]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/mm/dma-mapping.c
Merge remote-tracking branches 'asoc/fix/dpcm', 'asoc/fix/imx', 'asoc/fix/msm8916...
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "dma.h"
43 #include "mm.h"
44
45 struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52 int coherent_flag;
53 };
54
55 struct arm_dma_free_args {
56 struct device *dev;
57 size_t size;
58 void *cpu_addr;
59 struct page *page;
60 bool want_vaddr;
61 };
62
63 #define NORMAL 0
64 #define COHERENT 1
65
66 struct arm_dma_allocator {
67 void *(*alloc)(struct arm_dma_alloc_args *args,
68 struct page **ret_page);
69 void (*free)(struct arm_dma_free_args *args);
70 };
71
72 struct arm_dma_buffer {
73 struct list_head list;
74 void *virt;
75 struct arm_dma_allocator *allocator;
76 };
77
78 static LIST_HEAD(arm_dma_bufs);
79 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
80
81 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
82 {
83 struct arm_dma_buffer *buf, *found = NULL;
84 unsigned long flags;
85
86 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
87 list_for_each_entry(buf, &arm_dma_bufs, list) {
88 if (buf->virt == virt) {
89 list_del(&buf->list);
90 found = buf;
91 break;
92 }
93 }
94 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
95 return found;
96 }
97
98 /*
99 * The DMA API is built upon the notion of "buffer ownership". A buffer
100 * is either exclusively owned by the CPU (and therefore may be accessed
101 * by it) or exclusively owned by the DMA device. These helper functions
102 * represent the transitions between these two ownership states.
103 *
104 * Note, however, that on later ARMs, this notion does not work due to
105 * speculative prefetches. We model our approach on the assumption that
106 * the CPU does do speculative prefetches, which means we clean caches
107 * before transfers and delay cache invalidation until transfer completion.
108 *
109 */
110 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
111 size_t, enum dma_data_direction);
112 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
113 size_t, enum dma_data_direction);
114
115 /**
116 * arm_dma_map_page - map a portion of a page for streaming DMA
117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
118 * @page: page that buffer resides in
119 * @offset: offset into page for start of buffer
120 * @size: size of buffer to map
121 * @dir: DMA transfer direction
122 *
123 * Ensure that any data held in the cache is appropriately discarded
124 * or written back.
125 *
126 * The device owns this memory once this call has completed. The CPU
127 * can regain ownership by calling dma_unmap_page().
128 */
129 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
130 unsigned long offset, size_t size, enum dma_data_direction dir,
131 unsigned long attrs)
132 {
133 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
134 __dma_page_cpu_to_dev(page, offset, size, dir);
135 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
136 }
137
138 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
139 unsigned long offset, size_t size, enum dma_data_direction dir,
140 unsigned long attrs)
141 {
142 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
143 }
144
145 /**
146 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
147 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148 * @handle: DMA address of buffer
149 * @size: size of buffer (same as passed to dma_map_page)
150 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 *
152 * Unmap a page streaming mode DMA translation. The handle and size
153 * must match what was provided in the previous dma_map_page() call.
154 * All other usages are undefined.
155 *
156 * After this call, reads by the CPU to the buffer are guaranteed to see
157 * whatever the device wrote there.
158 */
159 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
160 size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
163 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
164 handle & ~PAGE_MASK, size, dir);
165 }
166
167 static void arm_dma_sync_single_for_cpu(struct device *dev,
168 dma_addr_t handle, size_t size, enum dma_data_direction dir)
169 {
170 unsigned int offset = handle & (PAGE_SIZE - 1);
171 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
172 __dma_page_dev_to_cpu(page, offset, size, dir);
173 }
174
175 static void arm_dma_sync_single_for_device(struct device *dev,
176 dma_addr_t handle, size_t size, enum dma_data_direction dir)
177 {
178 unsigned int offset = handle & (PAGE_SIZE - 1);
179 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
180 __dma_page_cpu_to_dev(page, offset, size, dir);
181 }
182
183 static int arm_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
184 {
185 return dma_addr == ARM_MAPPING_ERROR;
186 }
187
188 const struct dma_map_ops arm_dma_ops = {
189 .alloc = arm_dma_alloc,
190 .free = arm_dma_free,
191 .mmap = arm_dma_mmap,
192 .get_sgtable = arm_dma_get_sgtable,
193 .map_page = arm_dma_map_page,
194 .unmap_page = arm_dma_unmap_page,
195 .map_sg = arm_dma_map_sg,
196 .unmap_sg = arm_dma_unmap_sg,
197 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
198 .sync_single_for_device = arm_dma_sync_single_for_device,
199 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
200 .sync_sg_for_device = arm_dma_sync_sg_for_device,
201 .mapping_error = arm_dma_mapping_error,
202 .dma_supported = arm_dma_supported,
203 };
204 EXPORT_SYMBOL(arm_dma_ops);
205
206 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
207 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
208 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
209 dma_addr_t handle, unsigned long attrs);
210 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
211 void *cpu_addr, dma_addr_t dma_addr, size_t size,
212 unsigned long attrs);
213
214 const struct dma_map_ops arm_coherent_dma_ops = {
215 .alloc = arm_coherent_dma_alloc,
216 .free = arm_coherent_dma_free,
217 .mmap = arm_coherent_dma_mmap,
218 .get_sgtable = arm_dma_get_sgtable,
219 .map_page = arm_coherent_dma_map_page,
220 .map_sg = arm_dma_map_sg,
221 .mapping_error = arm_dma_mapping_error,
222 .dma_supported = arm_dma_supported,
223 };
224 EXPORT_SYMBOL(arm_coherent_dma_ops);
225
226 static int __dma_supported(struct device *dev, u64 mask, bool warn)
227 {
228 unsigned long max_dma_pfn;
229
230 /*
231 * If the mask allows for more memory than we can address,
232 * and we actually have that much memory, then we must
233 * indicate that DMA to this device is not supported.
