]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/mm/dma-mapping.c
Merge remote-tracking branch 'origin/next' into kvm-ppc-next
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38
39 #include "mm.h"
40
41 /*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
52 */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
57
58 /**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75 {
76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
84 {
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87
88 /**
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
94 *
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
98 *
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
101 */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
105 {
106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
109 }
110
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 __dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 __dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126
127 struct dma_map_ops arm_dma_ops = {
128 .alloc = arm_dma_alloc,
129 .free = arm_dma_free,
130 .mmap = arm_dma_mmap,
131 .get_sgtable = arm_dma_get_sgtable,
132 .map_page = arm_dma_map_page,
133 .unmap_page = arm_dma_unmap_page,
134 .map_sg = arm_dma_map_sg,
135 .unmap_sg = arm_dma_unmap_sg,
136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
137 .sync_single_for_device = arm_dma_sync_single_for_device,
138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
139 .sync_sg_for_device = arm_dma_sync_sg_for_device,
140 .set_dma_mask = arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t handle, struct dma_attrs *attrs);
148
149 struct dma_map_ops arm_coherent_dma_ops = {
150 .alloc = arm_coherent_dma_alloc,
151 .free = arm_coherent_dma_free,
152 .mmap = arm_dma_mmap,
153 .get_sgtable = arm_dma_get_sgtable,
154 .map_page = arm_coherent_dma_map_page,
155 .map_sg = arm_dma_map_sg,
156 .set_dma_mask = arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 u64 mask = (u64)arm_dma_limit;
163
164 if (dev) {
165 mask = dev->coherent_dma_mask;
166
167 /*
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
170 */
171 if (mask == 0) {
172 dev_warn(dev, "coherent DMA mask is unset\n");
173 return 0;
174 }
175
176 if ((~mask) & (u64)arm_dma_limit) {
177 dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 "than system GFP_DMA mask %#llx\n",
179 mask, (u64)arm_dma_limit);
180 return 0;
181 }
182 }
183
184 return mask;
185 }
186
187 static void __dma_clear_buffer(struct page *page, size_t size)
188 {
189 /*
190 * Ensure that the allocated pages are zeroed, and that any data
191 * lurking in the kernel direct-mapped region is invalidated.
192 */
193 if (PageHighMem(page)) {
194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 phys_addr_t end = base + size;
196 while (size > 0) {
197 void *ptr = kmap_atomic(page);
198 memset(ptr, 0, PAGE_SIZE);
199 dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 kunmap_atomic(ptr);
201 page++;
202 size -= PAGE_SIZE;
203 }
204 outer_flush_range(base, end);
205 } else {
206 void *ptr = page_address(page);
207 memset(ptr, 0, size);
208 dmac_flush_range(ptr, ptr + size);
209 outer_flush_range(__pa(ptr), __pa(ptr) + size);
210 }
211 }
212
213 /*
214 * Allocate a DMA buffer for 'dev' of size 'size' using the
215 * specified gfp mask. Note that 'size' must be page aligned.
216 */
217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
218 {
219 unsigned long order = get_order(size);
220 struct page *page, *p, *e;
221
222 page = alloc_pages(gfp, order);
223 if (!page)
224 return NULL;
225
226 /*
227 * Now split the huge page and free the excess pages
228 */
229 split_page(page, order);
230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 __free_page(p);
232
233 __dma_clear_buffer(page, size);
234
235 return page;
236 }
237
238 /*
239 * Free a DMA buffer. 'size' must be page aligned.
240 */
241 static void __dma_free_buffer(struct page *page, size_t size)
242 {
243 struct page *e = page + (size >> PAGE_SHIFT);
244
245 while (page < e) {
246 __free_page(page);
247 page++;
248 }
249 }
250
251 #ifdef CONFIG_MMU
252 #ifdef CONFIG_HUGETLB_PAGE
253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
254 #endif
255
256 static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 pgprot_t prot, struct page **ret_page,
258 const void *caller);
259
260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 pgprot_t prot, struct page **ret_page,
262 const void *caller);
263
264 static void *
265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 const void *caller)
267 {
268 struct vm_struct *area;
269 unsigned long addr;
270
271 /*
272 * DMA allocation can be mapped to user space, so lets
273 * set VM_USERMAP flags too.
274 */
275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 caller);
277 if (!area)
278 return NULL;
279 addr = (unsigned long)area->addr;
280 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
281
282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 vunmap((void *)addr);
284 return NULL;
285 }
286 return (void *)addr;
287 }
288
289 static void __dma_free_remap(void *cpu_addr, size_t size)
290 {
291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 struct vm_struct *area = find_vm_area(cpu_addr);
293 if (!area || (area->flags & flags) != flags) {
294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 return;
296 }
297 unmap_kernel_range((unsigned long)cpu_addr, size);
298 vunmap(cpu_addr);
299 }
300
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
302
303 struct dma_pool {
304 size_t size;
305 spinlock_t lock;
306 unsigned long *bitmap;
307 unsigned long nr_pages;
308 void *vaddr;
309 struct page **pages;
310 };
311
312 static struct dma_pool atomic_pool = {
313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
314 };
315
316 static int __init early_coherent_pool(char *p)
317 {
318 atomic_pool.size = memparse(p, &p);
319 return 0;
320 }
321 early_param("coherent_pool", early_coherent_pool);
322
323 void __init init_dma_coherent_pool_size(unsigned long size)
324 {
325 /*
326 * Catch any attempt to set the pool size too late.
327 */
328 BUG_ON(atomic_pool.vaddr);
329
330 /*
331 * Set architecture specific coherent pool size only if
332 * it has not been changed by kernel command line parameter.
333 */
334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 atomic_pool.size = size;
336 }
337
338 /*
339 * Initialise the coherent pool for atomic allocations.
