_dma_mmap,
160 .get_sgtable = arm_dma_get_sgtable,
161 .map_page = arm_coherent_dma_map_page,
162 .map_sg = arm_dma_map_sg,
163 .set_dma_mask = arm_dma_set_mask,
164 };
165 EXPORT_SYMBOL(arm_coherent_dma_ops);
166
167 static int __dma_supported(struct device *dev, u64 mask, bool warn)
168 {
169 unsigned long max_dma_pfn;
170
171 /*
172 * If the mask allows for more memory than we can address,
173 * and we actually have that much memory, then we must
174 * indicate that DMA to this device is not supported.
175 */
176 if (sizeof(mask) != sizeof(dma_addr_t) &&
177 mask > (dma_addr_t)~0 &&
178 dma_to_pfn(dev, ~0) < max_pfn - 1) {
179 if (warn) {
180 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
181 mask);
182 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
183 }
184 return 0;
185 }
186
187 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
188
189 /*
190 * Translate the device's DMA mask to a PFN limit. This
191 * PFN number includes the page which we can DMA to.
192 */
193 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
194 if (warn)
195 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
196 mask,
197 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
198 max_dma_pfn + 1);
199 return 0;
200 }
201
202 return 1;
203 }
204
205 static u64 get_coherent_dma_mask(struct device *dev)
206 {
207 u64 mask = (u64)DMA_BIT_MASK(32);
208
209 if (dev) {
210 mask = dev->coherent_dma_mask;
211
212 /*
213 * Sanity check the DMA mask - it must be non-zero, and
214 * must be able to be satisfied by a DMA allocation.
215 */
216 if (mask == 0) {
217 dev_warn(dev, "coherent DMA mask is unset\n");
218 return 0;
219 }
220
221 if (!__dma_supported(dev, mask, true))
222 return 0;
223 }
224
225 return mask;
226 }
227
228 static void __dma_clear_buffer(struct page *page, size_t size)
229 {
230 /*
231 * Ensure that the allocated pages are zeroed, and that any data
232 * lurking in the kernel direct-mapped region is invalidated.
233 */
234 if (PageHighMem(page)) {
235 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
236 phys_addr_t end = base + size;
237 while (size > 0) {
238 void *ptr = kmap_atomic(page);
239 memset(ptr, 0, PAGE_SIZE);
240 dmac_flush_range(ptr, ptr + PAGE_SIZE);
241 kunmap_atomic(ptr);
242 page++;
243 size -= PAGE_SIZE;
244 }
245 outer_flush_range(base, end);
246 } else {
247 void *ptr = page_address(page);
248 memset(ptr, 0, size);
249 dmac_flush_range(ptr, ptr + size);
250 outer_flush_range(__pa(ptr), __pa(ptr) + size);
251 }
252 }
253
254 /*
255 * Allocate a DMA buffer for 'dev' of size 'size' using the
256 * specified gfp mask. Note that 'size' must be page aligned.
257 */
258 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
259 {
260 unsigned long order = get_order(size);
261 struct page *page, *p, *e;
262
263 page = alloc_pages(gfp, order);
264 if (!page)
265 return NULL;
266
267 /*
268 * Now split the huge page and free the excess pages
269 */
270 split_page(page, order);
271 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
272 __free_page(p);
273
274 __dma_clear_buffer(page, size);
275
276 return page;
277 }
278
279 /*
280 * Free a DMA buffer. 'size' must be page aligned.
281 */
282 static void __dma_free_buffer(struct page *page, size_t size)
283 {
284 struct page *e = page + (size >> PAGE_SHIFT);
285
286 while (page < e) {
287 __free_page(page);
288 page++;
289 }
290 }
291
292 #ifdef CONFIG_MMU
293
294 static void *__alloc_from_contiguous(struct device *dev, size_t size,
295 pgprot_t prot, struct page **ret_page,
296 const void *caller, bool want_vaddr);
297
298 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
299 pgprot_t prot, struct page **ret_page,
300 const void *caller, bool want_vaddr);
301
302 static void *
303 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
304 const void *caller)
305 {
306 /*
307 * DMA allocation can be mapped to user space, so lets
308 * set VM_USERMAP flags too.
309 */
310 return dma_common_contiguous_remap(page, size,
311 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
312 prot, caller);
313 }
314
315 static void __dma_free_remap(void *cpu_addr, size_t size)
316 {
317 dma_common_free_remap(cpu_addr, size,
318 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
319 }
320
321 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
322 static struct gen_pool *atomic_pool;
323
324 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
325
326 static int __init early_coherent_pool(char *p)
327 {
328 atomic_pool_size = memparse(p, &p);
329 return 0;
330 }
331 early_param("coherent_pool", early_coherent_pool);
332
333 void __init init_dma_coherent_pool_size(unsigned long size)
334 {
335 /*
336 * Catch any attempt to set the pool size too late.
337 */
338 BUG_ON(atomic_pool);
339
340 /*
341 * Set architecture specific coherent pool size only if
342 * it has not been changed by kernel command line parameter.
343 */
344 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
345 atomic_pool_size = size;
346 }
347
348 /*
349 * Initialise the coherent pool for atomic allocations.
350 */
351 static int __init atomic_pool_init(void)
352 {
353 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
354 gfp_t gfp = GFP_KERNEL | GFP_DMA;
355 struct page *page;
356 void *ptr;
357
358 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
359 if (!atomic_pool)
360 goto out;
361
362 if (dev_get_cma_area(NULL))
363 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
364 &page, atomic_pool_init, true);
365 else
366 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
367 &page, atomic_pool_init, true);
368 if (ptr) {
369 int ret;
370
371 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
372 page_to_phys(page),
373 atomic_pool_size, -1);
374 if (ret)
375 goto destroy_genpool;
376
377 gen_pool_set_algo(atomic_pool,
378 gen_pool_first_fit_order_align,
379 (void *)PAGE_SHIFT);
380 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
381 atomic_pool_size / 1024);
382 return 0;
383 }
384
385 destroy_genpool:
386 gen_pool_destroy(atomic_pool);
387 atomic_pool = NULL;
388 out:
389 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
390 atomic_pool_size / 1024);
391 return -ENOMEM;
392 }
393 /*
394 * CMA is activated by core_initcall, so we must be called after it.
