]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/mm/dma-mapping.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "dma.h"
43 #include "mm.h"
44
45 struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53 };
54
55 struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61 };
62
63 #define NORMAL 0
64 #define COHERENT 1
65
66 struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70 };
71
72 struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76 };
77
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96 }
97
98 /*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115 /**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132 {
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137
138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141 {
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144
145 /**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165 }
166
167 static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173 }
174
175 static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 {
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181 }
182
183 const struct dma_map_ops arm_dma_ops = {
184 .alloc = arm_dma_alloc,
185 .free = arm_dma_free,
186 .mmap = arm_dma_mmap,
187 .get_sgtable = arm_dma_get_sgtable,
188 .map_page = arm_dma_map_page,
189 .unmap_page = arm_dma_unmap_page,
190 .map_sg = arm_dma_map_sg,
191 .unmap_sg = arm_dma_unmap_sg,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196 };
197 EXPORT_SYMBOL(arm_dma_ops);
198
199 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
200 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
201 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
202 dma_addr_t handle, unsigned long attrs);
203 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
204 void *cpu_addr, dma_addr_t dma_addr, size_t size,
205 unsigned long attrs);
206
207 const struct dma_map_ops arm_coherent_dma_ops = {
208 .alloc = arm_coherent_dma_alloc,
209 .free = arm_coherent_dma_free,
210 .mmap = arm_coherent_dma_mmap,
211 .get_sgtable = arm_dma_get_sgtable,
212 .map_page = arm_coherent_dma_map_page,
213 .map_sg = arm_dma_map_sg,
214 };
215 EXPORT_SYMBOL(arm_coherent_dma_ops);
216
217 static int __dma_supported(struct device *dev, u64 mask, bool warn)
218 {
219 unsigned long max_dma_pfn;
220
221 /*
222 * If the mask allows for more memory than we can address,
223 * and we actually have that much memory, then we must
224 * indicate that DMA to this device is not supported.
225 */
226 if (sizeof(mask) != sizeof(dma_addr_t) &&
227 mask > (dma_addr_t)~0 &&
228 dma_to_pfn(dev, ~0) < max_pfn - 1) {
229 if (warn) {
230 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
231 mask);
232 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
233 }
234 return 0;
235 }
236
237 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
238
239 /*
240 * Translate the device's DMA mask to a PFN limit. This
241 * PFN number includes the page which we can DMA to.
242 */
243 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
244 if (warn)
245 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
246 mask,
247 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
248 max_dma_pfn + 1);
249 return 0;
250 }
251
252 return 1;
253 }
254
255 static u64 get_coherent_dma_mask(struct device *dev)
256 {
257 u64 mask = (u64)DMA_BIT_MASK(32);
258
259 if (dev) {
260 mask = dev->coherent_dma_mask;
261
262 /*
263 * Sanity check the DMA mask - it must be non-zero, and
264 * must be able to be satisfied by a DMA allocation.
265 */
266 if (mask == 0) {
267 dev_warn(dev, "coherent DMA mask is unset\n");
268 return 0;
269 }
270
271 if (!__dma_supported(dev, mask, true))
272 return 0;
273 }
274
275 return mask;
276 }
277
278 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
279 {
280 /*
281 * Ensure that the allocated pages are zeroed, and that any data
282 * lurking in the kernel direct-mapped region is invalidated.
283 */
284 if (PageHighMem(page)) {
285 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
286 phys_addr_t end = base + size;
287 while (size > 0) {
288 void *ptr = kmap_atomic(page);
289 memset(ptr, 0, PAGE_SIZE);
290 if (coherent_flag != COHERENT)
291 dmac_flush_range(ptr, ptr + PAGE_SIZE);
292 kunmap_atomic(ptr);
293 page++;
294 size -= PAGE_SIZE;
295 }
296 if (coherent_flag != COHERENT)
297 outer_flush_range(base, end);
298 } else {
299 void *ptr = page_address(page);
300 memset(ptr, 0, size);
301 if (coherent_flag != COHERENT) {
302 dmac_flush_range(ptr, ptr + size);
303 outer_flush_range(__pa(ptr), __pa(ptr) + size);
304 }
305 }
306 }
307
308 /*
309 * Allocate a DMA buffer for 'dev' of size 'size' using the
310 * specified gfp mask. Note that 'size' must be page aligned.
311 */
312 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
313 gfp_t gfp, int coherent_flag)
314 {
315 unsigned long order = get_order(size);
316 struct page *page, *p, *e;
317
318 page = alloc_pages(gfp, order);
319 if (!page)
320 return NULL;
321
322 /*
323 * Now split the huge page and free the excess pages
324 */
325 split_page(page, order);
326 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
327 __free_page(p);
328
329 __dma_clear_buffer(page, size, coherent_flag);
330
331 return page;
332 }
333
334 /*
335 * Free a DMA buffer. 'size' must be page aligned.
336 */
337 static void __dma_free_buffer(struct page *page, size_t size)
338 {
339 struct page *e = page + (size >> PAGE_SHIFT);
340
341 while (page < e) {
342 __free_page(page);
343 page++;
344 }
345 }
346
347 #ifdef CONFIG_MMU
348
349 static void *__alloc_from_contiguous(struct device *dev, size_t size,
350 pgprot_t prot, struct page **ret_page,
351 const void *caller, bool want_vaddr,
352 int coherent_flag, gfp_t gfp);
353
354 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
355 pgprot_t prot, struct page **ret_page,
356 const void *caller, bool want_vaddr);
357
358 static void *
359 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 const void *caller)
361 {
362 /*
363 * DMA allocation can be mapped to user space, so lets
364 * set VM_USERMAP flags too.
365 */
366 return dma_common_contiguous_remap(page, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
368 prot, caller);
369 }
370
371 static void __dma_free_remap(void *cpu_addr, size_t size)
372 {
373 dma_common_free_remap(cpu_addr, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
375 }
376
377 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
378 static struct gen_pool *atomic_pool;
379
380 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
381
382 static int __init early_coherent_pool(char *p)
383 {
384 atomic_pool_size = memparse(p, &p);
385 return 0;
386 }
387 early_param("coherent_pool", early_coherent_pool);
388
389 void __init init_dma_coherent_pool_size(unsigned long size)
390 {
391 /*
392 * Catch any attempt to set the pool size too late.
393 */
394 BUG_ON(atomic_pool);
395
396 /*
397 * Set architecture specific coherent pool size only if
398 * it has not been changed by kernel command line parameter.
399 */
400 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
401 atomic_pool_size = size;
402 }
403
404 /*
405 * Initialise the coherent pool for atomic allocations.
406 */
407 static int __init atomic_pool_init(void)
408 {
409 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
410 gfp_t gfp = GFP_KERNEL | GFP_DMA;
411 struct page *page;
412 void *ptr;
413
414 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
415 if (!atomic_pool)
416 goto out;
417 /*
418 * The atomic pool is only used for non-coherent allocations
419 * so we must pass NORMAL for coherent_flag.
420 */
421 if (dev_get_cma_area(NULL))
422 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
423 &page, atomic_pool_init, true, NORMAL,
424 GFP_KERNEL);
425 else
426 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
427 &page, atomic_pool_init, true);
428 if (ptr) {
429 int ret;
430
431 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
432 page_to_phys(page),
433 atomic_pool_size, -1);
434 if (ret)
435 goto destroy_genpool;
436
437 gen_pool_set_algo(atomic_pool,
438 gen_pool_first_fit_order_align,
439 (void *)PAGE_SHIFT);
440 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
441 atomic_pool_size / 1024);
442 return 0;
443 }
444
445 destroy_genpool:
446 gen_pool_destroy(atomic_pool);
447 atomic_pool = NULL;
448 out:
449 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
450 atomic_pool_size / 1024);
451 return -ENOMEM;
452 }
453 /*
454 * CMA is activated by core_initcall, so we must be called after it.