340 */
341 static int __init atomic_pool_init(void)
342 {
343 struct dma_pool *pool = &atomic_pool;
344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345 gfp_t gfp = GFP_KERNEL | GFP_DMA;
346 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
347 unsigned long *bitmap;
348 struct page *page;
349 struct page **pages;
350 void *ptr;
351 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
352
353 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
354 if (!bitmap)
355 goto no_bitmap;
356
357 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
358 if (!pages)
359 goto no_pages;
360
361 if (IS_ENABLED(CONFIG_DMA_CMA))
362 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
363 atomic_pool_init);
364 else
365 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
366 atomic_pool_init);
367 if (ptr) {
368 int i;
369
370 for (i = 0; i < nr_pages; i++)
371 pages[i] = page + i;
372
373 spin_lock_init(&pool->lock);
374 pool->vaddr = ptr;
375 pool->pages = pages;
376 pool->bitmap = bitmap;
377 pool->nr_pages = nr_pages;
378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 (unsigned)pool->size / 1024);
380 return 0;
381 }
382
383 kfree(pages);
384 no_pages:
385 kfree(bitmap);
386 no_bitmap:
387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 (unsigned)pool->size / 1024);
389 return -ENOMEM;
390 }
391 /*
392 * CMA is activated by core_initcall, so we must be called after it.
393 */
394 postcore_initcall(atomic_pool_init);
395
396 struct dma_contig_early_reserve {
397 phys_addr_t base;
398 unsigned long size;
399 };
400
401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
402
403 static int dma_mmu_remap_num __initdata;
404
405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
406 {
407 dma_mmu_remap[dma_mmu_remap_num].base = base;
408 dma_mmu_remap[dma_mmu_remap_num].size = size;
409 dma_mmu_remap_num++;
410 }
411
412 void __init dma_contiguous_remap(void)
413 {
414 int i;
415 for (i = 0; i < dma_mmu_remap_num; i++) {
416 phys_addr_t start = dma_mmu_remap[i].base;
417 phys_addr_t end = start + dma_mmu_remap[i].size;
418 struct map_desc map;
419 unsigned long addr;
420
421 if (end > arm_lowmem_limit)
422 end = arm_lowmem_limit;
423 if (start >= end)
424 continue;
425
426 map.pfn = __phys_to_pfn(start);
427 map.virtual = __phys_to_virt(start);
428 map.length = end - start;
429 map.type = MT_MEMORY_DMA_READY;
430
431 /*
432 * Clear previous low-memory mapping
433 */
434 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
435 addr += PMD_SIZE)
436 pmd_clear(pmd_off_k(addr));
437
438 iotable_init(&map, 1);
439 }
440 }
441
442 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
443 void *data)
444 {
445 struct page *page = virt_to_page(addr);
446 pgprot_t prot = *(pgprot_t *)data;
447
448 set_pte_ext(pte, mk_pte(page, prot), 0);
449 return 0;
450 }
451
452 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
453 {
454 unsigned long start = (unsigned long) page_address(page);
455 unsigned end = start + size;
456
457 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
458 dsb();
459 flush_tlb_kernel_range(start, end);
460 }
461
462 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
463 pgprot_t prot, struct page **ret_page,
464 const void *caller)
465 {
466 struct page *page;
467 void *ptr;
468 page = __dma_alloc_buffer(dev, size, gfp);
469 if (!page)
470 return NULL;
471
472 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
473 if (!ptr) {
474 __dma_free_buffer(page, size);
475 return NULL;
476 }
477
478 *ret_page = page;
479 return ptr;
480 }
481
482 static void *__alloc_from_pool(size_t size, struct page **ret_page)
483 {
484 struct dma_pool *pool = &atomic_pool;
485 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
486 unsigned int pageno;
487 unsigned long flags;
488 void *ptr = NULL;
489 unsigned long align_mask;
490
491 if (!pool->vaddr) {
492 WARN(1, "coherent pool not initialised!\n");
493 return NULL;
494 }
495
496 /*
497 * Align the region allocation - allocations from pool are rather
498 * small, so align them to their order in pages, minimum is a page
499 * size. This helps reduce fragmentation of the DMA space.
500 */
501 align_mask = (1 << get_order(size)) - 1;
502
503 spin_lock_irqsave(&pool->lock, flags);
504 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
505 0, count, align_mask);
506 if (pageno < pool->nr_pages) {
507 bitmap_set(pool->bitmap, pageno, count);
508 ptr = pool->vaddr + PAGE_SIZE * pageno;
509 *ret_page = pool->pages[pageno];
510 } else {
511 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
512 "Please increase it with coherent_pool= kernel parameter!\n",
513 (unsigned)pool->size / 1024);
514 }
515 spin_unlock_irqrestore(&pool->lock, flags);
516
517 return ptr;
518 }
519
520 static bool __in_atomic_pool(void *start, size_t size)
521 {
522 struct dma_pool *pool = &atomic_pool;
523 void *end = start + size;
524 void *pool_start = pool->vaddr;
525 void *pool_end = pool->vaddr + pool->size;
526
527 if (start < pool_start || start >= pool_end)
528 return false;
529
530 if (end <= pool_end)
531 return true;
532
533 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
534 start, end - 1, pool_start, pool_end - 1);
535
536 return false;
537 }
538
539 static int __free_from_pool(void *start, size_t size)
540 {
541 struct dma_pool *pool = &atomic_pool;
542 unsigned long pageno, count;
543 unsigned long flags;
544
545 if (!__in_atomic_pool(start, size))
546 return 0;
547
548 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
549 count = size >> PAGE_SHIFT;
550
551 spin_lock_irqsave(&pool->lock, flags);
552 bitmap_clear(pool->bitmap, pageno, count);
553 spin_unlock_irqrestore(&pool->lock, flags);
554
555 return 1;
556 }
557
558 static void *__alloc_from_contiguous(struct device *dev, size_t size,
559 pgprot_t prot, struct page **ret_page,
560 const void *caller)
561 {
562 unsigned long order = get_order(size);
563 size_t count = size >> PAGE_SHIFT;
564 struct page *page;
565 void *ptr;
566
567 page = dma_alloc_from_contiguous(dev, count, order);
568 if (!page)
569 return NULL;
570
571 __dma_clear_buffer(page, size);
572
573 if (PageHighMem(page)) {
574 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
575 if (!ptr) {
576 dma_release_from_contiguous(dev, page, count);
577 return NULL;
578 }
579 } else {
580 __dma_remap(page, size, prot);
581 ptr = page_address(page);
582 }
583 *ret_page = page;
584 return ptr;
585 }
586
587 static void __free_from_contiguous(struct device *dev, struct page *page,
588 void *cpu_addr, size_t size)
589 {
590 if (PageHighMem(page))
591 __dma_free_remap(cpu_addr, size);
592 else
593 __dma_remap(page, size, pgprot_kernel);
594 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
595 }
596
597 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
598 {
599 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
600 pgprot_writecombine(prot) :
601 pgprot_dmacoherent(prot);
602 return prot;
603 }
604
605 #define nommu() 0
606
607 #else /* !CONFIG_MMU */
608
609 #define nommu() 1
610
611 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
612 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
613 #define __alloc_from_pool(size, ret_page) NULL
614 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
615 #define __free_from_pool(cpu_addr, size) 0
616 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
617 #define __dma_free_remap(cpu_addr, size) do { } while (0)
618
619 #endif /* CONFIG_MMU */
620
621 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
622 struct page **ret_page)
623 {
624 struct page *page;
625 page = __dma_alloc_buffer(dev, size, gfp);
626 if (!page)
627 return NULL;
628
629 *ret_page = page;
630 return page_address(page);
631 }
632
633
634
635 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
636 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
637 {
638 u64 mask = get_coherent_dma_mask(dev);
639 struct page *page = NULL;
640 void *addr;
641
642 #ifdef CONFIG_DMA_API_DEBUG
643 u64 limit = (mask + 1) & ~mask;
644 if (limit && size >= limit) {
645 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
646 size, mask);
647 return NULL;
648 }
649 #endif
650
651 if (!mask)
652 return NULL;
653
654 if (mask < 0xffffffffULL)
655 gfp |= GFP_DMA;
656
657 /*
658 * Following is a work-around (a.k.a. hack) to prevent pages
659 * with __GFP_COMP being passed to split_page() which cannot
660 * handle them. The real problem is that this flag probably
661 * should be 0 on ARM as it is not supported on this
662 * platform; see CONFIG_HUGETLBFS.