395 */
396 postcore_initcall(atomic_pool_init);
397
398 struct dma_contig_early_reserve {
399 phys_addr_t base;
400 unsigned long size;
401 };
402
403 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
404
405 static int dma_mmu_remap_num __initdata;
406
407 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
408 {
409 dma_mmu_remap[dma_mmu_remap_num].base = base;
410 dma_mmu_remap[dma_mmu_remap_num].size = size;
411 dma_mmu_remap_num++;
412 }
413
414 void __init dma_contiguous_remap(void)
415 {
416 int i;
417 for (i = 0; i < dma_mmu_remap_num; i++) {
418 phys_addr_t start = dma_mmu_remap[i].base;
419 phys_addr_t end = start + dma_mmu_remap[i].size;
420 struct map_desc map;
421 unsigned long addr;
422
423 if (end > arm_lowmem_limit)
424 end = arm_lowmem_limit;
425 if (start >= end)
426 continue;
427
428 map.pfn = __phys_to_pfn(start);
429 map.virtual = __phys_to_virt(start);
430 map.length = end - start;
431 map.type = MT_MEMORY_DMA_READY;
432
433 /*
434 * Clear previous low-memory mapping to ensure that the
435 * TLB does not see any conflicting entries, then flush
436 * the TLB of the old entries before creating new mappings.
437 *
438 * This ensures that any speculatively loaded TLB entries
439 * (even though they may be rare) can not cause any problems,
440 * and ensures that this code is architecturally compliant.
441 */
442 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
443 addr += PMD_SIZE)
444 pmd_clear(pmd_off_k(addr));
445
446 flush_tlb_kernel_range(__phys_to_virt(start),
447 __phys_to_virt(end));
448
449 iotable_init(&map, 1);
450 }
451 }
452
453 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
454 void *data)
455 {
456 struct page *page = virt_to_page(addr);
457 pgprot_t prot = *(pgprot_t *)data;
458
459 set_pte_ext(pte, mk_pte(page, prot), 0);
460 return 0;
461 }
462
463 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
464 {
465 unsigned long start = (unsigned long) page_address(page);
466 unsigned end = start + size;
467
468 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
469 flush_tlb_kernel_range(start, end);
470 }
471
472 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
473 pgprot_t prot, struct page **ret_page,
474 const void *caller, bool want_vaddr)
475 {
476 struct page *page;
477 void *ptr = NULL;
478 page = __dma_alloc_buffer(dev, size, gfp);
479 if (!page)
480 return NULL;
481 if (!want_vaddr)
482 goto out;
483
484 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
485 if (!ptr) {
486 __dma_free_buffer(page, size);
487 return NULL;
488 }
489
490 out:
491 *ret_page = page;
492 return ptr;
493 }
494
495 static void *__alloc_from_pool(size_t size, struct page **ret_page)
496 {
497 unsigned long val;
498 void *ptr = NULL;
499
500 if (!atomic_pool) {
501 WARN(1, "coherent pool not initialised!\n");
502 return NULL;
503 }
504
505 val = gen_pool_alloc(atomic_pool, size);
506 if (val) {
507 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
508
509 *ret_page = phys_to_page(phys);
510 ptr = (void *)val;
511 }
512
513 return ptr;
514 }
515
516 static bool __in_atomic_pool(void *start, size_t size)
517 {
518 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
519 }
520
521 static int __free_from_pool(void *start, size_t size)
522 {
523 if (!__in_atomic_pool(start, size))
524 return 0;
525
526 gen_pool_free(atomic_pool, (unsigned long)start, size);
527
528 return 1;
529 }
530
531 static void *__alloc_from_contiguous(struct device *dev, size_t size,
532 pgprot_t prot, struct page **ret_page,
533 const void *caller, bool want_vaddr)
534 {
535 unsigned long order = get_order(size);
536 size_t count = size >> PAGE_SHIFT;
537 struct page *page;
538 void *ptr = NULL;
539
540 page = dma_alloc_from_contiguous(dev, count, order);
541 if (!page)
542 return NULL;
543
544 __dma_clear_buffer(page, size);
545
546 if (!want_vaddr)
547 goto out;
548
549 if (PageHighMem(page)) {
550 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
551 if (!ptr) {
552 dma_release_from_contiguous(dev, page, count);
553 return NULL;
554 }
555 } else {
556 __dma_remap(page, size, prot);
557 ptr = page_address(page);
558 }
559
560 out:
561 *ret_page = page;
562 return ptr;
563 }
564
565 static void __free_from_contiguous(struct device *dev, struct page *page,
566 void *cpu_addr, size_t size, bool want_vaddr)
567 {
568 if (want_vaddr) {
569 if (PageHighMem(page))
570 __dma_free_remap(cpu_addr, size);
571 else
572 __dma_remap(page, size, PAGE_KERNEL);
573 }
574 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
575 }
576
577 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
578 {
579 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
580 pgprot_writecombine(prot) :
581 pgprot_dmacoherent(prot);
582 return prot;
583 }
584
585 #define nommu() 0
586
587 #else /* !CONFIG_MMU */
588
589 #define nommu() 1
590
591 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
592 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
593 #define __alloc_from_pool(size, ret_page) NULL
594 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
595 #define __free_from_pool(cpu_addr, size) 0
596 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
597 #define __dma_free_remap(cpu_addr, size) do { } while (0)
598
599 #endif /* CONFIG_MMU */
600
601 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
602 struct page **ret_page)
603 {
604 struct page *page;
605 page = __dma_alloc_buffer(dev, size, gfp);
606 if (!page)
607 return NULL;
608
609 *ret_page = page;
610 return page_address(page);
611 }
612
613
614
615 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
616 gfp_t gfp, pgprot_t prot, bool is_coherent,
617 struct dma_attrs *attrs, const void *caller)
618 {
619 u64 mask = get_coherent_dma_mask(dev);
620 struct page *page = NULL;
621 void *addr;
622 bool want_vaddr;
623
624 #ifdef CONFIG_DMA_API_DEBUG
625 u64 limit = (mask + 1) & ~mask;
626 if (limit && size >= limit) {
627 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
628 size, mask);
629 return NULL;
630 }
631 #endif
632
633 if (!mask)
634 return NULL;
635
636 if (mask < 0xffffffffULL)
637 gfp |= GFP_DMA;
638
639 /*
640 * Following is a work-around (a.k.a. hack) to prevent pages
641 * with __GFP_COMP being passed to split_page() which cannot
642 * handle them. The real problem is that this flag probably
643 * should be 0 on ARM as it is not supported on this
644 * platform; see CONFIG_HUGETLBFS.
645 */
646 gfp &= ~(__GFP_COMP);
647
648 *handle = DMA_ERROR_CODE;
649 size = PAGE_ALIGN(size);
650 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
651
652 if (nommu())
653 addr = __alloc_simple_buffer(dev, size, gfp, &page);
654 else if (dev_get_cma_area(dev) && (gfp & __GFP_WAIT))
655 addr = __alloc_from_contiguous(dev, size, prot, &page,
656 caller, want_vaddr);
657 else if (is_coherent)
658 addr = __alloc_simple_buffer(dev, size, gfp, &page);
659 else if (!(gfp & __GFP_WAIT))
660 addr = __alloc_from_pool(size, &page);
661 else
662 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page,
663 caller, want_vaddr);
664
665 if (page)
666 *handle = pfn_to_dma(dev, page_to_pfn(page));
667
668 return want_vaddr ? addr : page;
669 }
670
671 /*
672 * Allocate DMA-coherent memory space and return both the kernel remapped
673 * virtual and bus address for that space.