455 */
456 postcore_initcall(atomic_pool_init);
457
458 struct dma_contig_early_reserve {
459 phys_addr_t base;
460 unsigned long size;
461 };
462
463 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
464
465 static int dma_mmu_remap_num __initdata;
466
467 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
468 {
469 dma_mmu_remap[dma_mmu_remap_num].base = base;
470 dma_mmu_remap[dma_mmu_remap_num].size = size;
471 dma_mmu_remap_num++;
472 }
473
474 void __init dma_contiguous_remap(void)
475 {
476 int i;
477 for (i = 0; i < dma_mmu_remap_num; i++) {
478 phys_addr_t start = dma_mmu_remap[i].base;
479 phys_addr_t end = start + dma_mmu_remap[i].size;
480 struct map_desc map;
481 unsigned long addr;
482
483 if (end > arm_lowmem_limit)
484 end = arm_lowmem_limit;
485 if (start >= end)
486 continue;
487
488 map.pfn = __phys_to_pfn(start);
489 map.virtual = __phys_to_virt(start);
490 map.length = end - start;
491 map.type = MT_MEMORY_DMA_READY;
492
493 /*
494 * Clear previous low-memory mapping to ensure that the
495 * TLB does not see any conflicting entries, then flush
496 * the TLB of the old entries before creating new mappings.
497 *
498 * This ensures that any speculatively loaded TLB entries
499 * (even though they may be rare) can not cause any problems,
500 * and ensures that this code is architecturally compliant.
501 */
502 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
503 addr += PMD_SIZE)
504 pmd_clear(pmd_off_k(addr));
505
506 flush_tlb_kernel_range(__phys_to_virt(start),
507 __phys_to_virt(end));
508
509 iotable_init(&map, 1);
510 }
511 }
512
513 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
514 void *data)
515 {
516 struct page *page = virt_to_page(addr);
517 pgprot_t prot = *(pgprot_t *)data;
518
519 set_pte_ext(pte, mk_pte(page, prot), 0);
520 return 0;
521 }
522
523 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
524 {
525 unsigned long start = (unsigned long) page_address(page);
526 unsigned end = start + size;
527
528 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
529 flush_tlb_kernel_range(start, end);
530 }
531
532 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
533 pgprot_t prot, struct page **ret_page,
534 const void *caller, bool want_vaddr)
535 {
536 struct page *page;
537 void *ptr = NULL;
538 /*
539 * __alloc_remap_buffer is only called when the device is
540 * non-coherent
541 */
542 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
543 if (!page)
544 return NULL;
545 if (!want_vaddr)
546 goto out;
547
548 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
549 if (!ptr) {
550 __dma_free_buffer(page, size);
551 return NULL;
552 }
553
554 out:
555 *ret_page = page;
556 return ptr;
557 }
558
559 static void *__alloc_from_pool(size_t size, struct page **ret_page)
560 {
561 unsigned long val;
562 void *ptr = NULL;
563
564 if (!atomic_pool) {
565 WARN(1, "coherent pool not initialised!\n");
566 return NULL;
567 }
568
569 val = gen_pool_alloc(atomic_pool, size);
570 if (val) {
571 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
572
573 *ret_page = phys_to_page(phys);
574 ptr = (void *)val;
575 }
576
577 return ptr;
578 }
579
580 static bool __in_atomic_pool(void *start, size_t size)
581 {
582 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
583 }
584
585 static int __free_from_pool(void *start, size_t size)
586 {
587 if (!__in_atomic_pool(start, size))
588 return 0;
589
590 gen_pool_free(atomic_pool, (unsigned long)start, size);
591
592 return 1;
593 }
594
595 static void *__alloc_from_contiguous(struct device *dev, size_t size,
596 pgprot_t prot, struct page **ret_page,
597 const void *caller, bool want_vaddr,
598 int coherent_flag, gfp_t gfp)
599 {
600 unsigned long order = get_order(size);
601 size_t count = size >> PAGE_SHIFT;
602 struct page *page;
603 void *ptr = NULL;
604
605 page = dma_alloc_from_contiguous(dev, count, order, gfp);
606 if (!page)
607 return NULL;
608
609 __dma_clear_buffer(page, size, coherent_flag);
610
611 if (!want_vaddr)
612 goto out;
613
614 if (PageHighMem(page)) {
615 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
616 if (!ptr) {
617 dma_release_from_contiguous(dev, page, count);
618 return NULL;
619 }
620 } else {
621 __dma_remap(page, size, prot);
622 ptr = page_address(page);
623 }
624
625 out:
626 *ret_page = page;
627 return ptr;
628 }
629
630 static void __free_from_contiguous(struct device *dev, struct page *page,
631 void *cpu_addr, size_t size, bool want_vaddr)
632 {
633 if (want_vaddr) {
634 if (PageHighMem(page))
635 __dma_free_remap(cpu_addr, size);
636 else
637 __dma_remap(page, size, PAGE_KERNEL);
638 }
639 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
640 }
641
642 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
643 {
644 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
645 pgprot_writecombine(prot) :
646 pgprot_dmacoherent(prot);
647 return prot;
648 }
649
650 #define nommu() 0
651
652 #else /* !CONFIG_MMU */
653
654 #define nommu() 1
655
656 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
657 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
658 #define __alloc_from_pool(size, ret_page) NULL
659 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv, coherent_flag, gfp) NULL
660 #define __free_from_pool(cpu_addr, size) do { } while (0)
661 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
662 #define __dma_free_remap(cpu_addr, size) do { } while (0)
663
664 #endif /* CONFIG_MMU */
665
666 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
667 struct page **ret_page)
668 {
669 struct page *page;
670 /* __alloc_simple_buffer is only called when the device is coherent */
671 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
672 if (!page)
673 return NULL;
674
675 *ret_page = page;
676 return page_address(page);
677 }
678
679 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
680 struct page **ret_page)
681 {
682 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
683 ret_page);
684 }
685
686 static void simple_allocator_free(struct arm_dma_free_args *args)
687 {
688 __dma_free_buffer(args->page, args->size);
689 }
690
691 static struct arm_dma_allocator simple_allocator = {
692 .alloc = simple_allocator_alloc,
693 .free = simple_allocator_free,
694 };
695
696 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
697 struct page **ret_page)
698 {
699 return __alloc_from_contiguous(args->dev, args->size, args->prot,
700 ret_page, args->caller,
701 args->want_vaddr, args->coherent_flag,
702 args->gfp);
703 }
704
705 static void cma_allocator_free(struct arm_dma_free_args *args)
706 {
707 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
708 args->size, args->want_vaddr);
709 }
710
711 static struct arm_dma_allocator cma_allocator = {
712 .alloc = cma_allocator_alloc,
713 .free = cma_allocator_free,
714 };
715
716 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
717 struct page **ret_page)
718 {
719 return __alloc_from_pool(args->size, ret_page);
720 }
721
722 static void pool_allocator_free(struct arm_dma_free_args *args)
723 {
724 __free_from_pool(args->cpu_addr, args->size);
725 }
726
727 static struct arm_dma_allocator pool_allocator = {
728 .alloc = pool_allocator_alloc,
729 .free = pool_allocator_free,
730 };
731
732 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
733 struct page **ret_page)
734 {
735 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
736 args->prot, ret_page, args->caller,
737 args->want_vaddr);
738 }
739
740 static void remap_allocator_free(struct arm_dma_free_args *args)
741 {
742 if (args->want_vaddr)
743 __dma_free_remap(args->cpu_addr, args->size);
744
745 __dma_free_buffer(args->page, args->size);
746 }
747
748 static struct arm_dma_allocator remap_allocator = {
749 .alloc = remap_allocator_alloc,
750 .free = remap_allocator_free,
751 };
752
753 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
754 gfp_t gfp, pgprot_t prot, bool is_coherent,
755 unsigned long attrs, const void *caller)
756 {
757 u64 mask = get_coherent_dma_mask(dev);
758 struct page *page = NULL;
759 void *addr;
760 bool allowblock, cma;
761 struct arm_dma_buffer *buf;
762 struct arm_dma_alloc_args args = {
763 .dev = dev,
764 .size = PAGE_ALIGN(size),
765 .gfp = gfp,
766 .prot = prot,
767 .caller = caller,
768 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
769 .coherent_flag = is_coherent ? COHERENT : NORMAL,
770 };
771
772 #ifdef CONFIG_DMA_API_DEBUG
773 u64 limit = (mask + 1) & ~mask;
774 if (limit && size >= limit) {
775 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
776 size, mask);
777 return NULL;
778 }
779 #endif
780
781 if (!mask)
782 return NULL;
783
784 buf = kzalloc(sizeof(*buf),
785 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
786 if (!buf)
787 return NULL;
788
789 if (mask < 0xffffffffULL)
790 gfp |= GFP_DMA;
791
792 /*
793 * Following is a work-around (a.k.a. hack) to prevent pages
794 * with __GFP_COMP being passed to split_page() which cannot
795 * handle them. The real problem is that this flag probably
796 * should be 0 on ARM as it is not supported on this
797 * platform; see CONFIG_HUGETLBFS.