663 */
664 gfp &= ~(__GFP_COMP);
665
666 *handle = DMA_ERROR_CODE;
667 size = PAGE_ALIGN(size);
668
669 if (is_coherent || nommu())
670 addr = __alloc_simple_buffer(dev, size, gfp, &page);
671 else if (!(gfp & __GFP_WAIT))
672 addr = __alloc_from_pool(size, &page);
673 else if (!IS_ENABLED(CONFIG_DMA_CMA))
674 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
675 else
676 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
677
678 if (addr)
679 *handle = pfn_to_dma(dev, page_to_pfn(page));
680
681 return addr;
682 }
683
684 /*
685 * Allocate DMA-coherent memory space and return both the kernel remapped
686 * virtual and bus address for that space.
687 */
688 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
689 gfp_t gfp, struct dma_attrs *attrs)
690 {
691 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
692 void *memory;
693
694 if (dma_alloc_from_coherent(dev, size, handle, &memory))
695 return memory;
696
697 return __dma_alloc(dev, size, handle, gfp, prot, false,
698 __builtin_return_address(0));
699 }
700
701 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
702 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
703 {
704 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
705 void *memory;
706
707 if (dma_alloc_from_coherent(dev, size, handle, &memory))
708 return memory;
709
710 return __dma_alloc(dev, size, handle, gfp, prot, true,
711 __builtin_return_address(0));
712 }
713
714 /*
715 * Create userspace mapping for the DMA-coherent memory.
716 */
717 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
718 void *cpu_addr, dma_addr_t dma_addr, size_t size,
719 struct dma_attrs *attrs)
720 {
721 int ret = -ENXIO;
722 #ifdef CONFIG_MMU
723 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
724 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
725 unsigned long pfn = dma_to_pfn(dev, dma_addr);
726 unsigned long off = vma->vm_pgoff;
727
728 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
729
730 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
731 return ret;
732
733 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
734 ret = remap_pfn_range(vma, vma->vm_start,
735 pfn + off,
736 vma->vm_end - vma->vm_start,
737 vma->vm_page_prot);
738 }
739 #endif /* CONFIG_MMU */
740
741 return ret;
742 }
743
744 /*
745 * Free a buffer as defined by the above mapping.
746 */
747 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
748 dma_addr_t handle, struct dma_attrs *attrs,
749 bool is_coherent)
750 {
751 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
752
753 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
754 return;
755
756 size = PAGE_ALIGN(size);
757
758 if (is_coherent || nommu()) {
759 __dma_free_buffer(page, size);
760 } else if (__free_from_pool(cpu_addr, size)) {
761 return;
762 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
763 __dma_free_remap(cpu_addr, size);
764 __dma_free_buffer(page, size);
765 } else {
766 /*
767 * Non-atomic allocations cannot be freed with IRQs disabled
768 */
769 WARN_ON(irqs_disabled());
770 __free_from_contiguous(dev, page, cpu_addr, size);
771 }
772 }
773
774 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
775 dma_addr_t handle, struct dma_attrs *attrs)
776 {
777 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
778 }
779
780 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
781 dma_addr_t handle, struct dma_attrs *attrs)
782 {
783 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
784 }
785
786 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
787 void *cpu_addr, dma_addr_t handle, size_t size,
788 struct dma_attrs *attrs)
789 {
790 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
791 int ret;
792
793 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
794 if (unlikely(ret))
795 return ret;
796
797 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
798 return 0;
799 }
800
801 static void dma_cache_maint_page(struct page *page, unsigned long offset,
802 size_t size, enum dma_data_direction dir,
803 void (*op)(const void *, size_t, int))
804 {
805 unsigned long pfn;
806 size_t left = size;
807
808 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
809 offset %= PAGE_SIZE;
810
811 /*
812 * A single sg entry may refer to multiple physically contiguous
813 * pages. But we still need to process highmem pages individually.
814 * If highmem is not configured then the bulk of this loop gets
815 * optimized out.
816 */
817 do {
818 size_t len = left;
819 void *vaddr;
820
821 page = pfn_to_page(pfn);
822
823 if (PageHighMem(page)) {
824 if (len + offset > PAGE_SIZE)
825 len = PAGE_SIZE - offset;
826
827 if (cache_is_vipt_nonaliasing()) {
828 vaddr = kmap_atomic(page);
829 op(vaddr + offset, len, dir);
830 kunmap_atomic(vaddr);
831 } else {
832 vaddr = kmap_high_get(page);
833 if (vaddr) {
834 op(vaddr + offset, len, dir);
835 kunmap_high(page);
836 }
837 }
838 } else {
839 vaddr = page_address(page) + offset;
840 op(vaddr, len, dir);
841 }
842 offset = 0;
843 pfn++;
844 left -= len;
845 } while (left);
846 }
847
848 /*
849 * Make an area consistent for devices.