234 */
235 if (sizeof(mask) != sizeof(dma_addr_t) &&
236 mask > (dma_addr_t)~0 &&
237 dma_to_pfn(dev, ~0) < max_pfn - 1) {
238 if (warn) {
239 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
240 mask);
241 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
242 }
243 return 0;
244 }
245
246 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
247
248 /*
249 * Translate the device's DMA mask to a PFN limit. This
250 * PFN number includes the page which we can DMA to.
251 */
252 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
253 if (warn)
254 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
255 mask,
256 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
257 max_dma_pfn + 1);
258 return 0;
259 }
260
261 return 1;
262 }
263
264 static u64 get_coherent_dma_mask(struct device *dev)
265 {
266 u64 mask = (u64)DMA_BIT_MASK(32);
267
268 if (dev) {
269 mask = dev->coherent_dma_mask;
270
271 /*
272 * Sanity check the DMA mask - it must be non-zero, and
273 * must be able to be satisfied by a DMA allocation.
274 */
275 if (mask == 0) {
276 dev_warn(dev, "coherent DMA mask is unset\n");
277 return 0;
278 }
279
280 if (!__dma_supported(dev, mask, true))
281 return 0;
282 }
283
284 return mask;
285 }
286
287 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
288 {
289 /*
290 * Ensure that the allocated pages are zeroed, and that any data
291 * lurking in the kernel direct-mapped region is invalidated.
292 */
293 if (PageHighMem(page)) {
294 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
295 phys_addr_t end = base + size;
296 while (size > 0) {
297 void *ptr = kmap_atomic(page);
298 memset(ptr, 0, PAGE_SIZE);
299 if (coherent_flag != COHERENT)
300 dmac_flush_range(ptr, ptr + PAGE_SIZE);
301 kunmap_atomic(ptr);
302 page++;
303 size -= PAGE_SIZE;
304 }
305 if (coherent_flag != COHERENT)
306 outer_flush_range(base, end);
307 } else {
308 void *ptr = page_address(page);
309 memset(ptr, 0, size);
310 if (coherent_flag != COHERENT) {
311 dmac_flush_range(ptr, ptr + size);
312 outer_flush_range(__pa(ptr), __pa(ptr) + size);
313 }
314 }
315 }
316
317 /*
318 * Allocate a DMA buffer for 'dev' of size 'size' using the
319 * specified gfp mask. Note that 'size' must be page aligned.
320 */
321 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
322 gfp_t gfp, int coherent_flag)
323 {
324 unsigned long order = get_order(size);
325 struct page *page, *p, *e;
326
327 page = alloc_pages(gfp, order);
328 if (!page)
329 return NULL;
330
331 /*
332 * Now split the huge page and free the excess pages
333 */
334 split_page(page, order);
335 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
336 __free_page(p);
337
338 __dma_clear_buffer(page, size, coherent_flag);
339
340 return page;
341 }
342
343 /*
344 * Free a DMA buffer. 'size' must be page aligned.
345 */
346 static void __dma_free_buffer(struct page *page, size_t size)
347 {
348 struct page *e = page + (size >> PAGE_SHIFT);
349
350 while (page < e) {
351 __free_page(page);
352 page++;
353 }
354 }
355
356 static void *__alloc_from_contiguous(struct device *dev, size_t size,
357 pgprot_t prot, struct page **ret_page,
358 const void *caller, bool want_vaddr,
359 int coherent_flag, gfp_t gfp);
360
361 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
362 pgprot_t prot, struct page **ret_page,
363 const void *caller, bool want_vaddr);
364
365 static void *
366 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
367 const void *caller)
368 {
369 /*
370 * DMA allocation can be mapped to user space, so lets
371 * set VM_USERMAP flags too.
372 */
373 return dma_common_contiguous_remap(page, size,
374 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
375 prot, caller);
376 }
377
378 static void __dma_free_remap(void *cpu_addr, size_t size)
379 {
380 dma_common_free_remap(cpu_addr, size,
381 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
382 }
383
384 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
385 static struct gen_pool *atomic_pool;
386
387 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
388
389 static int __init early_coherent_pool(char *p)
390 {
391 atomic_pool_size = memparse(p, &p);
392 return 0;
393 }
394 early_param("coherent_pool", early_coherent_pool);
395
396 void __init init_dma_coherent_pool_size(unsigned long size)
397 {
398 /*
399 * Catch any attempt to set the pool size too late.
400 */
401 BUG_ON(atomic_pool);
402
403 /*
404 * Set architecture specific coherent pool size only if
405 * it has not been changed by kernel command line parameter.
406 */
407 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
408 atomic_pool_size = size;
409 }
410
411 /*
412 * Initialise the coherent pool for atomic allocations.
413 */
414 static int __init atomic_pool_init(void)
415 {
416 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
417 gfp_t gfp = GFP_KERNEL | GFP_DMA;
418 struct page *page;
419 void *ptr;
420
421 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
422 if (!atomic_pool)
423 goto out;
424 /*
425 * The atomic pool is only used for non-coherent allocations
426 * so we must pass NORMAL for coherent_flag.