674 */
675 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
676 gfp_t gfp, struct dma_attrs *attrs)
677 {
678 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
679
680 return __dma_alloc(dev, size, handle, gfp, prot, false,
681 attrs, __builtin_return_address(0));
682 }
683
684 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
685 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
686 {
687 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
688 attrs, __builtin_return_address(0));
689 }
690
691 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
692 void *cpu_addr, dma_addr_t dma_addr, size_t size,
693 struct dma_attrs *attrs)
694 {
695 int ret = -ENXIO;
696 #ifdef CONFIG_MMU
697 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
698 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
699 unsigned long pfn = dma_to_pfn(dev, dma_addr);
700 unsigned long off = vma->vm_pgoff;
701
702 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
703 return ret;
704
705 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
706 ret = remap_pfn_range(vma, vma->vm_start,
707 pfn + off,
708 vma->vm_end - vma->vm_start,
709 vma->vm_page_prot);
710 }
711 #endif /* CONFIG_MMU */
712
713 return ret;
714 }
715
716 /*
717 * Create userspace mapping for the DMA-coherent memory.
718 */
719 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
720 void *cpu_addr, dma_addr_t dma_addr, size_t size,
721 struct dma_attrs *attrs)
722 {
723 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
724 }
725
726 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
727 void *cpu_addr, dma_addr_t dma_addr, size_t size,
728 struct dma_attrs *attrs)
729 {
730 #ifdef CONFIG_MMU
731 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
732 #endif /* CONFIG_MMU */
733 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
734 }
735
736 /*
737 * Free a buffer as defined by the above mapping.
738 */
739 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
740 dma_addr_t handle, struct dma_attrs *attrs,
741 bool is_coherent)
742 {
743 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
744 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
745
746 size = PAGE_ALIGN(size);
747
748 if (nommu()) {
749 __dma_free_buffer(page, size);
750 } else if (!is_coherent && __free_from_pool(cpu_addr, size)) {
751 return;
752 } else if (!dev_get_cma_area(dev)) {
753 if (want_vaddr && !is_coherent)
754 __dma_free_remap(cpu_addr, size);
755 __dma_free_buffer(page, size);
756 } else {
757 /*
758 * Non-atomic allocations cannot be freed with IRQs disabled
759 */
760 WARN_ON(irqs_disabled());
761 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
762 }
763 }
764
765 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
766 dma_addr_t handle, struct dma_attrs *attrs)
767 {
768 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
769 }
770
771 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
772 dma_addr_t handle, struct dma_attrs *attrs)
773 {
774 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
775 }
776
777 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
778 void *cpu_addr, dma_addr_t handle, size_t size,
779 struct dma_attrs *attrs)
780 {
781 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
782 int ret;
783
784 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
785 if (unlikely(ret))
786 return ret;
787
788 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
789 return 0;
790 }
791
792 static void dma_cache_maint_page(struct page *page, unsigned long offset,
793 size_t size, enum dma_data_direction dir,
794 void (*op)(const void *, size_t, int))
795 {
796 unsigned long pfn;
797 size_t left = size;
798
799 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
800 offset %= PAGE_SIZE;
801
802 /*
803 * A single sg entry may refer to multiple physically contiguous
804 * pages. But we still need to process highmem pages individually.
805 * If highmem is not configured then the bulk of this loop gets
806 * optimized out.
807 */
808 do {
809 size_t len = left;
810 void *vaddr;
811
812 page = pfn_to_page(pfn);
813
814 if (PageHighMem(page)) {
815 if (len + offset > PAGE_SIZE)
816 len = PAGE_SIZE - offset;
817
818 if (cache_is_vipt_nonaliasing()) {
819 vaddr = kmap_atomic(page);
820 op(vaddr + offset, len, dir);
821 kunmap_atomic(vaddr);
822 } else {
823 vaddr = kmap_high_get(page);
824 if (vaddr) {
825 op(vaddr + offset, len, dir);
826 kunmap_high(page);
827 }
828 }
829 } else {
830 vaddr = page_address(page) + offset;
831 op(vaddr, len, dir);
832 }
833 offset = 0;
834 pfn++;
835 left -= len;
836 } while (left);
837 }
838
839 /*
840 * Make an area consistent for devices.
841 * Note: Drivers should NOT use this function directly, as it will break
842 * platforms with CONFIG_DMABOUNCE.
843 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
844 */
845 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
846 size_t size, enum dma_data_direction dir)
847 {
848 phys_addr_t paddr;
849
850 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
851
852 paddr = page_to_phys(page) + off;
853 if (dir == DMA_FROM_DEVICE) {
854 outer_inv_range(paddr, paddr + size);
855 } else {
856 outer_clean_range(paddr, paddr + size);
857 }
858 /* FIXME: non-speculating: flush on bidirectional mappings? */
859 }
860
861 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
862 size_t size, enum dma_data_direction dir)
863 {
864 phys_addr_t paddr = page_to_phys(page) + off;
865
866 /* FIXME: non-speculating: not required */
867 /* in any case, don't bother invalidating if DMA to device */
868 if (dir != DMA_TO_DEVICE) {
869 outer_inv_range(paddr, paddr + size);
870
871 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
872 }
873
874 /*
875 * Mark the D-cache clean for these pages to avoid extra flushing.
876 */
877 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
878 unsigned long pfn;
879 size_t left = size;
880
881 pfn = page_to_pfn(page) + off / PAGE_SIZE;
882 off %= PAGE_SIZE;
883 if (off) {
884 pfn++;
885 left -= PAGE_SIZE - off;
886 }
887 while (left >= PAGE_SIZE) {
888 page = pfn_to_page(pfn++);
889 set_bit(PG_dcache_clean, &page->flags);
890 left -= PAGE_SIZE;
891 }
892 }
893 }
894
895 /**
896 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
897 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
898 * @sg: list of buffers
899 * @nents: number of buffers to map
900 * @dir: DMA transfer direction
901 *
902 * Map a set of buffers described by scatterlist in streaming mode for DMA.
903 * This is the scatter-gather version of the dma_map_single interface.
904 * Here the scatter gather list elements are each tagged with the
905 * appropriate dma address and length. They are obtained via
906 * sg_dma_{address,length}.
907 *
908 * Device ownership issues as mentioned for dma_map_single are the same
909 * here.