850 * Note: Drivers should NOT use this function directly, as it will break
851 * platforms with CONFIG_DMABOUNCE.
852 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
853 */
854 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
855 size_t size, enum dma_data_direction dir)
856 {
857 unsigned long paddr;
858
859 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
860
861 paddr = page_to_phys(page) + off;
862 if (dir == DMA_FROM_DEVICE) {
863 outer_inv_range(paddr, paddr + size);
864 } else {
865 outer_clean_range(paddr, paddr + size);
866 }
867 /* FIXME: non-speculating: flush on bidirectional mappings? */
868 }
869
870 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
871 size_t size, enum dma_data_direction dir)
872 {
873 unsigned long paddr = page_to_phys(page) + off;
874
875 /* FIXME: non-speculating: not required */
876 /* don't bother invalidating if DMA to device */
877 if (dir != DMA_TO_DEVICE)
878 outer_inv_range(paddr, paddr + size);
879
880 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
881
882 /*
883 * Mark the D-cache clean for these pages to avoid extra flushing.
884 */
885 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
886 unsigned long pfn;
887 size_t left = size;
888
889 pfn = page_to_pfn(page) + off / PAGE_SIZE;
890 off %= PAGE_SIZE;
891 if (off) {
892 pfn++;
893 left -= PAGE_SIZE - off;
894 }
895 while (left >= PAGE_SIZE) {
896 page = pfn_to_page(pfn++);
897 set_bit(PG_dcache_clean, &page->flags);
898 left -= PAGE_SIZE;
899 }
900 }
901 }
902
903 /**
904 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
905 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
906 * @sg: list of buffers
907 * @nents: number of buffers to map
908 * @dir: DMA transfer direction
909 *
910 * Map a set of buffers described by scatterlist in streaming mode for DMA.
911 * This is the scatter-gather version of the dma_map_single interface.
912 * Here the scatter gather list elements are each tagged with the
913 * appropriate dma address and length. They are obtained via
914 * sg_dma_{address,length}.
915 *
916 * Device ownership issues as mentioned for dma_map_single are the same
917 * here.
918 */
919 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
920 enum dma_data_direction dir, struct dma_attrs *attrs)
921 {
922 struct dma_map_ops *ops = get_dma_ops(dev);
923 struct scatterlist *s;
924 int i, j;
925
926 for_each_sg(sg, s, nents, i) {
927 #ifdef CONFIG_NEED_SG_DMA_LENGTH
928 s->dma_length = s->length;
929 #endif
930 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
931 s->length, dir, attrs);
932 if (dma_mapping_error(dev, s->dma_address))
933 goto bad_mapping;
934 }
935 return nents;
936
937 bad_mapping:
938 for_each_sg(sg, s, i, j)
939 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
940 return 0;
941 }
942
943 /**
944 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
945 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
946 * @sg: list of buffers
947 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
948 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
949 *
950 * Unmap a set of streaming mode DMA translations. Again, CPU access
951 * rules concerning calls here are the same as for dma_unmap_single().
952 */
953 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
954 enum dma_data_direction dir, struct dma_attrs *attrs)
955 {
956 struct dma_map_ops *ops = get_dma_ops(dev);
957 struct scatterlist *s;
958
959 int i;
960
961 for_each_sg(sg, s, nents, i)
962 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
963 }
964
965 /**
966 * arm_dma_sync_sg_for_cpu
967 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
968 * @sg: list of buffers
969 * @nents: number of buffers to map (returned from dma_map_sg)
970 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
971 */
972 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
973 int nents, enum dma_data_direction dir)
974 {
975 struct dma_map_ops *ops = get_dma_ops(dev);
976 struct scatterlist *s;
977 int i;
978
979 for_each_sg(sg, s, nents, i)
980 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
981 dir);
982 }
983
984 /**
985 * arm_dma_sync_sg_for_device
986 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987 * @sg: list of buffers
988 * @nents: number of buffers to map (returned from dma_map_sg)
989 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
990 */
991 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
992 int nents, enum dma_data_direction dir)
993 {
994 struct dma_map_ops *ops = get_dma_ops(dev);
995 struct scatterlist *s;
996 int i;
997
998 for_each_sg(sg, s, nents, i)
999 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1000 dir);
1001 }
1002
1003 /*
1004 * Return whether the given device DMA address mask can be supported
1005 * properly. For example, if your device can only drive the low 24-bits
1006 * during bus mastering, then you would pass 0x00ffffff as the mask
1007 * to this function.