798 */
799 gfp &= ~(__GFP_COMP);
800 args.gfp = gfp;
801
802 *handle = DMA_ERROR_CODE;
803 allowblock = gfpflags_allow_blocking(gfp);
804 cma = allowblock ? dev_get_cma_area(dev) : false;
805
806 if (cma)
807 buf->allocator = &cma_allocator;
808 else if (nommu() || is_coherent)
809 buf->allocator = &simple_allocator;
810 else if (allowblock)
811 buf->allocator = &remap_allocator;
812 else
813 buf->allocator = &pool_allocator;
814
815 addr = buf->allocator->alloc(&args, &page);
816
817 if (page) {
818 unsigned long flags;
819
820 *handle = pfn_to_dma(dev, page_to_pfn(page));
821 buf->virt = args.want_vaddr ? addr : page;
822
823 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
824 list_add(&buf->list, &arm_dma_bufs);
825 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
826 } else {
827 kfree(buf);
828 }
829
830 return args.want_vaddr ? addr : page;
831 }
832
833 /*
834 * Allocate DMA-coherent memory space and return both the kernel remapped
835 * virtual and bus address for that space.
836 */
837 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
838 gfp_t gfp, unsigned long attrs)
839 {
840 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
841
842 return __dma_alloc(dev, size, handle, gfp, prot, false,
843 attrs, __builtin_return_address(0));
844 }
845
846 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
847 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
848 {
849 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
850 attrs, __builtin_return_address(0));
851 }
852
853 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
854 void *cpu_addr, dma_addr_t dma_addr, size_t size,
855 unsigned long attrs)
856 {
857 int ret = -ENXIO;
858 #ifdef CONFIG_MMU
859 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
860 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
861 unsigned long pfn = dma_to_pfn(dev, dma_addr);
862 unsigned long off = vma->vm_pgoff;
863
864 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
865 return ret;
866
867 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
868 ret = remap_pfn_range(vma, vma->vm_start,
869 pfn + off,
870 vma->vm_end - vma->vm_start,
871 vma->vm_page_prot);
872 }
873 #else
874 ret = vm_iomap_memory(vma, vma->vm_start,
875 (vma->vm_end - vma->vm_start));
876 #endif /* CONFIG_MMU */
877
878 return ret;
879 }
880
881 /*
882 * Create userspace mapping for the DMA-coherent memory.
883 */
884 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
885 void *cpu_addr, dma_addr_t dma_addr, size_t size,
886 unsigned long attrs)
887 {
888 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
889 }
890
891 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
892 void *cpu_addr, dma_addr_t dma_addr, size_t size,
893 unsigned long attrs)
894 {
895 #ifdef CONFIG_MMU
896 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
897 #endif /* CONFIG_MMU */
898 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
899 }
900
901 /*
902 * Free a buffer as defined by the above mapping.
903 */
904 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
905 dma_addr_t handle, unsigned long attrs,
906 bool is_coherent)
907 {
908 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
909 struct arm_dma_buffer *buf;
910 struct arm_dma_free_args args = {
911 .dev = dev,
912 .size = PAGE_ALIGN(size),
913 .cpu_addr = cpu_addr,
914 .page = page,
915 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
916 };
917
918 buf = arm_dma_buffer_find(cpu_addr);
919 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
920 return;
921
922 buf->allocator->free(&args);
923 kfree(buf);
924 }
925
926 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
927 dma_addr_t handle, unsigned long attrs)
928 {
929 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
930 }
931
932 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
933 dma_addr_t handle, unsigned long attrs)
934 {
935 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
936 }
937
938 /*
939 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
940 * that the intention is to allow exporting memory allocated via the
941 * coherent DMA APIs through the dma_buf API, which only accepts a
942 * scattertable. This presents a couple of problems:
943 * 1. Not all memory allocated via the coherent DMA APIs is backed by
944 * a struct page
945 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
946 * as we will try to flush the memory through a different alias to that
947 * actually being used (and the flushes are redundant.)
948 */
949 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
950 void *cpu_addr, dma_addr_t handle, size_t size,
951 unsigned long attrs)
952 {
953 unsigned long pfn = dma_to_pfn(dev, handle);
954 struct page *page;
955 int ret;
956
957 /* If the PFN is not valid, we do not have a struct page */
958 if (!pfn_valid(pfn))
959 return -ENXIO;
960
961 page = pfn_to_page(pfn);
962
963 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
964 if (unlikely(ret))
965 return ret;
966
967 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
968 return 0;
969 }
970
971 static void dma_cache_maint_page(struct page *page, unsigned long offset,
972 size_t size, enum dma_data_direction dir,
973 void (*op)(const void *, size_t, int))
974 {
975 unsigned long pfn;
976 size_t left = size;
977
978 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
979 offset %= PAGE_SIZE;
980
981 /*
982 * A single sg entry may refer to multiple physically contiguous
983 * pages. But we still need to process highmem pages individually.
984 * If highmem is not configured then the bulk of this loop gets
985 * optimized out.
986 */
987 do {
988 size_t len = left;
989 void *vaddr;
990
991 page = pfn_to_page(pfn);
992
993 if (PageHighMem(page)) {
994 if (len + offset > PAGE_SIZE)
995 len = PAGE_SIZE - offset;
996
997 if (cache_is_vipt_nonaliasing()) {
998 vaddr = kmap_atomic(page);
999 op(vaddr + offset, len, dir);
1000 kunmap_atomic(vaddr);
1001 } else {
1002 vaddr = kmap_high_get(page);
1003 if (vaddr) {
1004 op(vaddr + offset, len, dir);
1005 kunmap_high(page);
1006 }
1007 }
1008 } else {
1009 vaddr = page_address(page) + offset;
1010 op(vaddr, len, dir);
1011 }
1012 offset = 0;
1013 pfn++;
1014 left -= len;
1015 } while (left);
1016 }
1017
1018 /*
1019 * Make an area consistent for devices.
1020 * Note: Drivers should NOT use this function directly, as it will break
1021 * platforms with CONFIG_DMABOUNCE.