910 */
911 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
912 enum dma_data_direction dir, struct dma_attrs *attrs)
913 {
914 struct dma_map_ops *ops = get_dma_ops(dev);
915 struct scatterlist *s;
916 int i, j;
917
918 for_each_sg(sg, s, nents, i) {
919 #ifdef CONFIG_NEED_SG_DMA_LENGTH
920 s->dma_length = s->length;
921 #endif
922 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
923 s->length, dir, attrs);
924 if (dma_mapping_error(dev, s->dma_address))
925 goto bad_mapping;
926 }
927 return nents;
928
929 bad_mapping:
930 for_each_sg(sg, s, i, j)
931 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
932 return 0;
933 }
934
935 /**
936 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
937 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
938 * @sg: list of buffers
939 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
940 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
941 *
942 * Unmap a set of streaming mode DMA translations. Again, CPU access
943 * rules concerning calls here are the same as for dma_unmap_single().
944 */
945 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
946 enum dma_data_direction dir, struct dma_attrs *attrs)
947 {
948 struct dma_map_ops *ops = get_dma_ops(dev);
949 struct scatterlist *s;
950
951 int i;
952
953 for_each_sg(sg, s, nents, i)
954 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
955 }
956
957 /**
958 * arm_dma_sync_sg_for_cpu
959 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
960 * @sg: list of buffers
961 * @nents: number of buffers to map (returned from dma_map_sg)
962 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
963 */
964 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
965 int nents, enum dma_data_direction dir)
966 {
967 struct dma_map_ops *ops = get_dma_ops(dev);
968 struct scatterlist *s;
969 int i;
970
971 for_each_sg(sg, s, nents, i)
972 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
973 dir);
974 }
975
976 /**
977 * arm_dma_sync_sg_for_device
978 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
979 * @sg: list of buffers
980 * @nents: number of buffers to map (returned from dma_map_sg)
981 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
982 */
983 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
984 int nents, enum dma_data_direction dir)
985 {
986 struct dma_map_ops *ops = get_dma_ops(dev);
987 struct scatterlist *s;
988 int i;
989
990 for_each_sg(sg, s, nents, i)
991 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
992 dir);
993 }
994
995 /*
996 * Return whether the given device DMA address mask can be supported
997 * properly. For example, if your device can only drive the low 24-bits
998 * during bus mastering, then you would pass 0x00ffffff as the mask
999 * to this function.
1000 */
1001 int dma_supported(struct device *dev, u64 mask)
1002 {
1003 return __dma_supported(dev, mask, false);
1004 }
1005 EXPORT_SYMBOL(dma_supported);
1006
1007 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1008 {
1009 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1010 return -EIO;
1011
1012 *dev->dma_mask = dma_mask;
1013
1014 return 0;
1015 }
1016
1017 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1018
1019 static int __init dma_debug_do_init(void)
1020 {
1021 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1022 return 0;
1023 }
1024 fs_initcall(dma_debug_do_init);
1025
1026 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1027
1028 /* IOMMU */
1029
1030 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1031
1032 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1033 size_t size)
1034 {
1035 unsigned int order = get_order(size);
1036 unsigned int align = 0;
1037 unsigned int count, start;
1038 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1039 unsigned long flags;
1040 dma_addr_t iova;
1041 int i;
1042
1043 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1044 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1045
1046 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1047 align = (1 << order) - 1;
1048
1049 spin_lock_irqsave(&mapping->lock, flags);
1050 for (i = 0; i < mapping->nr_bitmaps; i++) {
1051 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1052 mapping->bits, 0, count, align);
1053
1054 if (start > mapping->bits)
1055 continue;
1056
1057 bitmap_set(mapping->bitmaps[i], start, count);
1058 break;
1059 }
1060
1061 /*
1062 * No unused range found. Try to extend the existing mapping
1063 * and perform a second attempt to reserve an IO virtual
1064 * address range of size bytes.
1065 */
1066 if (i == mapping->nr_bitmaps) {
1067 if (extend_iommu_mapping(mapping)) {
1068 spin_unlock_irqrestore(&mapping->lock, flags);
1069 return DMA_ERROR_CODE;
1070 }
1071
1072 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1073 mapping->bits, 0, count, align);
1074
1075 if (start > mapping->bits) {
1076 spin_unlock_irqrestore(&mapping->lock, flags);
1077 return DMA_ERROR_CODE;
1078 }
1079
1080 bitmap_set(mapping->bitmaps[i], start, count);
1081 }
1082 spin_unlock_irqrestore(&mapping->lock, flags);
1083
1084 iova = mapping->base + (mapping_size * i);
1085 iova += start << PAGE_SHIFT;
1086
1087 return iova;
1088 }
1089
1090 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1091 dma_addr_t addr, size_t size)
1092 {
1093 unsigned int start, count;
1094 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1095 unsigned long flags;
1096 dma_addr_t bitmap_base;
1097 u32 bitmap_index;
1098
1099 if (!size)
1100 return;
1101
1102 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1103 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1104
1105 bitmap_base = mapping->base + mapping_size * bitmap_index;
1106
1107 start = (addr - bitmap_base) >> PAGE_SHIFT;
1108
1109 if (addr + size > bitmap_base + mapping_size) {
1110 /*
1111 * The address range to be freed reaches into the iova
1112 * range of the next bitmap. This should not happen as
1113 * we don't allow this in __alloc_iova (at the
1114 * moment).
1115 */
1116 BUG();
1117 } else
1118 count = size >> PAGE_SHIFT;
1119
1120 spin_lock_irqsave(&mapping->lock, flags);
1121 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1122 spin_unlock_irqrestore(&mapping->lock, flags);
1123 }
1124
1125 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1126 gfp_t gfp, struct dma_attrs *attrs)
1127 {
1128 struct page **pages;
1129 int count = size >> PAGE_SHIFT;
1130 int array_size = count * sizeof(struct page *);
1131 int i = 0;
1132
1133 if (array_size <= PAGE_SIZE)
1134 pages = kzalloc(array_size, GFP_KERNEL);
1135 else
1136 pages = vzalloc(array_size);
1137 if (!pages)
1138 return NULL;
1139
1140 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1141 {
1142 unsigned long order = get_order(size);
1143 struct page *page;
1144
1145 page = dma_alloc_from_contiguous(dev, count, order);
1146 if (!page)
1147 goto error;
1148
1149 __dma_clear_buffer(page, size);
1150
1151 for (i = 0; i < count; i++)
1152 pages[i] = page + i;
1153
1154 return pages;
1155 }
1156
1157 /*
1158 * IOMMU can map any pages, so himem can also be used here
1159 */
1160 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1161
1162 while (count) {
1163 int j, order;
1164
1165 for (order = __fls(count); order > 0; --order) {
1166 /*
1167 * We do not want OOM killer to be invoked as long
1168 * as we can fall back to single pages, so we force
1169 * __GFP_NORETRY for orders higher than zero.