1008 */
1009 int dma_supported(struct device *dev, u64 mask)
1010 {
1011 if (mask < (u64)arm_dma_limit)
1012 return 0;
1013 return 1;
1014 }
1015 EXPORT_SYMBOL(dma_supported);
1016
1017 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1018 {
1019 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1020 return -EIO;
1021
1022 *dev->dma_mask = dma_mask;
1023
1024 return 0;
1025 }
1026
1027 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1028
1029 static int __init dma_debug_do_init(void)
1030 {
1031 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1032 return 0;
1033 }
1034 fs_initcall(dma_debug_do_init);
1035
1036 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1037
1038 /* IOMMU */
1039
1040 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1041 size_t size)
1042 {
1043 unsigned int order = get_order(size);
1044 unsigned int align = 0;
1045 unsigned int count, start;
1046 unsigned long flags;
1047
1048 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1049 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1050
1051 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1052 (1 << mapping->order) - 1) >> mapping->order;
1053
1054 if (order > mapping->order)
1055 align = (1 << (order - mapping->order)) - 1;
1056
1057 spin_lock_irqsave(&mapping->lock, flags);
1058 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1059 count, align);
1060 if (start > mapping->bits) {
1061 spin_unlock_irqrestore(&mapping->lock, flags);
1062 return DMA_ERROR_CODE;
1063 }
1064
1065 bitmap_set(mapping->bitmap, start, count);
1066 spin_unlock_irqrestore(&mapping->lock, flags);
1067
1068 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1069 }
1070
1071 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1072 dma_addr_t addr, size_t size)
1073 {
1074 unsigned int start = (addr - mapping->base) >>
1075 (mapping->order + PAGE_SHIFT);
1076 unsigned int count = ((size >> PAGE_SHIFT) +
1077 (1 << mapping->order) - 1) >> mapping->order;
1078 unsigned long flags;
1079
1080 spin_lock_irqsave(&mapping->lock, flags);
1081 bitmap_clear(mapping->bitmap, start, count);
1082 spin_unlock_irqrestore(&mapping->lock, flags);
1083 }
1084
1085 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1086 gfp_t gfp, struct dma_attrs *attrs)
1087 {
1088 struct page **pages;
1089 int count = size >> PAGE_SHIFT;
1090 int array_size = count * sizeof(struct page *);
1091 int i = 0;
1092
1093 if (array_size <= PAGE_SIZE)
1094 pages = kzalloc(array_size, gfp);
1095 else
1096 pages = vzalloc(array_size);
1097 if (!pages)
1098 return NULL;
1099
1100 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1101 {
1102 unsigned long order = get_order(size);
1103 struct page *page;
1104
1105 page = dma_alloc_from_contiguous(dev, count, order);
1106 if (!page)
1107 goto error;
1108
1109 __dma_clear_buffer(page, size);
1110
1111 for (i = 0; i < count; i++)
1112 pages[i] = page + i;
1113
1114 return pages;
1115 }
1116
1117 /*
1118 * IOMMU can map any pages, so himem can also be used here
1119 */
1120 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1121
1122 while (count) {
1123 int j, order = __fls(count);
1124
1125 pages[i] = alloc_pages(gfp, order);
1126 while (!pages[i] && order)
1127 pages[i] = alloc_pages(gfp, --order);
1128 if (!pages[i])
1129 goto error;
1130
1131 if (order) {
1132 split_page(pages[i], order);
1133 j = 1 << order;
1134 while (--j)
1135 pages[i + j] = pages[i] + j;
1136 }
1137
1138 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1139 i += 1 << order;
1140 count -= 1 << order;
1141 }
1142
1143 return pages;
1144 error:
1145 while (i--)
1146 if (pages[i])
1147 __free_pages(pages[i], 0);
1148 if (array_size <= PAGE_SIZE)
1149 kfree(pages);
1150 else
1151 vfree(pages);
1152 return NULL;
1153 }
1154
1155 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1156 size_t size, struct dma_attrs *attrs)
1157 {
1158 int count = size >> PAGE_SHIFT;
1159 int array_size = count * sizeof(struct page *);
1160 int i;
1161
1162 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1163 dma_release_from_contiguous(dev, pages[0], count);
1164 } else {
1165 for (i = 0; i < count; i++)
1166 if (pages[i])
1167 __free_pages(pages[i], 0);
1168 }
1169
1170 if (array_size <= PAGE_SIZE)
1171 kfree(pages);
1172 else
1173 vfree(pages);
1174 return 0;
1175 }
1176
1177 /*
1178 * Create a CPU mapping for a specified pages
1179 */
1180 static void *
1181 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1182 const void *caller)
1183 {
1184 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1185 struct vm_struct *area;
1186 unsigned long p;
1187
1188 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1189 caller);
1190 if (!area)
1191 return NULL;
1192
1193 area->pages = pages;
1194 area->nr_pages = nr_pages;
1195 p = (unsigned long)area->addr;
1196
1197 for (i = 0; i < nr_pages; i++) {
1198 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1199 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1200 goto err;
1201 p += PAGE_SIZE;
1202 }
1203 return area->addr;
1204 err:
1205 unmap_kernel_range((unsigned long)area->addr, size);
1206 vunmap(area->addr);
1207 return NULL;
1208 }
1209
1210 /*
1211 * Create a mapping in device IO address space for specified pages
1212 */
1213 static dma_addr_t
1214 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1215 {
1216 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1217 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1218 dma_addr_t dma_addr, iova;
1219 int i, ret = DMA_ERROR_CODE;
1220
1221 dma_addr = __alloc_iova(mapping, size);
1222 if (dma_addr == DMA_ERROR_CODE)
1223 return dma_addr;
1224
1225 iova = dma_addr;
1226 for (i = 0; i < count; ) {
1227 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1228 phys_addr_t phys = page_to_phys(pages[i]);
1229 unsigned int len, j;
1230
1231 for (j = i + 1; j < count; j++, next_pfn++)
1232 if (page_to_pfn(pages[j]) != next_pfn)
1233 break;
1234
1235 len = (j - i) << PAGE_SHIFT;
1236 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1237 if (ret < 0)
1238 goto fail;
1239 iova += len;
1240 i = j;
1241 }
1242 return dma_addr;
1243 fail:
1244 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1245 __free_iova(mapping, dma_addr, size);
1246 return DMA_ERROR_CODE;
1247 }
1248
1249 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1250 {
1251 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1252
1253 /*
1254 * add optional in-page offset from iova to size and align
1255 * result to page size
1256 */
1257 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1258 iova &= PAGE_MASK;
1259
1260 iommu_unmap(mapping->domain, iova, size);
1261 __free_iova(mapping, iova, size);
1262 return 0;
1263 }
1264
1265 static struct page **__atomic_get_pages(void *addr)
1266 {
1267 struct dma_pool *pool = &atomic_pool;
1268 struct page **pages = pool->pages;
1269 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1270
1271 return pages + offs;
1272 }
1273
1274 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1275 {
1276 struct vm_struct *area;
1277
1278 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1279 return __atomic_get_pages(cpu_addr);
1280
1281 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1282 return cpu_addr;
1283
1284 area = find_vm_area(cpu_addr);
1285 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1286 return area->pages;
1287 return NULL;
1288 }
1289
1290 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1291 dma_addr_t *handle)
1292 {
1293 struct page *page;
1294 void *addr;
1295
1296 addr = __alloc_from_pool(size, &page);
1297 if (!addr)
1298 return NULL;
1299
1300 *handle = __iommu_create_mapping(dev, &page, size);
1301 if (*handle == DMA_ERROR_CODE)
1302 goto err_mapping;
1303
1304 return addr;
1305
1306 err_mapping:
1307 __free_from_pool(addr, size);
1308 return NULL;
1309 }
1310
1311 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1312 dma_addr_t handle, size_t size)
1313 {
1314 __iommu_remove_mapping(dev, handle, size);
1315 __free_from_pool(cpu_addr, size);
1316 }
1317
1318 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1319 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1320 {
1321 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1322 struct page **pages;
1323 void *addr = NULL;
1324
1325 *handle = DMA_ERROR_CODE;
1326 size = PAGE_ALIGN(size);
1327
1328 if (gfp & GFP_ATOMIC)
1329 return __iommu_alloc_atomic(dev, size, handle);
1330
1331 /*
1332 * Following is a work-around (a.k.a. hack) to prevent pages
1333 * with __GFP_COMP being passed to split_page() which cannot
1334 * handle them. The real problem is that this flag probably
1335 * should be 0 on ARM as it is not supported on this
1336 * platform; see CONFIG_HUGETLBFS.