1022 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1023 */
1024 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1025 size_t size, enum dma_data_direction dir)
1026 {
1027 phys_addr_t paddr;
1028
1029 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1030
1031 paddr = page_to_phys(page) + off;
1032 if (dir == DMA_FROM_DEVICE) {
1033 outer_inv_range(paddr, paddr + size);
1034 } else {
1035 outer_clean_range(paddr, paddr + size);
1036 }
1037 /* FIXME: non-speculating: flush on bidirectional mappings? */
1038 }
1039
1040 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1041 size_t size, enum dma_data_direction dir)
1042 {
1043 phys_addr_t paddr = page_to_phys(page) + off;
1044
1045 /* FIXME: non-speculating: not required */
1046 /* in any case, don't bother invalidating if DMA to device */
1047 if (dir != DMA_TO_DEVICE) {
1048 outer_inv_range(paddr, paddr + size);
1049
1050 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1051 }
1052
1053 /*
1054 * Mark the D-cache clean for these pages to avoid extra flushing.
1055 */
1056 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1057 unsigned long pfn;
1058 size_t left = size;
1059
1060 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1061 off %= PAGE_SIZE;
1062 if (off) {
1063 pfn++;
1064 left -= PAGE_SIZE - off;
1065 }
1066 while (left >= PAGE_SIZE) {
1067 page = pfn_to_page(pfn++);
1068 set_bit(PG_dcache_clean, &page->flags);
1069 left -= PAGE_SIZE;
1070 }
1071 }
1072 }
1073
1074 /**
1075 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077 * @sg: list of buffers
1078 * @nents: number of buffers to map
1079 * @dir: DMA transfer direction
1080 *
1081 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1082 * This is the scatter-gather version of the dma_map_single interface.
1083 * Here the scatter gather list elements are each tagged with the
1084 * appropriate dma address and length. They are obtained via
1085 * sg_dma_{address,length}.
1086 *
1087 * Device ownership issues as mentioned for dma_map_single are the same
1088 * here.
1089 */
1090 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1091 enum dma_data_direction dir, unsigned long attrs)
1092 {
1093 const struct dma_map_ops *ops = get_dma_ops(dev);
1094 struct scatterlist *s;
1095 int i, j;
1096
1097 for_each_sg(sg, s, nents, i) {
1098 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1099 s->dma_length = s->length;
1100 #endif
1101 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1102 s->length, dir, attrs);
1103 if (dma_mapping_error(dev, s->dma_address))
1104 goto bad_mapping;
1105 }
1106 return nents;
1107
1108 bad_mapping:
1109 for_each_sg(sg, s, i, j)
1110 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1111 return 0;
1112 }
1113
1114 /**
1115 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1117 * @sg: list of buffers
1118 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1119 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1120 *
1121 * Unmap a set of streaming mode DMA translations. Again, CPU access
1122 * rules concerning calls here are the same as for dma_unmap_single().
1123 */
1124 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1125 enum dma_data_direction dir, unsigned long attrs)
1126 {
1127 const struct dma_map_ops *ops = get_dma_ops(dev);
1128 struct scatterlist *s;
1129
1130 int i;
1131
1132 for_each_sg(sg, s, nents, i)
1133 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1134 }
1135
1136 /**
1137 * arm_dma_sync_sg_for_cpu
1138 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1139 * @sg: list of buffers
1140 * @nents: number of buffers to map (returned from dma_map_sg)
1141 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1142 */
1143 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1144 int nents, enum dma_data_direction dir)
1145 {
1146 const struct dma_map_ops *ops = get_dma_ops(dev);
1147 struct scatterlist *s;
1148 int i;
1149
1150 for_each_sg(sg, s, nents, i)
1151 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1152 dir);
1153 }
1154
1155 /**
1156 * arm_dma_sync_sg_for_device
1157 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1158 * @sg: list of buffers
1159 * @nents: number of buffers to map (returned from dma_map_sg)
1160 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1161 */
1162 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1163 int nents, enum dma_data_direction dir)
1164 {
1165 const struct dma_map_ops *ops = get_dma_ops(dev);
1166 struct scatterlist *s;
1167 int i;
1168
1169 for_each_sg(sg, s, nents, i)
1170 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1171 dir);
1172 }
1173
1174 /*
1175 * Return whether the given device DMA address mask can be supported
1176 * properly. For example, if your device can only drive the low 24-bits
1177 * during bus mastering, then you would pass 0x00ffffff as the mask
1178 * to this function.
1179 */
1180 int dma_supported(struct device *dev, u64 mask)
1181 {
1182 return __dma_supported(dev, mask, false);
1183 }
1184 EXPORT_SYMBOL(dma_supported);
1185
1186 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1187
1188 static int __init dma_debug_do_init(void)
1189 {
1190 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1191 return 0;
1192 }
1193 core_initcall(dma_debug_do_init);
1194
1195 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1196
1197 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1198 {
1199 int prot = 0;
1200
1201 if (attrs & DMA_ATTR_PRIVILEGED)
1202 prot |= IOMMU_PRIV;
1203
1204 switch (dir) {
1205 case DMA_BIDIRECTIONAL:
1206 return prot | IOMMU_READ | IOMMU_WRITE;
1207 case DMA_TO_DEVICE:
1208 return prot | IOMMU_READ;
1209 case DMA_FROM_DEVICE:
1210 return prot | IOMMU_WRITE;
1211 default:
1212 return prot;
1213 }
1214 }
1215
1216 /* IOMMU */
1217
1218 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1219
1220 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1221 size_t size)
1222 {
1223 unsigned int order = get_order(size);
1224 unsigned int align = 0;
1225 unsigned int count, start;
1226 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1227 unsigned long flags;
1228 dma_addr_t iova;
1229 int i;
1230
1231 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1232 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1233
1234 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1235 align = (1 << order) - 1;
1236
1237 spin_lock_irqsave(&mapping->lock, flags);
1238 for (i = 0; i < mapping->nr_bitmaps; i++) {
1239 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1240 mapping->bits, 0, count, align);
1241
1242 if (start > mapping->bits)
1243 continue;
1244
1245 bitmap_set(mapping->bitmaps[i], start, count);
1246 break;
1247 }
1248
1249 /*
1250 * No unused range found. Try to extend the existing mapping
1251 * and perform a second attempt to reserve an IO virtual
1252 * address range of size bytes.
1253 */
1254 if (i == mapping->nr_bitmaps) {
1255 if (extend_iommu_mapping(mapping)) {
1256 spin_unlock_irqrestore(&mapping->lock, flags);
1257 return DMA_ERROR_CODE;
1258 }
1259
1260 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1261 mapping->bits, 0, count, align);
1262
1263 if (start > mapping->bits) {
1264 spin_unlock_irqrestore(&mapping->lock, flags);
1265 return DMA_ERROR_CODE;
1266 }
1267
1268 bitmap_set(mapping->bitmaps[i], start, count);
1269 }
1270 spin_unlock_irqrestore(&mapping->lock, flags);
1271
1272 iova = mapping->base + (mapping_size * i);
1273 iova += start << PAGE_SHIFT;
1274
1275 return iova;
1276 }
1277
1278 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1279 dma_addr_t addr, size_t size)
1280 {
1281 unsigned int start, count;
1282 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1283 unsigned long flags;
1284 dma_addr_t bitmap_base;
1285 u32 bitmap_index;
1286
1287 if (!size)
1288 return;
1289
1290 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1291 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1292
1293 bitmap_base = mapping->base + mapping_size * bitmap_index;
1294
1295 start = (addr - bitmap_base) >> PAGE_SHIFT;
1296
1297 if (addr + size > bitmap_base + mapping_size) {
1298 /*
1299 * The address range to be freed reaches into the iova
1300 * range of the next bitmap. This should not happen as
1301 * we don't allow this in __alloc_iova (at the
1302 * moment).