427 */
428 if (dev_get_cma_area(NULL))
429 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
430 &page, atomic_pool_init, true, NORMAL,
431 GFP_KERNEL);
432 else
433 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
434 &page, atomic_pool_init, true);
435 if (ptr) {
436 int ret;
437
438 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
439 page_to_phys(page),
440 atomic_pool_size, -1);
441 if (ret)
442 goto destroy_genpool;
443
444 gen_pool_set_algo(atomic_pool,
445 gen_pool_first_fit_order_align,
446 (void *)PAGE_SHIFT);
447 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
448 atomic_pool_size / 1024);
449 return 0;
450 }
451
452 destroy_genpool:
453 gen_pool_destroy(atomic_pool);
454 atomic_pool = NULL;
455 out:
456 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
457 atomic_pool_size / 1024);
458 return -ENOMEM;
459 }
460 /*
461 * CMA is activated by core_initcall, so we must be called after it.
462 */
463 postcore_initcall(atomic_pool_init);
464
465 struct dma_contig_early_reserve {
466 phys_addr_t base;
467 unsigned long size;
468 };
469
470 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
471
472 static int dma_mmu_remap_num __initdata;
473
474 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
475 {
476 dma_mmu_remap[dma_mmu_remap_num].base = base;
477 dma_mmu_remap[dma_mmu_remap_num].size = size;
478 dma_mmu_remap_num++;
479 }
480
481 void __init dma_contiguous_remap(void)
482 {
483 int i;
484 for (i = 0; i < dma_mmu_remap_num; i++) {
485 phys_addr_t start = dma_mmu_remap[i].base;
486 phys_addr_t end = start + dma_mmu_remap[i].size;
487 struct map_desc map;
488 unsigned long addr;
489
490 if (end > arm_lowmem_limit)
491 end = arm_lowmem_limit;
492 if (start >= end)
493 continue;
494
495 map.pfn = __phys_to_pfn(start);
496 map.virtual = __phys_to_virt(start);
497 map.length = end - start;
498 map.type = MT_MEMORY_DMA_READY;
499
500 /*
501 * Clear previous low-memory mapping to ensure that the
502 * TLB does not see any conflicting entries, then flush
503 * the TLB of the old entries before creating new mappings.
504 *
505 * This ensures that any speculatively loaded TLB entries
506 * (even though they may be rare) can not cause any problems,
507 * and ensures that this code is architecturally compliant.
508 */
509 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
510 addr += PMD_SIZE)
511 pmd_clear(pmd_off_k(addr));
512
513 flush_tlb_kernel_range(__phys_to_virt(start),
514 __phys_to_virt(end));
515
516 iotable_init(&map, 1);
517 }
518 }
519
520 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
521 void *data)
522 {
523 struct page *page = virt_to_page(addr);
524 pgprot_t prot = *(pgprot_t *)data;
525
526 set_pte_ext(pte, mk_pte(page, prot), 0);
527 return 0;
528 }
529
530 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
531 {
532 unsigned long start = (unsigned long) page_address(page);
533 unsigned end = start + size;
534
535 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
536 flush_tlb_kernel_range(start, end);
537 }
538
539 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
540 pgprot_t prot, struct page **ret_page,
541 const void *caller, bool want_vaddr)
542 {
543 struct page *page;
544 void *ptr = NULL;
545 /*
546 * __alloc_remap_buffer is only called when the device is
547 * non-coherent
548 */
549 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
550 if (!page)
551 return NULL;
552 if (!want_vaddr)
553 goto out;
554
555 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
556 if (!ptr) {
557 __dma_free_buffer(page, size);
558 return NULL;
559 }
560
561 out:
562 *ret_page = page;
563 return ptr;
564 }
565
566 static void *__alloc_from_pool(size_t size, struct page **ret_page)
567 {
568 unsigned long val;
569 void *ptr = NULL;
570
571 if (!atomic_pool) {
572 WARN(1, "coherent pool not initialised!\n");
573 return NULL;
574 }
575
576 val = gen_pool_alloc(atomic_pool, size);
577 if (val) {
578 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
579
580 *ret_page = phys_to_page(phys);
581 ptr = (void *)val;
582 }
583
584 return ptr;
585 }
586
587 static bool __in_atomic_pool(void *start, size_t size)
588 {
589 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
590 }
591
592 static int __free_from_pool(void *start, size_t size)
593 {
594 if (!__in_atomic_pool(start, size))
595 return 0;
596
597 gen_pool_free(atomic_pool, (unsigned long)start, size);
598
599 return 1;
600 }
601
602 static void *__alloc_from_contiguous(struct device *dev, size_t size,
603 pgprot_t prot, struct page **ret_page,
604 const void *caller, bool want_vaddr,
605 int coherent_flag, gfp_t gfp)
606 {
607 unsigned long order = get_order(size);
608 size_t count = size >> PAGE_SHIFT;
609 struct page *page;
610 void *ptr = NULL;
611
612 page = dma_alloc_from_contiguous(dev, count, order, gfp);
613 if (!page)
614 return NULL;
615
616 __dma_clear_buffer(page, size, coherent_flag);
617
618 if (!want_vaddr)
619 goto out;
620
621 if (PageHighMem(page)) {
622 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
623 if (!ptr) {
624 dma_release_from_contiguous(dev, page, count);
625 return NULL;
626 }
627 } else {
628 __dma_remap(page, size, prot);
629 ptr = page_address(page);
630 }
631
632 out:
633 *ret_page = page;