1337 */
1338 gfp &= ~(__GFP_COMP);
1339
1340 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1341 if (!pages)
1342 return NULL;
1343
1344 *handle = __iommu_create_mapping(dev, pages, size);
1345 if (*handle == DMA_ERROR_CODE)
1346 goto err_buffer;
1347
1348 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1349 return pages;
1350
1351 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1352 __builtin_return_address(0));
1353 if (!addr)
1354 goto err_mapping;
1355
1356 return addr;
1357
1358 err_mapping:
1359 __iommu_remove_mapping(dev, *handle, size);
1360 err_buffer:
1361 __iommu_free_buffer(dev, pages, size, attrs);
1362 return NULL;
1363 }
1364
1365 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1366 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1367 struct dma_attrs *attrs)
1368 {
1369 unsigned long uaddr = vma->vm_start;
1370 unsigned long usize = vma->vm_end - vma->vm_start;
1371 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1372
1373 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1374
1375 if (!pages)
1376 return -ENXIO;
1377
1378 do {
1379 int ret = vm_insert_page(vma, uaddr, *pages++);
1380 if (ret) {
1381 pr_err("Remapping memory failed: %d\n", ret);
1382 return ret;
1383 }
1384 uaddr += PAGE_SIZE;
1385 usize -= PAGE_SIZE;
1386 } while (usize > 0);
1387
1388 return 0;
1389 }
1390
1391 /*
1392 * free a page as defined by the above mapping.
1393 * Must not be called with IRQs disabled.
1394 */
1395 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1396 dma_addr_t handle, struct dma_attrs *attrs)
1397 {
1398 struct page **pages;
1399 size = PAGE_ALIGN(size);
1400
1401 if (__in_atomic_pool(cpu_addr, size)) {
1402 __iommu_free_atomic(dev, cpu_addr, handle, size);
1403 return;
1404 }
1405
1406 pages = __iommu_get_pages(cpu_addr, attrs);
1407 if (!pages) {
1408 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1409 return;
1410 }
1411
1412 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1413 unmap_kernel_range((unsigned long)cpu_addr, size);
1414 vunmap(cpu_addr);
1415 }
1416
1417 __iommu_remove_mapping(dev, handle, size);
1418 __iommu_free_buffer(dev, pages, size, attrs);
1419 }
1420
1421 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1422 void *cpu_addr, dma_addr_t dma_addr,
1423 size_t size, struct dma_attrs *attrs)
1424 {
1425 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1426 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1427
1428 if (!pages)
1429 return -ENXIO;
1430
1431 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1432 GFP_KERNEL);
1433 }
1434
1435 /*
1436 * Map a part of the scatter-gather list into contiguous io address space
1437 */
1438 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1439 size_t size, dma_addr_t *handle,
1440 enum dma_data_direction dir, struct dma_attrs *attrs,
1441 bool is_coherent)
1442 {
1443 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1444 dma_addr_t iova, iova_base;
1445 int ret = 0;
1446 unsigned int count;
1447 struct scatterlist *s;
1448
1449 size = PAGE_ALIGN(size);
1450 *handle = DMA_ERROR_CODE;
1451
1452 iova_base = iova = __alloc_iova(mapping, size);
1453 if (iova == DMA_ERROR_CODE)
1454 return -ENOMEM;
1455
1456 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1457 phys_addr_t phys = page_to_phys(sg_page(s));
1458 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1459
1460 if (!is_coherent &&
1461 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1462 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1463
1464 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1465 if (ret < 0)
1466 goto fail;
1467 count += len >> PAGE_SHIFT;
1468 iova += len;
1469 }
1470 *handle = iova_base;
1471
1472 return 0;
1473 fail:
1474 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1475 __free_iova(mapping, iova_base, size);
1476 return ret;
1477 }
1478
1479 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1480 enum dma_data_direction dir, struct dma_attrs *attrs,
1481 bool is_coherent)
1482 {
1483 struct scatterlist *s = sg, *dma = sg, *start = sg;
1484 int i, count = 0;
1485 unsigned int offset = s->offset;
1486 unsigned int size = s->offset + s->length;
1487 unsigned int max = dma_get_max_seg_size(dev);
1488
1489 for (i = 1; i < nents; i++) {
1490 s = sg_next(s);
1491
1492 s->dma_address = DMA_ERROR_CODE;
1493 s->dma_length = 0;
1494
1495 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1496 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1497 dir, attrs, is_coherent) < 0)
1498 goto bad_mapping;
1499
1500 dma->dma_address += offset;
1501 dma->dma_length = size - offset;
1502
1503 size = offset = s->offset;
1504 start = s;
1505 dma = sg_next(dma);
1506 count += 1;
1507 }
1508 size += s->length;
1509 }
1510 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1511 is_coherent) < 0)
1512 goto bad_mapping;
1513
1514 dma->dma_address += offset;
1515 dma->dma_length = size - offset;
1516
1517 return count+1;
1518
1519 bad_mapping:
1520 for_each_sg(sg, s, count, i)
1521 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1522 return 0;
1523 }
1524
1525 /**
1526 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1527 * @dev: valid struct device pointer
1528 * @sg: list of buffers
1529 * @nents: number of buffers to map
1530 * @dir: DMA transfer direction
1531 *
1532 * Map a set of i/o coherent buffers described by scatterlist in streaming
1533 * mode for DMA. The scatter gather list elements are merged together (if
1534 * possible) and tagged with the appropriate dma address and length. They are
1535 * obtained via sg_dma_{address,length}.