1303 */
1304 BUG();
1305 } else
1306 count = size >> PAGE_SHIFT;
1307
1308 spin_lock_irqsave(&mapping->lock, flags);
1309 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1310 spin_unlock_irqrestore(&mapping->lock, flags);
1311 }
1312
1313 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1314 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1315
1316 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1317 gfp_t gfp, unsigned long attrs,
1318 int coherent_flag)
1319 {
1320 struct page **pages;
1321 int count = size >> PAGE_SHIFT;
1322 int array_size = count * sizeof(struct page *);
1323 int i = 0;
1324 int order_idx = 0;
1325
1326 if (array_size <= PAGE_SIZE)
1327 pages = kzalloc(array_size, GFP_KERNEL);
1328 else
1329 pages = vzalloc(array_size);
1330 if (!pages)
1331 return NULL;
1332
1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1334 {
1335 unsigned long order = get_order(size);
1336 struct page *page;
1337
1338 page = dma_alloc_from_contiguous(dev, count, order, gfp);
1339 if (!page)
1340 goto error;
1341
1342 __dma_clear_buffer(page, size, coherent_flag);
1343
1344 for (i = 0; i < count; i++)
1345 pages[i] = page + i;
1346
1347 return pages;
1348 }
1349
1350 /* Go straight to 4K chunks if caller says it's OK. */
1351 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1352 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1353
1354 /*
1355 * IOMMU can map any pages, so himem can also be used here
1356 */
1357 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1358
1359 while (count) {
1360 int j, order;
1361
1362 order = iommu_order_array[order_idx];
1363
1364 /* Drop down when we get small */
1365 if (__fls(count) < order) {
1366 order_idx++;
1367 continue;
1368 }
1369
1370 if (order) {
1371 /* See if it's easy to allocate a high-order chunk */
1372 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1373
1374 /* Go down a notch at first sign of pressure */
1375 if (!pages[i]) {
1376 order_idx++;
1377 continue;
1378 }
1379 } else {
1380 pages[i] = alloc_pages(gfp, 0);
1381 if (!pages[i])
1382 goto error;
1383 }
1384
1385 if (order) {
1386 split_page(pages[i], order);
1387 j = 1 << order;
1388 while (--j)
1389 pages[i + j] = pages[i] + j;
1390 }
1391
1392 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1393 i += 1 << order;
1394 count -= 1 << order;
1395 }
1396
1397 return pages;
1398 error:
1399 while (i--)
1400 if (pages[i])
1401 __free_pages(pages[i], 0);
1402 kvfree(pages);
1403 return NULL;
1404 }
1405
1406 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1407 size_t size, unsigned long attrs)
1408 {
1409 int count = size >> PAGE_SHIFT;
1410 int i;
1411
1412 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1413 dma_release_from_contiguous(dev, pages[0], count);
1414 } else {
1415 for (i = 0; i < count; i++)
1416 if (pages[i])
1417 __free_pages(pages[i], 0);
1418 }
1419
1420 kvfree(pages);
1421 return 0;
1422 }
1423
1424 /*
1425 * Create a CPU mapping for a specified pages
1426 */
1427 static void *
1428 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1429 const void *caller)
1430 {
1431 return dma_common_pages_remap(pages, size,
1432 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1433 }
1434
1435 /*
1436 * Create a mapping in device IO address space for specified pages
1437 */
1438 static dma_addr_t
1439 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1440 unsigned long attrs)
1441 {
1442 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1443 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1444 dma_addr_t dma_addr, iova;
1445 int i;
1446
1447 dma_addr = __alloc_iova(mapping, size);
1448 if (dma_addr == DMA_ERROR_CODE)
1449 return dma_addr;
1450
1451 iova = dma_addr;
1452 for (i = 0; i < count; ) {
1453 int ret;
1454
1455 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1456 phys_addr_t phys = page_to_phys(pages[i]);
1457 unsigned int len, j;
1458
1459 for (j = i + 1; j < count; j++, next_pfn++)
1460 if (page_to_pfn(pages[j]) != next_pfn)
1461 break;
1462
1463 len = (j - i) << PAGE_SHIFT;
1464 ret = iommu_map(mapping->domain, iova, phys, len,
1465 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1466 if (ret < 0)
1467 goto fail;
1468 iova += len;
1469 i = j;
1470 }
1471 return dma_addr;
1472 fail:
1473 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1474 __free_iova(mapping, dma_addr, size);
1475 return DMA_ERROR_CODE;
1476 }
1477
1478 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1479 {
1480 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1481
1482 /*
1483 * add optional in-page offset from iova to size and align
1484 * result to page size
1485 */
1486 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1487 iova &= PAGE_MASK;
1488
1489 iommu_unmap(mapping->domain, iova, size);
1490 __free_iova(mapping, iova, size);
1491 return 0;
1492 }
1493
1494 static struct page **__atomic_get_pages(void *addr)
1495 {
1496 struct page *page;
1497 phys_addr_t phys;
1498
1499 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1500 page = phys_to_page(phys);
1501
1502 return (struct page **)page;
1503 }
1504
1505 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1506 {
1507 struct vm_struct *area;
1508
1509 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1510 return __atomic_get_pages(cpu_addr);
1511
1512 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1513 return cpu_addr;
1514
1515 area = find_vm_area(cpu_addr);
1516 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1517 return area->pages;
1518 return NULL;
1519 }
1520
1521 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1522 dma_addr_t *handle, int coherent_flag,
1523 unsigned long attrs)
1524 {
1525 struct page *page;
1526 void *addr;
1527
1528 if (coherent_flag == COHERENT)
1529 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1530 else
1531 addr = __alloc_from_pool(size, &page);
1532 if (!addr)
1533 return NULL;
1534
1535 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1536 if (*handle == DMA_ERROR_CODE)
1537 goto err_mapping;
1538
1539 return addr;
1540
1541 err_mapping:
1542 __free_from_pool(addr, size);
1543 return NULL;
1544 }
1545
1546 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1547 dma_addr_t handle, size_t size, int coherent_flag)
1548 {
1549 __iommu_remove_mapping(dev, handle, size);
1550 if (coherent_flag == COHERENT)
1551 __dma_free_buffer(virt_to_page(cpu_addr), size);
1552 else
1553 __free_from_pool(cpu_addr, size);
1554 }
1555
1556 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1557 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1558 int coherent_flag)
1559 {
1560 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1561 struct page **pages;
1562 void *addr = NULL;
1563
1564 *handle = DMA_ERROR_CODE;
1565 size = PAGE_ALIGN(size);
1566
1567 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1568 return __iommu_alloc_simple(dev, size, gfp, handle,
1569 coherent_flag, attrs);
1570
1571 /*
1572 * Following is a work-around (a.k.a. hack) to prevent pages
1573 * with __GFP_COMP being passed to split_page() which cannot
1574 * handle them. The real problem is that this flag probably
1575 * should be 0 on ARM as it is not supported on this
1576 * platform; see CONFIG_HUGETLBFS.