1170 */
1171 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1172 if (pages[i])
1173 break;
1174 }
1175
1176 if (!pages[i]) {
1177 /*
1178 * Fall back to single page allocation.
1179 * Might invoke OOM killer as last resort.
1180 */
1181 pages[i] = alloc_pages(gfp, 0);
1182 if (!pages[i])
1183 goto error;
1184 }
1185
1186 if (order) {
1187 split_page(pages[i], order);
1188 j = 1 << order;
1189 while (--j)
1190 pages[i + j] = pages[i] + j;
1191 }
1192
1193 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1194 i += 1 << order;
1195 count -= 1 << order;
1196 }
1197
1198 return pages;
1199 error:
1200 while (i--)
1201 if (pages[i])
1202 __free_pages(pages[i], 0);
1203 if (array_size <= PAGE_SIZE)
1204 kfree(pages);
1205 else
1206 vfree(pages);
1207 return NULL;
1208 }
1209
1210 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1211 size_t size, struct dma_attrs *attrs)
1212 {
1213 int count = size >> PAGE_SHIFT;
1214 int array_size = count * sizeof(struct page *);
1215 int i;
1216
1217 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1218 dma_release_from_contiguous(dev, pages[0], count);
1219 } else {
1220 for (i = 0; i < count; i++)
1221 if (pages[i])
1222 __free_pages(pages[i], 0);
1223 }
1224
1225 if (array_size <= PAGE_SIZE)
1226 kfree(pages);
1227 else
1228 vfree(pages);
1229 return 0;
1230 }
1231
1232 /*
1233 * Create a CPU mapping for a specified pages
1234 */
1235 static void *
1236 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1237 const void *caller)
1238 {
1239 return dma_common_pages_remap(pages, size,
1240 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1241 }
1242
1243 /*
1244 * Create a mapping in device IO address space for specified pages
1245 */
1246 static dma_addr_t
1247 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1248 {
1249 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1250 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1251 dma_addr_t dma_addr, iova;
1252 int i;
1253
1254 dma_addr = __alloc_iova(mapping, size);
1255 if (dma_addr == DMA_ERROR_CODE)
1256 return dma_addr;
1257
1258 iova = dma_addr;
1259 for (i = 0; i < count; ) {
1260 int ret;
1261
1262 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1263 phys_addr_t phys = page_to_phys(pages[i]);
1264 unsigned int len, j;
1265
1266 for (j = i + 1; j < count; j++, next_pfn++)
1267 if (page_to_pfn(pages[j]) != next_pfn)
1268 break;
1269
1270 len = (j - i) << PAGE_SHIFT;
1271 ret = iommu_map(mapping->domain, iova, phys, len,
1272 IOMMU_READ|IOMMU_WRITE);
1273 if (ret < 0)
1274 goto fail;
1275 iova += len;
1276 i = j;
1277 }
1278 return dma_addr;
1279 fail:
1280 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1281 __free_iova(mapping, dma_addr, size);
1282 return DMA_ERROR_CODE;
1283 }
1284
1285 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1286 {
1287 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1288
1289 /*
1290 * add optional in-page offset from iova to size and align
1291 * result to page size
1292 */
1293 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1294 iova &= PAGE_MASK;
1295
1296 iommu_unmap(mapping->domain, iova, size);
1297 __free_iova(mapping, iova, size);
1298 return 0;
1299 }
1300
1301 static struct page **__atomic_get_pages(void *addr)
1302 {
1303 struct page *page;
1304 phys_addr_t phys;
1305
1306 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1307 page = phys_to_page(phys);
1308
1309 return (struct page **)page;
1310 }
1311
1312 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1313 {
1314 struct vm_struct *area;
1315
1316 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1317 return __atomic_get_pages(cpu_addr);
1318
1319 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1320 return cpu_addr;
1321
1322 area = find_vm_area(cpu_addr);
1323 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1324 return area->pages;
1325 return NULL;
1326 }
1327
1328 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1329 dma_addr_t *handle)
1330 {
1331 struct page *page;
1332 void *addr;
1333
1334 addr = __alloc_from_pool(size, &page);
1335 if (!addr)
1336 return NULL;
1337
1338 *handle = __iommu_create_mapping(dev, &page, size);
1339 if (*handle == DMA_ERROR_CODE)
1340 goto err_mapping;
1341
1342 return addr;
1343
1344 err_mapping:
1345 __free_from_pool(addr, size);
1346 return NULL;
1347 }
1348
1349 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1350 dma_addr_t handle, size_t size)
1351 {
1352 __iommu_remove_mapping(dev, handle, size);
1353 __free_from_pool(cpu_addr, size);
1354 }
1355
1356 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1357 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1358 {
1359 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1360 struct page **pages;
1361 void *addr = NULL;
1362
1363 *handle = DMA_ERROR_CODE;
1364 size = PAGE_ALIGN(size);
1365
1366 if (!(gfp & __GFP_WAIT))
1367 return __iommu_alloc_atomic(dev, size, handle);
1368
1369 /*
1370 * Following is a work-around (a.k.a. hack) to prevent pages
1371 * with __GFP_COMP being passed to split_page() which cannot
1372 * handle them. The real problem is that this flag probably
1373 * should be 0 on ARM as it is not supported on this
1374 * platform; see CONFIG_HUGETLBFS.
1375 */
1376 gfp &= ~(__GFP_COMP);
1377
1378 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1379 if (!pages)
1380 return NULL;
1381
1382 *handle = __iommu_create_mapping(dev, pages, size);
1383 if (*handle == DMA_ERROR_CODE)
1384 goto err_buffer;
1385
1386 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1387 return pages;
1388
1389 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1390 __builtin_return_address(0));
1391 if (!addr)
1392 goto err_mapping;
1393
1394 return addr;
1395
1396 err_mapping:
1397 __iommu_remove_mapping(dev, *handle, size);
1398 err_buffer:
1399 __iommu_free_buffer(dev, pages, size, attrs);
1400 return NULL;
1401 }
1402
1403 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1404 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1405 struct dma_attrs *attrs)
1406 {
1407 unsigned long uaddr = vma->vm_start;
1408 unsigned long usize = vma->vm_end - vma->vm_start;
1409 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1410 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1411 unsigned long off = vma->vm_pgoff;
1412
1413 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1414
1415 if (!pages)
1416 return -ENXIO;
1417
1418 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1419 return -ENXIO;
1420
1421 pages += off;
1422
1423 do {
1424 int ret = vm_insert_page(vma, uaddr, *pages++);
1425 if (ret) {
1426 pr_err("Remapping memory failed: %d\n", ret);
1427 return ret;
1428 }
1429 uaddr += PAGE_SIZE;
1430 usize -= PAGE_SIZE;
1431 } while (usize > 0);
1432
1433 return 0;
1434 }
1435
1436 /*
1437 * free a page as defined by the above mapping.