634 return ptr;
635 }
636
637 static void __free_from_contiguous(struct device *dev, struct page *page,
638 void *cpu_addr, size_t size, bool want_vaddr)
639 {
640 if (want_vaddr) {
641 if (PageHighMem(page))
642 __dma_free_remap(cpu_addr, size);
643 else
644 __dma_remap(page, size, PAGE_KERNEL);
645 }
646 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
647 }
648
649 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
650 {
651 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
652 pgprot_writecombine(prot) :
653 pgprot_dmacoherent(prot);
654 return prot;
655 }
656
657 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
658 struct page **ret_page)
659 {
660 struct page *page;
661 /* __alloc_simple_buffer is only called when the device is coherent */
662 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
663 if (!page)
664 return NULL;
665
666 *ret_page = page;
667 return page_address(page);
668 }
669
670 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
671 struct page **ret_page)
672 {
673 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
674 ret_page);
675 }
676
677 static void simple_allocator_free(struct arm_dma_free_args *args)
678 {
679 __dma_free_buffer(args->page, args->size);
680 }
681
682 static struct arm_dma_allocator simple_allocator = {
683 .alloc = simple_allocator_alloc,
684 .free = simple_allocator_free,
685 };
686
687 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
688 struct page **ret_page)
689 {
690 return __alloc_from_contiguous(args->dev, args->size, args->prot,
691 ret_page, args->caller,
692 args->want_vaddr, args->coherent_flag,
693 args->gfp);
694 }
695
696 static void cma_allocator_free(struct arm_dma_free_args *args)
697 {
698 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
699 args->size, args->want_vaddr);
700 }
701
702 static struct arm_dma_allocator cma_allocator = {
703 .alloc = cma_allocator_alloc,
704 .free = cma_allocator_free,
705 };
706
707 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
708 struct page **ret_page)
709 {
710 return __alloc_from_pool(args->size, ret_page);
711 }
712
713 static void pool_allocator_free(struct arm_dma_free_args *args)
714 {
715 __free_from_pool(args->cpu_addr, args->size);
716 }
717
718 static struct arm_dma_allocator pool_allocator = {
719 .alloc = pool_allocator_alloc,
720 .free = pool_allocator_free,
721 };
722
723 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
724 struct page **ret_page)
725 {
726 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
727 args->prot, ret_page, args->caller,
728 args->want_vaddr);
729 }
730
731 static void remap_allocator_free(struct arm_dma_free_args *args)
732 {
733 if (args->want_vaddr)
734 __dma_free_remap(args->cpu_addr, args->size);
735
736 __dma_free_buffer(args->page, args->size);
737 }
738
739 static struct arm_dma_allocator remap_allocator = {
740 .alloc = remap_allocator_alloc,
741 .free = remap_allocator_free,
742 };
743
744 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
745 gfp_t gfp, pgprot_t prot, bool is_coherent,
746 unsigned long attrs, const void *caller)
747 {
748 u64 mask = get_coherent_dma_mask(dev);
749 struct page *page = NULL;
750 void *addr;
751 bool allowblock, cma;
752 struct arm_dma_buffer *buf;
753 struct arm_dma_alloc_args args = {
754 .dev = dev,
755 .size = PAGE_ALIGN(size),
756 .gfp = gfp,
757 .prot = prot,
758 .caller = caller,
759 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
760 .coherent_flag = is_coherent ? COHERENT : NORMAL,
761 };
762
763 #ifdef CONFIG_DMA_API_DEBUG
764 u64 limit = (mask + 1) & ~mask;
765 if (limit && size >= limit) {
766 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
767 size, mask);
768 return NULL;
769 }
770 #endif
771
772 if (!mask)
773 return NULL;
774
775 buf = kzalloc(sizeof(*buf),
776 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
777 if (!buf)
778 return NULL;
779
780 if (mask < 0xffffffffULL)
781 gfp |= GFP_DMA;
782
783 /*
784 * Following is a work-around (a.k.a. hack) to prevent pages
785 * with __GFP_COMP being passed to split_page() which cannot
786 * handle them. The real problem is that this flag probably
787 * should be 0 on ARM as it is not supported on this
788 * platform; see CONFIG_HUGETLBFS.
789 */
790 gfp &= ~(__GFP_COMP);
791 args.gfp = gfp;
792
793 *handle = ARM_MAPPING_ERROR;
794 allowblock = gfpflags_allow_blocking(gfp);
795 cma = allowblock ? dev_get_cma_area(dev) : false;
796
797 if (cma)
798 buf->allocator = &cma_allocator;
799 else if (is_coherent)
800 buf->allocator = &simple_allocator;
801 else if (allowblock)
802 buf->allocator = &remap_allocator;
803 else
804 buf->allocator = &pool_allocator;
805
806 addr = buf->allocator->alloc(&args, &page);
807
808 if (page) {
809 unsigned long flags;
810
811 *handle = pfn_to_dma(dev, page_to_pfn(page));
812 buf->virt = args.want_vaddr ? addr : page;
813
814 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
815 list_add(&buf->list, &arm_dma_bufs);
816 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
817 } else {
818 kfree(buf);
819 }
820
821 return args.want_vaddr ? addr : page;
822 }
823
824 /*
825 * Allocate DMA-coherent memory space and return both the kernel remapped
826 * virtual and bus address for that space.