1577 */
1578 gfp &= ~(__GFP_COMP);
1579
1580 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1581 if (!pages)
1582 return NULL;
1583
1584 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1585 if (*handle == DMA_ERROR_CODE)
1586 goto err_buffer;
1587
1588 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1589 return pages;
1590
1591 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1592 __builtin_return_address(0));
1593 if (!addr)
1594 goto err_mapping;
1595
1596 return addr;
1597
1598 err_mapping:
1599 __iommu_remove_mapping(dev, *handle, size);
1600 err_buffer:
1601 __iommu_free_buffer(dev, pages, size, attrs);
1602 return NULL;
1603 }
1604
1605 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1606 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1607 {
1608 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1609 }
1610
1611 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1612 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1613 {
1614 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1615 }
1616
1617 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1618 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1619 unsigned long attrs)
1620 {
1621 unsigned long uaddr = vma->vm_start;
1622 unsigned long usize = vma->vm_end - vma->vm_start;
1623 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1624 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1625 unsigned long off = vma->vm_pgoff;
1626
1627 if (!pages)
1628 return -ENXIO;
1629
1630 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1631 return -ENXIO;
1632
1633 pages += off;
1634
1635 do {
1636 int ret = vm_insert_page(vma, uaddr, *pages++);
1637 if (ret) {
1638 pr_err("Remapping memory failed: %d\n", ret);
1639 return ret;
1640 }
1641 uaddr += PAGE_SIZE;
1642 usize -= PAGE_SIZE;
1643 } while (usize > 0);
1644
1645 return 0;
1646 }
1647 static int arm_iommu_mmap_attrs(struct device *dev,
1648 struct vm_area_struct *vma, void *cpu_addr,
1649 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1650 {
1651 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1652
1653 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1654 }
1655
1656 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1657 struct vm_area_struct *vma, void *cpu_addr,
1658 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1659 {
1660 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1661 }
1662
1663 /*
1664 * free a page as defined by the above mapping.
1665 * Must not be called with IRQs disabled.
1666 */
1667 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1668 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1669 {
1670 struct page **pages;
1671 size = PAGE_ALIGN(size);
1672
1673 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1674 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1675 return;
1676 }
1677
1678 pages = __iommu_get_pages(cpu_addr, attrs);
1679 if (!pages) {
1680 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1681 return;
1682 }
1683
1684 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1685 dma_common_free_remap(cpu_addr, size,
1686 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1687 }
1688
1689 __iommu_remove_mapping(dev, handle, size);
1690 __iommu_free_buffer(dev, pages, size, attrs);
1691 }
1692
1693 void arm_iommu_free_attrs(struct device *dev, size_t size,
1694 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1695 {
1696 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1697 }
1698
1699 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1700 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1701 {
1702 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1703 }
1704
1705 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1706 void *cpu_addr, dma_addr_t dma_addr,
1707 size_t size, unsigned long attrs)
1708 {
1709 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1710 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1711
1712 if (!pages)
1713 return -ENXIO;
1714
1715 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1716 GFP_KERNEL);
1717 }
1718
1719 /*
1720 * Map a part of the scatter-gather list into contiguous io address space
1721 */
1722 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1723 size_t size, dma_addr_t *handle,
1724 enum dma_data_direction dir, unsigned long attrs,
1725 bool is_coherent)
1726 {
1727 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1728 dma_addr_t iova, iova_base;
1729 int ret = 0;
1730 unsigned int count;
1731 struct scatterlist *s;
1732 int prot;
1733
1734 size = PAGE_ALIGN(size);
1735 *handle = DMA_ERROR_CODE;
1736
1737 iova_base = iova = __alloc_iova(mapping, size);
1738 if (iova == DMA_ERROR_CODE)
1739 return -ENOMEM;
1740
1741 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1742 phys_addr_t phys = page_to_phys(sg_page(s));
1743 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1744
1745 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1746 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1747
1748 prot = __dma_info_to_prot(dir, attrs);
1749
1750 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1751 if (ret < 0)
1752 goto fail;
1753 count += len >> PAGE_SHIFT;
1754 iova += len;
1755 }
1756 *handle = iova_base;
1757
1758 return 0;
1759 fail:
1760 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1761 __free_iova(mapping, iova_base, size);
1762 return ret;
1763 }
1764
1765 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1766 enum dma_data_direction dir, unsigned long attrs,
1767 bool is_coherent)
1768 {
1769 struct scatterlist *s = sg, *dma = sg, *start = sg;
1770 int i, count = 0;
1771 unsigned int offset = s->offset;
1772 unsigned int size = s->offset + s->length;
1773 unsigned int max = dma_get_max_seg_size(dev);
1774
1775 for (i = 1; i < nents; i++) {
1776 s = sg_next(s);
1777
1778 s->dma_address = DMA_ERROR_CODE;
1779 s->dma_length = 0;
1780
1781 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1782 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1783 dir, attrs, is_coherent) < 0)
1784 goto bad_mapping;
1785
1786 dma->dma_address += offset;
1787 dma->dma_length = size - offset;
1788
1789 size = offset = s->offset;
1790 start = s;
1791 dma = sg_next(dma);
1792 count += 1;
1793 }
1794 size += s->length;
1795 }
1796 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1797 is_coherent) < 0)
1798 goto bad_mapping;
1799
1800 dma->dma_address += offset;
1801 dma->dma_length = size - offset;
1802
1803 return count+1;
1804
1805 bad_mapping:
1806 for_each_sg(sg, s, count, i)
1807 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1808 return 0;
1809 }
1810
1811 /**
1812 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1813 * @dev: valid struct device pointer
1814 * @sg: list of buffers
1815 * @nents: number of buffers to map
1816 * @dir: DMA transfer direction
1817 *
1818 * Map a set of i/o coherent buffers described by scatterlist in streaming
1819 * mode for DMA. The scatter gather list elements are merged together (if
1820 * possible) and tagged with the appropriate dma address and length. They are
1821 * obtained via sg_dma_{address,length}.
1822 */
1823 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1824 int nents, enum dma_data_direction dir, unsigned long attrs)
1825 {
1826 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1827 }
1828
1829 /**
1830 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1831 * @dev: valid struct device pointer
1832 * @sg: list of buffers
1833 * @nents: number of buffers to map
1834 * @dir: DMA transfer direction
1835 *
1836 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1837 * The scatter gather list elements are merged together (if possible) and
1838 * tagged with the appropriate dma address and length. They are obtained via
1839 * sg_dma_{address,length}.
1840 */
1841 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1842 int nents, enum dma_data_direction dir, unsigned long attrs)
1843 {
1844 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1845 }
1846
1847 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1848 int nents, enum dma_data_direction dir,
1849 unsigned long attrs, bool is_coherent)
1850 {
1851 struct scatterlist *s;
1852 int i;
1853
1854 for_each_sg(sg, s, nents, i) {
1855 if (sg_dma_len(s))
1856 __iommu_remove_mapping(dev, sg_dma_address(s),
1857 sg_dma_len(s));
1858 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1859 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1860 s->length, dir);
1861 }
1862 }
1863
1864 /**
1865 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1866 * @dev: valid struct device pointer
1867 * @sg: list of buffers
1868 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1869 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1870 *
1871 * Unmap a set of streaming mode DMA translations. Again, CPU access
1872 * rules concerning calls here are the same as for dma_unmap_single().
1873 */
1874 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1875 int nents, enum dma_data_direction dir,
1876 unsigned long attrs)
1877 {
1878 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1879 }
1880
1881 /**
1882 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1883 * @dev: valid struct device pointer
1884 * @sg: list of buffers
1885 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1886 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1887 *
1888 * Unmap a set of streaming mode DMA translations. Again, CPU access
1889 * rules concerning calls here are the same as for dma_unmap_single().