1438 * Must not be called with IRQs disabled.
1439 */
1440 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1441 dma_addr_t handle, struct dma_attrs *attrs)
1442 {
1443 struct page **pages;
1444 size = PAGE_ALIGN(size);
1445
1446 if (__in_atomic_pool(cpu_addr, size)) {
1447 __iommu_free_atomic(dev, cpu_addr, handle, size);
1448 return;
1449 }
1450
1451 pages = __iommu_get_pages(cpu_addr, attrs);
1452 if (!pages) {
1453 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1454 return;
1455 }
1456
1457 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1458 dma_common_free_remap(cpu_addr, size,
1459 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1460 }
1461
1462 __iommu_remove_mapping(dev, handle, size);
1463 __iommu_free_buffer(dev, pages, size, attrs);
1464 }
1465
1466 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1467 void *cpu_addr, dma_addr_t dma_addr,
1468 size_t size, struct dma_attrs *attrs)
1469 {
1470 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1471 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1472
1473 if (!pages)
1474 return -ENXIO;
1475
1476 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1477 GFP_KERNEL);
1478 }
1479
1480 static int __dma_direction_to_prot(enum dma_data_direction dir)
1481 {
1482 int prot;
1483
1484 switch (dir) {
1485 case DMA_BIDIRECTIONAL:
1486 prot = IOMMU_READ | IOMMU_WRITE;
1487 break;
1488 case DMA_TO_DEVICE:
1489 prot = IOMMU_READ;
1490 break;
1491 case DMA_FROM_DEVICE:
1492 prot = IOMMU_WRITE;
1493 break;
1494 default:
1495 prot = 0;
1496 }
1497
1498 return prot;
1499 }
1500
1501 /*
1502 * Map a part of the scatter-gather list into contiguous io address space
1503 */
1504 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1505 size_t size, dma_addr_t *handle,
1506 enum dma_data_direction dir, struct dma_attrs *attrs,
1507 bool is_coherent)
1508 {
1509 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1510 dma_addr_t iova, iova_base;
1511 int ret = 0;
1512 unsigned int count;
1513 struct scatterlist *s;
1514 int prot;
1515
1516 size = PAGE_ALIGN(size);
1517 *handle = DMA_ERROR_CODE;
1518
1519 iova_base = iova = __alloc_iova(mapping, size);
1520 if (iova == DMA_ERROR_CODE)
1521 return -ENOMEM;
1522
1523 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1524 phys_addr_t phys = sg_phys(s) & PAGE_MASK;
1525 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1526
1527 if (!is_coherent &&
1528 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1529 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1530
1531 prot = __dma_direction_to_prot(dir);
1532
1533 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1534 if (ret < 0)
1535 goto fail;
1536 count += len >> PAGE_SHIFT;
1537 iova += len;
1538 }
1539 *handle = iova_base;
1540
1541 return 0;
1542 fail:
1543 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1544 __free_iova(mapping, iova_base, size);
1545 return ret;
1546 }
1547
1548 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1549 enum dma_data_direction dir, struct dma_attrs *attrs,
1550 bool is_coherent)
1551 {
1552 struct scatterlist *s = sg, *dma = sg, *start = sg;
1553 int i, count = 0;
1554 unsigned int offset = s->offset;
1555 unsigned int size = s->offset + s->length;
1556 unsigned int max = dma_get_max_seg_size(dev);
1557
1558 for (i = 1; i < nents; i++) {
1559 s = sg_next(s);
1560
1561 s->dma_address = DMA_ERROR_CODE;
1562 s->dma_length = 0;
1563
1564 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1565 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1566 dir, attrs, is_coherent) < 0)
1567 goto bad_mapping;
1568
1569 dma->dma_address += offset;
1570 dma->dma_length = size - offset;
1571
1572 size = offset = s->offset;
1573 start = s;
1574 dma = sg_next(dma);
1575 count += 1;
1576 }
1577 size += s->length;
1578 }
1579 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1580 is_coherent) < 0)
1581 goto bad_mapping;
1582
1583 dma->dma_address += offset;
1584 dma->dma_length = size - offset;
1585
1586 return count+1;
1587
1588 bad_mapping:
1589 for_each_sg(sg, s, count, i)
1590 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1591 return 0;
1592 }
1593
1594 /**
1595 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1596 * @dev: valid struct device pointer
1597 * @sg: list of buffers
1598 * @nents: number of buffers to map
1599 * @dir: DMA transfer direction
1600 *
1601 * Map a set of i/o coherent buffers described by scatterlist in streaming
1602 * mode for DMA. The scatter gather list elements are merged together (if
1603 * possible) and tagged with the appropriate dma address and length. They are
1604 * obtained via sg_dma_{address,length}.
1605 */
1606 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1607 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1608 {
1609 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1610 }
1611
1612 /**
1613 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1614 * @dev: valid struct device pointer
1615 * @sg: list of buffers
1616 * @nents: number of buffers to map
1617 * @dir: DMA transfer direction
1618 *
1619 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1620 * The scatter gather list elements are merged together (if possible) and
1621 * tagged with the appropriate dma address and length. They are obtained via
1622 * sg_dma_{address,length}.
1623 */
1624 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1625 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1626 {
1627 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1628 }
1629
1630 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1631 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1632 bool is_coherent)
1633 {
1634 struct scatterlist *s;
1635 int i;
1636
1637 for_each_sg(sg, s, nents, i) {
1638 if (sg_dma_len(s))
1639 __iommu_remove_mapping(dev, sg_dma_address(s),
1640 sg_dma_len(s));
1641 if (!is_coherent &&
1642 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1643 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1644 s->length, dir);
1645 }
1646 }
1647
1648 /**
1649 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1650 * @dev: valid struct device pointer
1651 * @sg: list of buffers
1652 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1653 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1654 *
1655 * Unmap a set of streaming mode DMA translations. Again, CPU access
1656 * rules concerning calls here are the same as for dma_unmap_single().
1657 */
1658 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1659 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1660 {
1661 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1662 }
1663
1664 /**
1665 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1666 * @dev: valid struct device pointer
1667 * @sg: list of buffers
1668 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1669 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1670 *
1671 * Unmap a set of streaming mode DMA translations. Again, CPU access
1672 * rules concerning calls here are the same as for dma_unmap_single().