1536 */
1537 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1538 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1539 {
1540 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1541 }
1542
1543 /**
1544 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1545 * @dev: valid struct device pointer
1546 * @sg: list of buffers
1547 * @nents: number of buffers to map
1548 * @dir: DMA transfer direction
1549 *
1550 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1551 * The scatter gather list elements are merged together (if possible) and
1552 * tagged with the appropriate dma address and length. They are obtained via
1553 * sg_dma_{address,length}.
1554 */
1555 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1556 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1557 {
1558 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1559 }
1560
1561 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1562 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1563 bool is_coherent)
1564 {
1565 struct scatterlist *s;
1566 int i;
1567
1568 for_each_sg(sg, s, nents, i) {
1569 if (sg_dma_len(s))
1570 __iommu_remove_mapping(dev, sg_dma_address(s),
1571 sg_dma_len(s));
1572 if (!is_coherent &&
1573 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1574 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1575 s->length, dir);
1576 }
1577 }
1578
1579 /**
1580 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1581 * @dev: valid struct device pointer
1582 * @sg: list of buffers
1583 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1584 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1585 *
1586 * Unmap a set of streaming mode DMA translations. Again, CPU access
1587 * rules concerning calls here are the same as for dma_unmap_single().
1588 */
1589 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1590 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1591 {
1592 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1593 }
1594
1595 /**
1596 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1597 * @dev: valid struct device pointer
1598 * @sg: list of buffers
1599 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1600 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1601 *
1602 * Unmap a set of streaming mode DMA translations. Again, CPU access
1603 * rules concerning calls here are the same as for dma_unmap_single().
1604 */
1605 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1606 enum dma_data_direction dir, struct dma_attrs *attrs)
1607 {
1608 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1609 }
1610
1611 /**
1612 * arm_iommu_sync_sg_for_cpu
1613 * @dev: valid struct device pointer
1614 * @sg: list of buffers
1615 * @nents: number of buffers to map (returned from dma_map_sg)
1616 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1617 */
1618 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1619 int nents, enum dma_data_direction dir)
1620 {
1621 struct scatterlist *s;
1622 int i;
1623
1624 for_each_sg(sg, s, nents, i)
1625 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1626
1627 }
1628
1629 /**
1630 * arm_iommu_sync_sg_for_device
1631 * @dev: valid struct device pointer
1632 * @sg: list of buffers
1633 * @nents: number of buffers to map (returned from dma_map_sg)
1634 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1635 */
1636 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1637 int nents, enum dma_data_direction dir)
1638 {
1639 struct scatterlist *s;
1640 int i;
1641
1642 for_each_sg(sg, s, nents, i)
1643 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1644 }
1645
1646
1647 /**
1648 * arm_coherent_iommu_map_page
1649 * @dev: valid struct device pointer
1650 * @page: page that buffer resides in
1651 * @offset: offset into page for start of buffer
1652 * @size: size of buffer to map
1653 * @dir: DMA transfer direction
1654 *
1655 * Coherent IOMMU aware version of arm_dma_map_page()
1656 */
1657 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1658 unsigned long offset, size_t size, enum dma_data_direction dir,
1659 struct dma_attrs *attrs)
1660 {
1661 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1662 dma_addr_t dma_addr;
1663 int ret, prot, len = PAGE_ALIGN(size + offset);
1664
1665 dma_addr = __alloc_iova(mapping, len);
1666 if (dma_addr == DMA_ERROR_CODE)
1667 return dma_addr;
1668
1669 switch (dir) {
1670 case DMA_BIDIRECTIONAL:
1671 prot = IOMMU_READ | IOMMU_WRITE;
1672 break;
1673 case DMA_TO_DEVICE:
1674 prot = IOMMU_READ;
1675 break;
1676 case DMA_FROM_DEVICE:
1677 prot = IOMMU_WRITE;
1678 break;
1679 default:
1680 prot = 0;
1681 }
1682
1683 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1684 if (ret < 0)
1685 goto fail;
1686
1687 return dma_addr + offset;
1688 fail:
1689 __free_iova(mapping, dma_addr, len);
1690 return DMA_ERROR_CODE;
1691 }
1692
1693 /**
1694 * arm_iommu_map_page
1695 * @dev: valid struct device pointer
1696 * @page: page that buffer resides in
1697 * @offset: offset into page for start of buffer
1698 * @size: size of buffer to map
1699 * @dir: DMA transfer direction
1700 *
1701 * IOMMU aware version of arm_dma_map_page()
1702 */
1703 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1704 unsigned long offset, size_t size, enum dma_data_direction dir,
1705 struct dma_attrs *attrs)
1706 {
1707 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1708 __dma_page_cpu_to_dev(page, offset, size, dir);
1709
1710 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1711 }
1712
1713 /**
1714 * arm_coherent_iommu_unmap_page
1715 * @dev: valid struct device pointer
1716 * @handle: DMA address of buffer
1717 * @size: size of buffer (same as passed to dma_map_page)
1718 * @dir: DMA transfer direction (same as passed to dma_map_page)
1719 *
1720 * Coherent IOMMU aware version of arm_dma_unmap_page()
1721 */
1722 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1723 size_t size, enum dma_data_direction dir,
1724 struct dma_attrs *attrs)
1725 {
1726 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1727 dma_addr_t iova = handle & PAGE_MASK;
1728 int offset = handle & ~PAGE_MASK;
1729 int len = PAGE_ALIGN(size + offset);
1730
1731 if (!iova)
1732 return;
1733
1734 iommu_unmap(mapping->domain, iova, len);
1735 __free_iova(mapping, iova, len);
1736 }
1737
1738 /**
1739 * arm_iommu_unmap_page
1740 * @dev: valid struct device pointer
1741 * @handle: DMA address of buffer
1742 * @size: size of buffer (same as passed to dma_map_page)