1890 */
1891 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1892 enum dma_data_direction dir,
1893 unsigned long attrs)
1894 {
1895 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1896 }
1897
1898 /**
1899 * arm_iommu_sync_sg_for_cpu
1900 * @dev: valid struct device pointer
1901 * @sg: list of buffers
1902 * @nents: number of buffers to map (returned from dma_map_sg)
1903 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1904 */
1905 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1906 int nents, enum dma_data_direction dir)
1907 {
1908 struct scatterlist *s;
1909 int i;
1910
1911 for_each_sg(sg, s, nents, i)
1912 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1913
1914 }
1915
1916 /**
1917 * arm_iommu_sync_sg_for_device
1918 * @dev: valid struct device pointer
1919 * @sg: list of buffers
1920 * @nents: number of buffers to map (returned from dma_map_sg)
1921 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1922 */
1923 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1924 int nents, enum dma_data_direction dir)
1925 {
1926 struct scatterlist *s;
1927 int i;
1928
1929 for_each_sg(sg, s, nents, i)
1930 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1931 }
1932
1933
1934 /**
1935 * arm_coherent_iommu_map_page
1936 * @dev: valid struct device pointer
1937 * @page: page that buffer resides in
1938 * @offset: offset into page for start of buffer
1939 * @size: size of buffer to map
1940 * @dir: DMA transfer direction
1941 *
1942 * Coherent IOMMU aware version of arm_dma_map_page()
1943 */
1944 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1945 unsigned long offset, size_t size, enum dma_data_direction dir,
1946 unsigned long attrs)
1947 {
1948 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1949 dma_addr_t dma_addr;
1950 int ret, prot, len = PAGE_ALIGN(size + offset);
1951
1952 dma_addr = __alloc_iova(mapping, len);
1953 if (dma_addr == DMA_ERROR_CODE)
1954 return dma_addr;
1955
1956 prot = __dma_info_to_prot(dir, attrs);
1957
1958 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1959 if (ret < 0)
1960 goto fail;
1961
1962 return dma_addr + offset;
1963 fail:
1964 __free_iova(mapping, dma_addr, len);
1965 return DMA_ERROR_CODE;
1966 }
1967
1968 /**
1969 * arm_iommu_map_page
1970 * @dev: valid struct device pointer
1971 * @page: page that buffer resides in
1972 * @offset: offset into page for start of buffer
1973 * @size: size of buffer to map
1974 * @dir: DMA transfer direction
1975 *
1976 * IOMMU aware version of arm_dma_map_page()
1977 */
1978 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1979 unsigned long offset, size_t size, enum dma_data_direction dir,
1980 unsigned long attrs)
1981 {
1982 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1983 __dma_page_cpu_to_dev(page, offset, size, dir);
1984
1985 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1986 }
1987
1988 /**
1989 * arm_coherent_iommu_unmap_page
1990 * @dev: valid struct device pointer
1991 * @handle: DMA address of buffer
1992 * @size: size of buffer (same as passed to dma_map_page)
1993 * @dir: DMA transfer direction (same as passed to dma_map_page)
1994 *
1995 * Coherent IOMMU aware version of arm_dma_unmap_page()
1996 */
1997 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1998 size_t size, enum dma_data_direction dir, unsigned long attrs)
1999 {
2000 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2001 dma_addr_t iova = handle & PAGE_MASK;
2002 int offset = handle & ~PAGE_MASK;
2003 int len = PAGE_ALIGN(size + offset);
2004
2005 if (!iova)
2006 return;
2007
2008 iommu_unmap(mapping->domain, iova, len);
2009 __free_iova(mapping, iova, len);
2010 }
2011
2012 /**
2013 * arm_iommu_unmap_page
2014 * @dev: valid struct device pointer
2015 * @handle: DMA address of buffer
2016 * @size: size of buffer (same as passed to dma_map_page)
2017 * @dir: DMA transfer direction (same as passed to dma_map_page)
2018 *
2019 * IOMMU aware version of arm_dma_unmap_page()
2020 */
2021 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
2022 size_t size, enum dma_data_direction dir, unsigned long attrs)
2023 {
2024 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2025 dma_addr_t iova = handle & PAGE_MASK;
2026 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2027 int offset = handle & ~PAGE_MASK;
2028 int len = PAGE_ALIGN(size + offset);
2029
2030 if (!iova)
2031 return;
2032
2033 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2034 __dma_page_dev_to_cpu(page, offset, size, dir);
2035
2036 iommu_unmap(mapping->domain, iova, len);
2037 __free_iova(mapping, iova, len);
2038 }
2039
2040 /**
2041 * arm_iommu_map_resource - map a device resource for DMA
2042 * @dev: valid struct device pointer
2043 * @phys_addr: physical address of resource
2044 * @size: size of resource to map
2045 * @dir: DMA transfer direction
2046 */
2047 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2048 phys_addr_t phys_addr, size_t size,
2049 enum dma_data_direction dir, unsigned long attrs)
2050 {
2051 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2052 dma_addr_t dma_addr;
2053 int ret, prot;
2054 phys_addr_t addr = phys_addr & PAGE_MASK;
2055 unsigned int offset = phys_addr & ~PAGE_MASK;
2056 size_t len = PAGE_ALIGN(size + offset);
2057
2058 dma_addr = __alloc_iova(mapping, len);
2059 if (dma_addr == DMA_ERROR_CODE)
2060 return dma_addr;
2061
2062 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2063
2064 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2065 if (ret < 0)
2066 goto fail;
2067
2068 return dma_addr + offset;
2069 fail:
2070 __free_iova(mapping, dma_addr, len);
2071 return DMA_ERROR_CODE;
2072 }
2073
2074 /**
2075 * arm_iommu_unmap_resource - unmap a device DMA resource
2076 * @dev: valid struct device pointer
2077 * @dma_handle: DMA address to resource
2078 * @size: size of resource to map
2079 * @dir: DMA transfer direction
2080 */
2081 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2082 size_t size, enum dma_data_direction dir,
2083 unsigned long attrs)
2084 {
2085 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2086 dma_addr_t iova = dma_handle & PAGE_MASK;
2087 unsigned int offset = dma_handle & ~PAGE_MASK;
2088 size_t len = PAGE_ALIGN(size + offset);
2089
2090 if (!iova)
2091 return;
2092
2093 iommu_unmap(mapping->domain, iova, len);
2094 __free_iova(mapping, iova, len);
2095 }
2096
2097 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2098 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2099 {
2100 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2101 dma_addr_t iova = handle & PAGE_MASK;
2102 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2103 unsigned int offset = handle & ~PAGE_MASK;
2104
2105 if (!iova)
2106 return;
2107
2108 __dma_page_dev_to_cpu(page, offset, size, dir);
2109 }
2110
2111 static void arm_iommu_sync_single_for_device(struct device *dev,
2112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2113 {
2114 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2115 dma_addr_t iova = handle & PAGE_MASK;
2116 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2117 unsigned int offset = handle & ~PAGE_MASK;
2118
2119 if (!iova)
2120 return;
2121
2122 __dma_page_cpu_to_dev(page, offset, size, dir);
2123 }
2124
2125 const struct dma_map_ops iommu_ops = {
2126 .alloc = arm_iommu_alloc_attrs,
2127 .free = arm_iommu_free_attrs,
2128 .mmap = arm_iommu_mmap_attrs,
2129 .get_sgtable = arm_iommu_get_sgtable,
2130
2131 .map_page = arm_iommu_map_page,
2132 .unmap_page = arm_iommu_unmap_page,
2133 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2134 .sync_single_for_device = arm_iommu_sync_single_for_device,
2135
2136 .map_sg = arm_iommu_map_sg,
2137 .unmap_sg = arm_iommu_unmap_sg,
2138 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2139 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2140
2141 .map_resource = arm_iommu_map_resource,
2142 .unmap_resource = arm_iommu_unmap_resource,
2143 };
2144
2145 const struct dma_map_ops iommu_coherent_ops = {
2146 .alloc = arm_coherent_iommu_alloc_attrs,
2147 .free = arm_coherent_iommu_free_attrs,
2148 .mmap = arm_coherent_iommu_mmap_attrs,
2149 .get_sgtable = arm_iommu_get_sgtable,
2150
2151 .map_page = arm_coherent_iommu_map_page,
2152 .unmap_page = arm_coherent_iommu_unmap_page,
2153
2154 .map_sg = arm_coherent_iommu_map_sg,
2155 .unmap_sg = arm_coherent_iommu_unmap_sg,
2156
2157 .map_resource = arm_iommu_map_resource,
2158 .unmap_resource = arm_iommu_unmap_resource,
2159 };
2160
2161 /**
2162 * arm_iommu_create_mapping
2163 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2164 * @base: start address of the valid IO address space
2165 * @size: maximum size of the valid IO address space
2166 *
2167 * Creates a mapping structure which holds information about used/unused
2168 * IO address ranges, which is required to perform memory allocation and
2169 * mapping with IOMMU aware functions.