1673 */
1674 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1675 enum dma_data_direction dir, struct dma_attrs *attrs)
1676 {
1677 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1678 }
1679
1680 /**
1681 * arm_iommu_sync_sg_for_cpu
1682 * @dev: valid struct device pointer
1683 * @sg: list of buffers
1684 * @nents: number of buffers to map (returned from dma_map_sg)
1685 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1686 */
1687 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1688 int nents, enum dma_data_direction dir)
1689 {
1690 struct scatterlist *s;
1691 int i;
1692
1693 for_each_sg(sg, s, nents, i)
1694 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1695
1696 }
1697
1698 /**
1699 * arm_iommu_sync_sg_for_device
1700 * @dev: valid struct device pointer
1701 * @sg: list of buffers
1702 * @nents: number of buffers to map (returned from dma_map_sg)
1703 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1704 */
1705 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1706 int nents, enum dma_data_direction dir)
1707 {
1708 struct scatterlist *s;
1709 int i;
1710
1711 for_each_sg(sg, s, nents, i)
1712 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1713 }
1714
1715
1716 /**
1717 * arm_coherent_iommu_map_page
1718 * @dev: valid struct device pointer
1719 * @page: page that buffer resides in
1720 * @offset: offset into page for start of buffer
1721 * @size: size of buffer to map
1722 * @dir: DMA transfer direction
1723 *
1724 * Coherent IOMMU aware version of arm_dma_map_page()
1725 */
1726 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1727 unsigned long offset, size_t size, enum dma_data_direction dir,
1728 struct dma_attrs *attrs)
1729 {
1730 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1731 dma_addr_t dma_addr;
1732 int ret, prot, len = PAGE_ALIGN(size + offset);
1733
1734 dma_addr = __alloc_iova(mapping, len);
1735 if (dma_addr == DMA_ERROR_CODE)
1736 return dma_addr;
1737
1738 prot = __dma_direction_to_prot(dir);
1739
1740 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1741 if (ret < 0)
1742 goto fail;
1743
1744 return dma_addr + offset;
1745 fail:
1746 __free_iova(mapping, dma_addr, len);
1747 return DMA_ERROR_CODE;
1748 }
1749
1750 /**
1751 * arm_iommu_map_page
1752 * @dev: valid struct device pointer
1753 * @page: page that buffer resides in
1754 * @offset: offset into page for start of buffer
1755 * @size: size of buffer to map
1756 * @dir: DMA transfer direction
1757 *
1758 * IOMMU aware version of arm_dma_map_page()
1759 */
1760 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1761 unsigned long offset, size_t size, enum dma_data_direction dir,
1762 struct dma_attrs *attrs)
1763 {
1764 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1765 __dma_page_cpu_to_dev(page, offset, size, dir);
1766
1767 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1768 }
1769
1770 /**
1771 * arm_coherent_iommu_unmap_page
1772 * @dev: valid struct device pointer
1773 * @handle: DMA address of buffer
1774 * @size: size of buffer (same as passed to dma_map_page)
1775 * @dir: DMA transfer direction (same as passed to dma_map_page)
1776 *
1777 * Coherent IOMMU aware version of arm_dma_unmap_page()
1778 */
1779 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1780 size_t size, enum dma_data_direction dir,
1781 struct dma_attrs *attrs)
1782 {
1783 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1784 dma_addr_t iova = handle & PAGE_MASK;
1785 int offset = handle & ~PAGE_MASK;
1786 int len = PAGE_ALIGN(size + offset);
1787
1788 if (!iova)
1789 return;
1790
1791 iommu_unmap(mapping->domain, iova, len);
1792 __free_iova(mapping, iova, len);
1793 }
1794
1795 /**
1796 * arm_iommu_unmap_page
1797 * @dev: valid struct device pointer
1798 * @handle: DMA address of buffer
1799 * @size: size of buffer (same as passed to dma_map_page)
1800 * @dir: DMA transfer direction (same as passed to dma_map_page)
1801 *
1802 * IOMMU aware version of arm_dma_unmap_page()
1803 */
1804 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1805 size_t size, enum dma_data_direction dir,
1806 struct dma_attrs *attrs)
1807 {
1808 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1809 dma_addr_t iova = handle & PAGE_MASK;
1810 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1811 int offset = handle & ~PAGE_MASK;
1812 int len = PAGE_ALIGN(size + offset);
1813
1814 if (!iova)
1815 return;
1816
1817 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1818 __dma_page_dev_to_cpu(page, offset, size, dir);
1819
1820 iommu_unmap(mapping->domain, iova, len);
1821 __free_iova(mapping, iova, len);
1822 }
1823
1824 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1825 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1826 {
1827 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1828 dma_addr_t iova = handle & PAGE_MASK;
1829 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1830 unsigned int offset = handle & ~PAGE_MASK;
1831
1832 if (!iova)
1833 return;
1834
1835 __dma_page_dev_to_cpu(page, offset, size, dir);
1836 }
1837
1838 static void arm_iommu_sync_single_for_device(struct device *dev,
1839 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1840 {
1841 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842 dma_addr_t iova = handle & PAGE_MASK;
1843 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1844 unsigned int offset = handle & ~PAGE_MASK;
1845
1846 if (!iova)
1847 return;
1848
1849 __dma_page_cpu_to_dev(page, offset, size, dir);
1850 }
1851
1852 struct dma_map_ops iommu_ops = {
1853 .alloc = arm_iommu_alloc_attrs,
1854 .free = arm_iommu_free_attrs,
1855 .mmap = arm_iommu_mmap_attrs,
1856 .get_sgtable = arm_iommu_get_sgtable,
1857
1858 .map_page = arm_iommu_map_page,
1859 .unmap_page = arm_iommu_unmap_page,
1860 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1861 .sync_single_for_device = arm_iommu_sync_single_for_device,
1862
1863 .map_sg = arm_iommu_map_sg,
1864 .unmap_sg = arm_iommu_unmap_sg,
1865 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1866 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1867
1868 .set_dma_mask = arm_dma_set_mask,
1869 };
1870
1871 struct dma_map_ops iommu_coherent_ops = {
1872 .alloc = arm_iommu_alloc_attrs,
1873 .free = arm_iommu_free_attrs,
1874 .mmap = arm_iommu_mmap_attrs,
1875 .get_sgtable = arm_iommu_get_sgtable,
1876
1877 .map_page = arm_coherent_iommu_map_page,
1878 .unmap_page = arm_coherent_iommu_unmap_page,
1879
1880 .map_sg = arm_coherent_iommu_map_sg,
1881 .unmap_sg = arm_coherent_iommu_unmap_sg,
1882
1883 .set_dma_mask = arm_dma_set_mask,
1884 };
1885
1886 /**
1887 * arm_iommu_create_mapping
1888 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1889 * @base: start address of the valid IO address space
1890 * @size: maximum size of the valid IO address space
1891 *
1892 * Creates a mapping structure which holds information about used/unused
1893 * IO address ranges, which is required to perform memory allocation and
1894 * mapping with IOMMU aware functions.
1895 *
1896 * The client device need to be attached to the mapping with
1897 * arm_iommu_attach_device function.