827 */
828 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
829 gfp_t gfp, unsigned long attrs)
830 {
831 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
832
833 return __dma_alloc(dev, size, handle, gfp, prot, false,
834 attrs, __builtin_return_address(0));
835 }
836
837 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
838 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
839 {
840 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
841 attrs, __builtin_return_address(0));
842 }
843
844 static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
845 void *cpu_addr, dma_addr_t dma_addr, size_t size,
846 unsigned long attrs)
847 {
848 int ret;
849 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
850 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
851 unsigned long pfn = dma_to_pfn(dev, dma_addr);
852 unsigned long off = vma->vm_pgoff;
853
854 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
855 return ret;
856
857 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
858 ret = remap_pfn_range(vma, vma->vm_start,
859 pfn + off,
860 vma->vm_end - vma->vm_start,
861 vma->vm_page_prot);
862 }
863
864 return ret;
865 }
866
867 /*
868 * Create userspace mapping for the DMA-coherent memory.
869 */
870 static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
871 void *cpu_addr, dma_addr_t dma_addr, size_t size,
872 unsigned long attrs)
873 {
874 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
875 }
876
877 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
878 void *cpu_addr, dma_addr_t dma_addr, size_t size,
879 unsigned long attrs)
880 {
881 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
882 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
883 }
884
885 /*
886 * Free a buffer as defined by the above mapping.
887 */
888 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
889 dma_addr_t handle, unsigned long attrs,
890 bool is_coherent)
891 {
892 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
893 struct arm_dma_buffer *buf;
894 struct arm_dma_free_args args = {
895 .dev = dev,
896 .size = PAGE_ALIGN(size),
897 .cpu_addr = cpu_addr,
898 .page = page,
899 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
900 };
901
902 buf = arm_dma_buffer_find(cpu_addr);
903 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
904 return;
905
906 buf->allocator->free(&args);
907 kfree(buf);
908 }
909
910 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
911 dma_addr_t handle, unsigned long attrs)
912 {
913 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
914 }
915
916 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
917 dma_addr_t handle, unsigned long attrs)
918 {
919 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
920 }
921
922 /*
923 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
924 * that the intention is to allow exporting memory allocated via the
925 * coherent DMA APIs through the dma_buf API, which only accepts a
926 * scattertable. This presents a couple of problems:
927 * 1. Not all memory allocated via the coherent DMA APIs is backed by
928 * a struct page
929 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
930 * as we will try to flush the memory through a different alias to that
931 * actually being used (and the flushes are redundant.)
932 */
933 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
934 void *cpu_addr, dma_addr_t handle, size_t size,
935 unsigned long attrs)
936 {
937 unsigned long pfn = dma_to_pfn(dev, handle);
938 struct page *page;
939 int ret;
940
941 /* If the PFN is not valid, we do not have a struct page */
942 if (!pfn_valid(pfn))
943 return -ENXIO;
944
945 page = pfn_to_page(pfn);
946
947 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
948 if (unlikely(ret))
949 return ret;
950
951 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
952 return 0;
953 }
954
955 static void dma_cache_maint_page(struct page *page, unsigned long offset,
956 size_t size, enum dma_data_direction dir,
957 void (*op)(const void *, size_t, int))
958 {
959 unsigned long pfn;
960 size_t left = size;
961
962 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
963 offset %= PAGE_SIZE;
964
965 /*
966 * A single sg entry may refer to multiple physically contiguous
967 * pages. But we still need to process highmem pages individually.
968 * If highmem is not configured then the bulk of this loop gets
969 * optimized out.
970 */
971 do {
972 size_t len = left;
973 void *vaddr;
974
975 page = pfn_to_page(pfn);
976
977 if (PageHighMem(page)) {
978 if (len + offset > PAGE_SIZE)
979 len = PAGE_SIZE - offset;
980
981 if (cache_is_vipt_nonaliasing()) {
982 vaddr = kmap_atomic(page);
983 op(vaddr + offset, len, dir);
984 kunmap_atomic(vaddr);
985 } else {
986 vaddr = kmap_high_get(page);
987 if (vaddr) {
988 op(vaddr + offset, len, dir);
989 kunmap_high(page);
990 }
991 }
992 } else {
993 vaddr = page_address(page) + offset;
994 op(vaddr, len, dir);
995 }
996 offset = 0;
997 pfn++;
998 left -= len;
999 } while (left);
1000 }
1001
1002 /*
1003 * Make an area consistent for devices.
1004 * Note: Drivers should NOT use this function directly, as it will break
1005 * platforms with CONFIG_DMABOUNCE.
1006 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1007 */
1008 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
1009 size_t size, enum dma_data_direction dir)
1010 {
1011 phys_addr_t paddr;
1012
1013 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
1014
1015 paddr = page_to_phys(page) + off;
1016 if (dir == DMA_FROM_DEVICE) {
1017 outer_inv_range(paddr, paddr + size);
1018 } else {
1019 outer_clean_range(paddr, paddr + size);
1020 }
1021 /* FIXME: non-speculating: flush on bidirectional mappings? */
1022 }
1023
1024 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1025 size_t size, enum dma_data_direction dir)
1026 {
1027 phys_addr_t paddr = page_to_phys(page) + off;
1028
1029 /* FIXME: non-speculating: not required */
1030 /* in any case, don't bother invalidating if DMA to device */
1031 if (dir != DMA_TO_DEVICE) {
1032 outer_inv_range(paddr, paddr + size);
1033
1034 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1035 }
1036
1037 /*
1038 * Mark the D-cache clean for these pages to avoid extra flushing.