2170 *
2171 * The client device need to be attached to the mapping with
2172 * arm_iommu_attach_device function.
2173 */
2174 struct dma_iommu_mapping *
2175 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2176 {
2177 unsigned int bits = size >> PAGE_SHIFT;
2178 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2179 struct dma_iommu_mapping *mapping;
2180 int extensions = 1;
2181 int err = -ENOMEM;
2182
2183 /* currently only 32-bit DMA address space is supported */
2184 if (size > DMA_BIT_MASK(32) + 1)
2185 return ERR_PTR(-ERANGE);
2186
2187 if (!bitmap_size)
2188 return ERR_PTR(-EINVAL);
2189
2190 if (bitmap_size > PAGE_SIZE) {
2191 extensions = bitmap_size / PAGE_SIZE;
2192 bitmap_size = PAGE_SIZE;
2193 }
2194
2195 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2196 if (!mapping)
2197 goto err;
2198
2199 mapping->bitmap_size = bitmap_size;
2200 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2201 GFP_KERNEL);
2202 if (!mapping->bitmaps)
2203 goto err2;
2204
2205 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2206 if (!mapping->bitmaps[0])
2207 goto err3;
2208
2209 mapping->nr_bitmaps = 1;
2210 mapping->extensions = extensions;
2211 mapping->base = base;
2212 mapping->bits = BITS_PER_BYTE * bitmap_size;
2213
2214 spin_lock_init(&mapping->lock);
2215
2216 mapping->domain = iommu_domain_alloc(bus);
2217 if (!mapping->domain)
2218 goto err4;
2219
2220 kref_init(&mapping->kref);
2221 return mapping;
2222 err4:
2223 kfree(mapping->bitmaps[0]);
2224 err3:
2225 kfree(mapping->bitmaps);
2226 err2:
2227 kfree(mapping);
2228 err:
2229 return ERR_PTR(err);
2230 }
2231 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2232
2233 static void release_iommu_mapping(struct kref *kref)
2234 {
2235 int i;
2236 struct dma_iommu_mapping *mapping =
2237 container_of(kref, struct dma_iommu_mapping, kref);
2238
2239 iommu_domain_free(mapping->domain);
2240 for (i = 0; i < mapping->nr_bitmaps; i++)
2241 kfree(mapping->bitmaps[i]);
2242 kfree(mapping->bitmaps);
2243 kfree(mapping);
2244 }
2245
2246 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2247 {
2248 int next_bitmap;
2249
2250 if (mapping->nr_bitmaps >= mapping->extensions)
2251 return -EINVAL;
2252
2253 next_bitmap = mapping->nr_bitmaps;
2254 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2255 GFP_ATOMIC);
2256 if (!mapping->bitmaps[next_bitmap])
2257 return -ENOMEM;
2258
2259 mapping->nr_bitmaps++;
2260
2261 return 0;
2262 }
2263
2264 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2265 {
2266 if (mapping)
2267 kref_put(&mapping->kref, release_iommu_mapping);
2268 }
2269 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2270
2271 static int __arm_iommu_attach_device(struct device *dev,
2272 struct dma_iommu_mapping *mapping)
2273 {
2274 int err;
2275
2276 err = iommu_attach_device(mapping->domain, dev);
2277 if (err)
2278 return err;
2279
2280 kref_get(&mapping->kref);
2281 to_dma_iommu_mapping(dev) = mapping;
2282
2283 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2284 return 0;
2285 }
2286
2287 /**
2288 * arm_iommu_attach_device
2289 * @dev: valid struct device pointer
2290 * @mapping: io address space mapping structure (returned from
2291 * arm_iommu_create_mapping)
2292 *
2293 * Attaches specified io address space mapping to the provided device.
2294 * This replaces the dma operations (dma_map_ops pointer) with the
2295 * IOMMU aware version.
2296 *
2297 * More than one client might be attached to the same io address space
2298 * mapping.
2299 */
2300 int arm_iommu_attach_device(struct device *dev,
2301 struct dma_iommu_mapping *mapping)
2302 {
2303 int err;
2304
2305 err = __arm_iommu_attach_device(dev, mapping);
2306 if (err)
2307 return err;
2308
2309 set_dma_ops(dev, &iommu_ops);
2310 return 0;
2311 }
2312 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2313
2314 static void __arm_iommu_detach_device(struct device *dev)
2315 {
2316 struct dma_iommu_mapping *mapping;
2317
2318 mapping = to_dma_iommu_mapping(dev);
2319 if (!mapping) {
2320 dev_warn(dev, "Not attached\n");
2321 return;
2322 }
2323
2324 iommu_detach_device(mapping->domain, dev);
2325 kref_put(&mapping->kref, release_iommu_mapping);
2326 to_dma_iommu_mapping(dev) = NULL;
2327
2328 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2329 }
2330
2331 /**
2332 * arm_iommu_detach_device
2333 * @dev: valid struct device pointer
2334 *
2335 * Detaches the provided device from a previously attached map.
2336 * This voids the dma operations (dma_map_ops pointer)
2337 */
2338 void arm_iommu_detach_device(struct device *dev)
2339 {
2340 __arm_iommu_detach_device(dev);
2341 set_dma_ops(dev, NULL);
2342 }
2343 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2344
2345 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2346 {
2347 return coherent ? &iommu_coherent_ops : &iommu_ops;
2348 }
2349
2350 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2351 const struct iommu_ops *iommu)
2352 {
2353 struct dma_iommu_mapping *mapping;
2354
2355 if (!iommu)
2356 return false;
2357
2358 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2359 if (IS_ERR(mapping)) {
2360 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2361 size, dev_name(dev));
2362 return false;
2363 }
2364
2365 if (__arm_iommu_attach_device(dev, mapping)) {
2366 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2367 dev_name(dev));
2368 arm_iommu_release_mapping(mapping);
2369 return false;
2370 }
2371
2372 return true;
2373 }
2374
2375 static void arm_teardown_iommu_dma_ops(struct device *dev)
2376 {
2377 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2378
2379 if (!mapping)
2380 return;
2381
2382 __arm_iommu_detach_device(dev);
2383 arm_iommu_release_mapping(mapping);
2384 }
2385
2386 #else
2387
2388 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2389 const struct iommu_ops *iommu)
2390 {
2391 return false;
2392 }
2393
2394 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2395
2396 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2397
2398 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2399
2400 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2401 {
2402 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2403 }
2404
2405 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2406 const struct iommu_ops *iommu, bool coherent)
2407 {
2408 const struct dma_map_ops *dma_ops;
2409
2410 dev->archdata.dma_coherent = coherent;
2411
2412 /*
2413 * Don't override the dma_ops if they have already been set. Ideally
2414 * this should be the only location where dma_ops are set, remove this
2415 * check when all other callers of set_dma_ops will have disappeared.
2416 */
2417 if (dev->dma_ops)
2418 return;
2419
2420 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2421 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2422 else
2423 dma_ops = arm_get_dma_map_ops(coherent);
2424
2425 set_dma_ops(dev, dma_ops);
2426
2427 #ifdef CONFIG_XEN
2428 if (xen_initial_domain()) {
2429 dev->archdata.dev_dma_ops = dev->dma_ops;
2430 dev->dma_ops = xen_dma_ops;
2431 }
2432 #endif
2433 }
2434
2435 void arch_teardown_dma_ops(struct device *dev)
2436 {
2437 arm_teardown_iommu_dma_ops(dev);
2438 }