1743 * @dir: DMA transfer direction (same as passed to dma_map_page)
1744 *
1745 * IOMMU aware version of arm_dma_unmap_page()
1746 */
1747 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1748 size_t size, enum dma_data_direction dir,
1749 struct dma_attrs *attrs)
1750 {
1751 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1752 dma_addr_t iova = handle & PAGE_MASK;
1753 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1754 int offset = handle & ~PAGE_MASK;
1755 int len = PAGE_ALIGN(size + offset);
1756
1757 if (!iova)
1758 return;
1759
1760 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1761 __dma_page_dev_to_cpu(page, offset, size, dir);
1762
1763 iommu_unmap(mapping->domain, iova, len);
1764 __free_iova(mapping, iova, len);
1765 }
1766
1767 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1768 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1769 {
1770 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1771 dma_addr_t iova = handle & PAGE_MASK;
1772 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1773 unsigned int offset = handle & ~PAGE_MASK;
1774
1775 if (!iova)
1776 return;
1777
1778 __dma_page_dev_to_cpu(page, offset, size, dir);
1779 }
1780
1781 static void arm_iommu_sync_single_for_device(struct device *dev,
1782 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1783 {
1784 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1785 dma_addr_t iova = handle & PAGE_MASK;
1786 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1787 unsigned int offset = handle & ~PAGE_MASK;
1788
1789 if (!iova)
1790 return;
1791
1792 __dma_page_cpu_to_dev(page, offset, size, dir);
1793 }
1794
1795 struct dma_map_ops iommu_ops = {
1796 .alloc = arm_iommu_alloc_attrs,
1797 .free = arm_iommu_free_attrs,
1798 .mmap = arm_iommu_mmap_attrs,
1799 .get_sgtable = arm_iommu_get_sgtable,
1800
1801 .map_page = arm_iommu_map_page,
1802 .unmap_page = arm_iommu_unmap_page,
1803 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1804 .sync_single_for_device = arm_iommu_sync_single_for_device,
1805
1806 .map_sg = arm_iommu_map_sg,
1807 .unmap_sg = arm_iommu_unmap_sg,
1808 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1809 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1810
1811 .set_dma_mask = arm_dma_set_mask,
1812 };
1813
1814 struct dma_map_ops iommu_coherent_ops = {
1815 .alloc = arm_iommu_alloc_attrs,
1816 .free = arm_iommu_free_attrs,
1817 .mmap = arm_iommu_mmap_attrs,
1818 .get_sgtable = arm_iommu_get_sgtable,
1819
1820 .map_page = arm_coherent_iommu_map_page,
1821 .unmap_page = arm_coherent_iommu_unmap_page,
1822
1823 .map_sg = arm_coherent_iommu_map_sg,
1824 .unmap_sg = arm_coherent_iommu_unmap_sg,
1825
1826 .set_dma_mask = arm_dma_set_mask,
1827 };
1828
1829 /**
1830 * arm_iommu_create_mapping
1831 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1832 * @base: start address of the valid IO address space
1833 * @size: size of the valid IO address space
1834 * @order: accuracy of the IO addresses allocations
1835 *
1836 * Creates a mapping structure which holds information about used/unused
1837 * IO address ranges, which is required to perform memory allocation and
1838 * mapping with IOMMU aware functions.
1839 *
1840 * The client device need to be attached to the mapping with
1841 * arm_iommu_attach_device function.
1842 */
1843 struct dma_iommu_mapping *
1844 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1845 int order)
1846 {
1847 unsigned int count = size >> (PAGE_SHIFT + order);
1848 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1849 struct dma_iommu_mapping *mapping;
1850 int err = -ENOMEM;
1851
1852 if (!count)
1853 return ERR_PTR(-EINVAL);
1854
1855 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1856 if (!mapping)
1857 goto err;
1858
1859 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1860 if (!mapping->bitmap)
1861 goto err2;
1862
1863 mapping->base = base;
1864 mapping->bits = BITS_PER_BYTE * bitmap_size;
1865 mapping->order = order;
1866 spin_lock_init(&mapping->lock);
1867
1868 mapping->domain = iommu_domain_alloc(bus);
1869 if (!mapping->domain)
1870 goto err3;
1871
1872 kref_init(&mapping->kref);
1873 return mapping;
1874 err3:
1875 kfree(mapping->bitmap);
1876 err2:
1877 kfree(mapping);
1878 err:
1879 return ERR_PTR(err);
1880 }
1881 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1882
1883 static void release_iommu_mapping(struct kref *kref)
1884 {
1885 struct dma_iommu_mapping *mapping =
1886 container_of(kref, struct dma_iommu_mapping, kref);
1887
1888 iommu_domain_free(mapping->domain);
1889 kfree(mapping->bitmap);
1890 kfree(mapping);
1891 }
1892
1893 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1894 {
1895 if (mapping)
1896 kref_put(&mapping->kref, release_iommu_mapping);
1897 }
1898 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1899
1900 /**
1901 * arm_iommu_attach_device
1902 * @dev: valid struct device pointer
1903 * @mapping: io address space mapping structure (returned from
1904 * arm_iommu_create_mapping)
1905 *
1906 * Attaches specified io address space mapping to the provided device,
1907 * this replaces the dma operations (dma_map_ops pointer) with the
1908 * IOMMU aware version. More than one client might be attached to
1909 * the same io address space mapping.
1910 */
1911 int arm_iommu_attach_device(struct device *dev,
1912 struct dma_iommu_mapping *mapping)
1913 {
1914 int err;
1915
1916 err = iommu_attach_device(mapping->domain, dev);
1917 if (err)
1918 return err;
1919
1920 kref_get(&mapping->kref);
1921 dev->archdata.mapping = mapping;
1922 set_dma_ops(dev, &iommu_ops);
1923
1924 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1925 return 0;
1926 }
1927 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1928
1929 /**
1930 * arm_iommu_detach_device
1931 * @dev: valid struct device pointer
1932 *
1933 * Detaches the provided device from a previously attached map.
1934 * This voids the dma operations (dma_map_ops pointer)
1935 */
1936 void arm_iommu_detach_device(struct device *dev)
1937 {
1938 struct dma_iommu_mapping *mapping;
1939
1940 mapping = to_dma_iommu_mapping(dev);
1941 if (!mapping) {
1942 dev_warn(dev, "Not attached\n");
1943 return;
1944 }
1945
1946 iommu_detach_device(mapping->domain, dev);
1947 kref_put(&mapping->kref, release_iommu_mapping);
1948 dev->archdata.mapping = NULL;
1949 set_dma_ops(dev, NULL);
1950
1951 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1952 }
1953 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1954
1955 #endif