1039 */
1040 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1041 unsigned long pfn;
1042 size_t left = size;
1043
1044 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1045 off %= PAGE_SIZE;
1046 if (off) {
1047 pfn++;
1048 left -= PAGE_SIZE - off;
1049 }
1050 while (left >= PAGE_SIZE) {
1051 page = pfn_to_page(pfn++);
1052 set_bit(PG_dcache_clean, &page->flags);
1053 left -= PAGE_SIZE;
1054 }
1055 }
1056 }
1057
1058 /**
1059 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1060 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1061 * @sg: list of buffers
1062 * @nents: number of buffers to map
1063 * @dir: DMA transfer direction
1064 *
1065 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1066 * This is the scatter-gather version of the dma_map_single interface.
1067 * Here the scatter gather list elements are each tagged with the
1068 * appropriate dma address and length. They are obtained via
1069 * sg_dma_{address,length}.
1070 *
1071 * Device ownership issues as mentioned for dma_map_single are the same
1072 * here.
1073 */
1074 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1075 enum dma_data_direction dir, unsigned long attrs)
1076 {
1077 const struct dma_map_ops *ops = get_dma_ops(dev);
1078 struct scatterlist *s;
1079 int i, j;
1080
1081 for_each_sg(sg, s, nents, i) {
1082 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1083 s->dma_length = s->length;
1084 #endif
1085 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1086 s->length, dir, attrs);
1087 if (dma_mapping_error(dev, s->dma_address))
1088 goto bad_mapping;
1089 }
1090 return nents;
1091
1092 bad_mapping:
1093 for_each_sg(sg, s, i, j)
1094 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1095 return 0;
1096 }
1097
1098 /**
1099 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1100 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1101 * @sg: list of buffers
1102 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1103 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1104 *
1105 * Unmap a set of streaming mode DMA translations. Again, CPU access
1106 * rules concerning calls here are the same as for dma_unmap_single().
1107 */
1108 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1109 enum dma_data_direction dir, unsigned long attrs)
1110 {
1111 const struct dma_map_ops *ops = get_dma_ops(dev);
1112 struct scatterlist *s;
1113
1114 int i;
1115
1116 for_each_sg(sg, s, nents, i)
1117 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1118 }
1119
1120 /**
1121 * arm_dma_sync_sg_for_cpu
1122 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1123 * @sg: list of buffers
1124 * @nents: number of buffers to map (returned from dma_map_sg)
1125 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1126 */
1127 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1128 int nents, enum dma_data_direction dir)
1129 {
1130 const struct dma_map_ops *ops = get_dma_ops(dev);
1131 struct scatterlist *s;
1132 int i;
1133
1134 for_each_sg(sg, s, nents, i)
1135 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1136 dir);
1137 }
1138
1139 /**
1140 * arm_dma_sync_sg_for_device
1141 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1142 * @sg: list of buffers
1143 * @nents: number of buffers to map (returned from dma_map_sg)
1144 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1145 */
1146 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1147 int nents, enum dma_data_direction dir)
1148 {
1149 const struct dma_map_ops *ops = get_dma_ops(dev);
1150 struct scatterlist *s;
1151 int i;
1152
1153 for_each_sg(sg, s, nents, i)
1154 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1155 dir);
1156 }
1157
1158 /*
1159 * Return whether the given device DMA address mask can be supported
1160 * properly. For example, if your device can only drive the low 24-bits
1161 * during bus mastering, then you would pass 0x00ffffff as the mask
1162 * to this function.
1163 */
1164 int arm_dma_supported(struct device *dev, u64 mask)
1165 {
1166 return __dma_supported(dev, mask, false);
1167 }
1168
1169 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1170
1171 static int __init dma_debug_do_init(void)
1172 {
1173 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1174 return 0;
1175 }
1176 core_initcall(dma_debug_do_init);
1177
1178 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1179
1180 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1181 {
1182 int prot = 0;
1183
1184 if (attrs & DMA_ATTR_PRIVILEGED)
1185 prot |= IOMMU_PRIV;
1186
1187 switch (dir) {
1188 case DMA_BIDIRECTIONAL:
1189 return prot | IOMMU_READ | IOMMU_WRITE;
1190 case DMA_TO_DEVICE:
1191 return prot | IOMMU_READ;
1192 case DMA_FROM_DEVICE:
1193 return prot | IOMMU_WRITE;
1194 default:
1195 return prot;
1196 }
1197 }
1198
1199 /* IOMMU */
1200
1201 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1202
1203 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1204 size_t size)
1205 {
1206 unsigned int order = get_order(size);
1207 unsigned int align = 0;
1208 unsigned int count, start;
1209 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1210 unsigned long flags;
1211 dma_addr_t iova;
1212 int i;
1213
1214 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1215 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1216
1217 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1218 align = (1 << order) - 1;
1219
1220 spin_lock_irqsave(&mapping->lock, flags);
1221 for (i = 0; i < mapping->nr_bitmaps; i++) {
1222 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1223 mapping->bits, 0, count, align);
1224
1225 if (start > mapping->bits)
1226 continue;
1227
1228 bitmap_set(mapping->bitmaps[i], start, count);
1229 break;
1230 }
1231
1232 /*
1233 * No unused range found. Try to extend the existing mapping
1234 * and perform a second attempt to reserve an IO virtual
1235 * address range of size bytes.