1898 */
1899 struct dma_iommu_mapping *
1900 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
1901 {
1902 unsigned int bits = size >> PAGE_SHIFT;
1903 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1904 struct dma_iommu_mapping *mapping;
1905 int extensions = 1;
1906 int err = -ENOMEM;
1907
1908 /* currently only 32-bit DMA address space is supported */
1909 if (size > DMA_BIT_MASK(32) + 1)
1910 return ERR_PTR(-ERANGE);
1911
1912 if (!bitmap_size)
1913 return ERR_PTR(-EINVAL);
1914
1915 if (bitmap_size > PAGE_SIZE) {
1916 extensions = bitmap_size / PAGE_SIZE;
1917 bitmap_size = PAGE_SIZE;
1918 }
1919
1920 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1921 if (!mapping)
1922 goto err;
1923
1924 mapping->bitmap_size = bitmap_size;
1925 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1926 GFP_KERNEL);
1927 if (!mapping->bitmaps)
1928 goto err2;
1929
1930 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1931 if (!mapping->bitmaps[0])
1932 goto err3;
1933
1934 mapping->nr_bitmaps = 1;
1935 mapping->extensions = extensions;
1936 mapping->base = base;
1937 mapping->bits = BITS_PER_BYTE * bitmap_size;
1938
1939 spin_lock_init(&mapping->lock);
1940
1941 mapping->domain = iommu_domain_alloc(bus);
1942 if (!mapping->domain)
1943 goto err4;
1944
1945 kref_init(&mapping->kref);
1946 return mapping;
1947 err4:
1948 kfree(mapping->bitmaps[0]);
1949 err3:
1950 kfree(mapping->bitmaps);
1951 err2:
1952 kfree(mapping);
1953 err:
1954 return ERR_PTR(err);
1955 }
1956 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1957
1958 static void release_iommu_mapping(struct kref *kref)
1959 {
1960 int i;
1961 struct dma_iommu_mapping *mapping =
1962 container_of(kref, struct dma_iommu_mapping, kref);
1963
1964 iommu_domain_free(mapping->domain);
1965 for (i = 0; i < mapping->nr_bitmaps; i++)
1966 kfree(mapping->bitmaps[i]);
1967 kfree(mapping->bitmaps);
1968 kfree(mapping);
1969 }
1970
1971 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1972 {
1973 int next_bitmap;
1974
1975 if (mapping->nr_bitmaps >= mapping->extensions)
1976 return -EINVAL;
1977
1978 next_bitmap = mapping->nr_bitmaps;
1979 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1980 GFP_ATOMIC);
1981 if (!mapping->bitmaps[next_bitmap])
1982 return -ENOMEM;
1983
1984 mapping->nr_bitmaps++;
1985
1986 return 0;
1987 }
1988
1989 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1990 {
1991 if (mapping)
1992 kref_put(&mapping->kref, release_iommu_mapping);
1993 }
1994 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1995
1996 static int __arm_iommu_attach_device(struct device *dev,
1997 struct dma_iommu_mapping *mapping)
1998 {
1999 int err;
2000
2001 err = iommu_attach_device(mapping->domain, dev);
2002 if (err)
2003 return err;
2004
2005 kref_get(&mapping->kref);
2006 to_dma_iommu_mapping(dev) = mapping;
2007
2008 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2009 return 0;
2010 }
2011
2012 /**
2013 * arm_iommu_attach_device
2014 * @dev: valid struct device pointer
2015 * @mapping: io address space mapping structure (returned from
2016 * arm_iommu_create_mapping)
2017 *
2018 * Attaches specified io address space mapping to the provided device.
2019 * This replaces the dma operations (dma_map_ops pointer) with the
2020 * IOMMU aware version.
2021 *
2022 * More than one client might be attached to the same io address space
2023 * mapping.
2024 */
2025 int arm_iommu_attach_device(struct device *dev,
2026 struct dma_iommu_mapping *mapping)
2027 {
2028 int err;
2029
2030 err = __arm_iommu_attach_device(dev, mapping);
2031 if (err)
2032 return err;
2033
2034 set_dma_ops(dev, &iommu_ops);
2035 return 0;
2036 }
2037 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2038
2039 static void __arm_iommu_detach_device(struct device *dev)
2040 {
2041 struct dma_iommu_mapping *mapping;
2042
2043 mapping = to_dma_iommu_mapping(dev);
2044 if (!mapping) {
2045 dev_warn(dev, "Not attached\n");
2046 return;
2047 }
2048
2049 iommu_detach_device(mapping->domain, dev);
2050 kref_put(&mapping->kref, release_iommu_mapping);
2051 to_dma_iommu_mapping(dev) = NULL;
2052
2053 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2054 }
2055
2056 /**
2057 * arm_iommu_detach_device
2058 * @dev: valid struct device pointer
2059 *
2060 * Detaches the provided device from a previously attached map.
2061 * This voids the dma operations (dma_map_ops pointer)
2062 */
2063 void arm_iommu_detach_device(struct device *dev)
2064 {
2065 __arm_iommu_detach_device(dev);
2066 set_dma_ops(dev, NULL);
2067 }
2068 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2069
2070 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2071 {
2072 return coherent ? &iommu_coherent_ops : &iommu_ops;
2073 }
2074
2075 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2076 struct iommu_ops *iommu)
2077 {
2078 struct dma_iommu_mapping *mapping;
2079
2080 if (!iommu)
2081 return false;
2082
2083 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2084 if (IS_ERR(mapping)) {
2085 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2086 size, dev_name(dev));
2087 return false;
2088 }
2089
2090 if (__arm_iommu_attach_device(dev, mapping)) {
2091 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2092 dev_name(dev));
2093 arm_iommu_release_mapping(mapping);
2094 return false;
2095 }
2096
2097 return true;
2098 }
2099
2100 static void arm_teardown_iommu_dma_ops(struct device *dev)
2101 {
2102 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2103
2104 if (!mapping)
2105 return;
2106
2107 __arm_iommu_detach_device(dev);
2108 arm_iommu_release_mapping(mapping);
2109 }
2110
2111 #else
2112
2113 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2114 struct iommu_ops *iommu)
2115 {
2116 return false;
2117 }
2118
2119 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2120
2121 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2122
2123 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2124
2125 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2126 {
2127 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2128 }
2129
2130 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2131 struct iommu_ops *iommu, bool coherent)
2132 {
2133 struct dma_map_ops *dma_ops;
2134
2135 dev->archdata.dma_coherent = coherent;
2136 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2137 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2138 else
2139 dma_ops = arm_get_dma_map_ops(coherent);
2140
2141 set_dma_ops(dev, dma_ops);
2142 }
2143
2144 void arch_teardown_dma_ops(struct device *dev)
2145 {
2146 arm_teardown_iommu_dma_ops(dev);
2147 }