1236 */
1237 if (i == mapping->nr_bitmaps) {
1238 if (extend_iommu_mapping(mapping)) {
1239 spin_unlock_irqrestore(&mapping->lock, flags);
1240 return ARM_MAPPING_ERROR;
1241 }
1242
1243 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1244 mapping->bits, 0, count, align);
1245
1246 if (start > mapping->bits) {
1247 spin_unlock_irqrestore(&mapping->lock, flags);
1248 return ARM_MAPPING_ERROR;
1249 }
1250
1251 bitmap_set(mapping->bitmaps[i], start, count);
1252 }
1253 spin_unlock_irqrestore(&mapping->lock, flags);
1254
1255 iova = mapping->base + (mapping_size * i);
1256 iova += start << PAGE_SHIFT;
1257
1258 return iova;
1259 }
1260
1261 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1262 dma_addr_t addr, size_t size)
1263 {
1264 unsigned int start, count;
1265 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1266 unsigned long flags;
1267 dma_addr_t bitmap_base;
1268 u32 bitmap_index;
1269
1270 if (!size)
1271 return;
1272
1273 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1274 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1275
1276 bitmap_base = mapping->base + mapping_size * bitmap_index;
1277
1278 start = (addr - bitmap_base) >> PAGE_SHIFT;
1279
1280 if (addr + size > bitmap_base + mapping_size) {
1281 /*
1282 * The address range to be freed reaches into the iova
1283 * range of the next bitmap. This should not happen as
1284 * we don't allow this in __alloc_iova (at the
1285 * moment).
1286 */
1287 BUG();
1288 } else
1289 count = size >> PAGE_SHIFT;
1290
1291 spin_lock_irqsave(&mapping->lock, flags);
1292 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1293 spin_unlock_irqrestore(&mapping->lock, flags);
1294 }
1295
1296 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1297 static const int iommu_order_array[] = { 9, 8, 4, 0 };
1298
1299 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1300 gfp_t gfp, unsigned long attrs,
1301 int coherent_flag)
1302 {
1303 struct page **pages;
1304 int count = size >> PAGE_SHIFT;
1305 int array_size = count * sizeof(struct page *);
1306 int i = 0;
1307 int order_idx = 0;
1308
1309 if (array_size <= PAGE_SIZE)
1310 pages = kzalloc(array_size, GFP_KERNEL);
1311 else
1312 pages = vzalloc(array_size);
1313 if (!pages)
1314 return NULL;
1315
1316 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1317 {
1318 unsigned long order = get_order(size);
1319 struct page *page;
1320
1321 page = dma_alloc_from_contiguous(dev, count, order, gfp);
1322 if (!page)
1323 goto error;
1324
1325 __dma_clear_buffer(page, size, coherent_flag);
1326
1327 for (i = 0; i < count; i++)
1328 pages[i] = page + i;
1329
1330 return pages;
1331 }
1332
1333 /* Go straight to 4K chunks if caller says it's OK. */
1334 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1335 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1336
1337 /*
1338 * IOMMU can map any pages, so himem can also be used here
1339 */
1340 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1341
1342 while (count) {
1343 int j, order;
1344
1345 order = iommu_order_array[order_idx];
1346
1347 /* Drop down when we get small */
1348 if (__fls(count) < order) {
1349 order_idx++;
1350 continue;
1351 }
1352
1353 if (order) {
1354 /* See if it's easy to allocate a high-order chunk */
1355 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1356
1357 /* Go down a notch at first sign of pressure */
1358 if (!pages[i]) {
1359 order_idx++;
1360 continue;
1361 }
1362 } else {
1363 pages[i] = alloc_pages(gfp, 0);
1364 if (!pages[i])
1365 goto error;
1366 }
1367
1368 if (order) {
1369 split_page(pages[i], order);
1370 j = 1 << order;
1371 while (--j)
1372 pages[i + j] = pages[i] + j;
1373 }
1374
1375 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1376 i += 1 << order;
1377 count -= 1 << order;
1378 }
1379
1380 return pages;
1381 error:
1382 while (i--)
1383 if (pages[i])
1384 __free_pages(pages[i], 0);
1385 kvfree(pages);
1386 return NULL;
1387 }
1388
1389 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1390 size_t size, unsigned long attrs)
1391 {
1392 int count = size >> PAGE_SHIFT;
1393 int i;
1394
1395 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1396 dma_release_from_contiguous(dev, pages[0], count);
1397 } else {
1398 for (i = 0; i < count; i++)
1399 if (pages[i])
1400 __free_pages(pages[i], 0);
1401 }
1402
1403 kvfree(pages);
1404 return 0;
1405 }
1406
1407 /*
1408 * Create a CPU mapping for a specified pages
1409 */
1410 static void *
1411 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1412 const void *caller)
1413 {
1414 return dma_common_pages_remap(pages, size,
1415 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1416 }
1417
1418 /*
1419 * Create a mapping in device IO address space for specified pages
1420 */
1421 static dma_addr_t
1422 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1423 unsigned long attrs)
1424 {
1425 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1426 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1427 dma_addr_t dma_addr, iova;
1428 int i;
1429
1430 dma_addr = __alloc_iova(mapping, size);
1431 if (dma_addr == ARM_MAPPING_ERROR)
1432 return dma_addr;
1433
1434 iova = dma_addr;
1435 for (i = 0; i < count; ) {
1436 int ret;
1437
1438 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1439 phys_addr_t phys = page_to_phys(pages[i]);
1440 unsigned int len, j;
1441
1442 for (j = i + 1; j < count; j++, next_pfn++)
1443 if (page_to_pfn(pages[j]) != next_pfn)
1444 break;
1445
1446 len = (j - i) << PAGE_SHIFT;
1447 ret = iommu_map(mapping->domain, iova, phys, len,
1448 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1449 if (ret < 0)
1450 goto fail;
1451 iova += len;
1452 i = j;
1453 }
1454 return dma_addr;
1455 fail:
1456 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1457 __free_iova(mapping, dma_addr, size);
1458 return ARM_MAPPING_ERROR;
1459 }
1460
1461 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1462 {
1463 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1464
1465 /*
1466 * add optional in-page offset from iova to size and align
1467 * result to page size
1468 */
1469 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1470 iova &= PAGE_MASK;
1471
1472 iommu_unmap(mapping->domain, iova, size);
1473 __free_iova(mapping, iova, size);
1474 return 0;
1475 }
1476
1477 static struct page **__atomic_get_pages(void *addr)
1478 {
1479 struct page *page;
1480 phys_addr_t phys;
1481
1482 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1483 page = phys_to_page(phys);
1484
1485 return (struct page **)page;
1486 }
1487
1488 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1489 {
1490 struct vm_struct *area;
1491
1492 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1493 return __atomic_get_pages(cpu_addr);
1494
1495 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1496 return cpu_addr;
1497
1498 area = find_vm_area(cpu_addr);
1499 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1500 return area->pages;
1501 return NULL;
1502 }
1503
1504 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1505 dma_addr_t *handle, int coherent_flag,
1506 unsigned long attrs)
1507 {
1508 struct page *page;
1509 void *addr;
1510
1511 if (coherent_flag == COHERENT)
1512 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1513 else
1514 addr = __alloc_from_pool(size, &page);
1515 if (!addr)
1516 return NULL;
1517
1518 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1519 if (*handle == ARM_MAPPING_ERROR)
1520 goto err_mapping;
1521
1522 return addr;
1523
1524 err_mapping:
1525 __free_from_pool(addr, size);
1526 return NULL;
1527 }
1528
1529 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1530 dma_addr_t handle, size_t size, int coherent_flag)
1531 {
1532 __iommu_remove_mapping(dev, handle, size);
1533 if (coherent_flag == COHERENT)
1534 __dma_free_buffer(virt_to_page(cpu_addr), size);
1535 else
1536 __free_from_pool(cpu_addr, size);
1537 }
1538
1539 static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1540 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1541 int coherent_flag)
1542 {
1543 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1544 struct page **pages;
1545 void *addr = NULL;
1546
1547 *handle = ARM_MAPPING_ERROR;
1548 size = PAGE_ALIGN(size);
1549
1550 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1551 return __iommu_alloc_simple(dev, size, gfp, handle,
1552 coherent_flag, attrs);
1553
1554 /*
1555 * Following is a work-around (a.k.a. hack) to prevent pages
1556 * with __GFP_COMP being passed to split_page() which cannot
1557 * handle them. The real problem is that this flag probably
1558 * should be 0 on ARM as it is not supported on this
1559 * platform; see CONFIG_HUGETLBFS.
1560 */
1561 gfp &= ~(__GFP_COMP);
1562
1563 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1564 if (!pages)
1565 return NULL;
1566
1567 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1568 if (*handle == ARM_MAPPING_ERROR)
1569 goto err_buffer;
1570
1571 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1572 return pages;
1573
1574 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1575 __builtin_return_address(0));
1576 if (!addr)
1577 goto err_mapping;
1578
1579 return addr;
1580
1581 err_mapping:
1582 __iommu_remove_mapping(dev, *handle, size);
1583 err_buffer:
1584 __iommu_free_buffer(dev, pages, size, attrs);
1585 return NULL;
1586 }
1587
1588 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1589 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1590 {
1591 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1592 }
1593
1594 static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1595 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1596 {
1597 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1598 }
1599
1600 static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1601 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1602 unsigned long attrs)
1603 {
1604 unsigned long uaddr = vma->vm_start;
1605 unsigned long usize = vma->vm_end - vma->vm_start;
1606 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1607 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1608 unsigned long off = vma->vm_pgoff;
1609
1610 if (!pages)
1611 return -ENXIO;
1612
1613 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1614 return -ENXIO;
1615
1616 pages += off;
1617
1618 do {
1619 int ret = vm_insert_page(vma, uaddr, *pages++);
1620 if (ret) {
1621 pr_err("Remapping memory failed: %d\n", ret);
1622 return ret;
1623 }
1624 uaddr += PAGE_SIZE;
1625 usize -= PAGE_SIZE;
1626 } while (usize > 0);
1627
1628 return 0;
1629 }
1630 static int arm_iommu_mmap_attrs(struct device *dev,
1631 struct vm_area_struct *vma, void *cpu_addr,
1632 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1633 {
1634 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1635
1636 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1637 }
1638
1639 static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1640 struct vm_area_struct *vma, void *cpu_addr,
1641 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1642 {
1643 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1644 }
1645
1646 /*
1647 * free a page as defined by the above mapping.
1648 * Must not be called with IRQs disabled.
1649 */
1650 void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1651 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1652 {
1653 struct page **pages;
1654 size = PAGE_ALIGN(size);
1655
1656 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1657 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1658 return;
1659 }
1660
1661 pages = __iommu_get_pages(cpu_addr, attrs);
1662 if (!pages) {
1663 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1664 return;
1665 }
1666
1667 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) {
1668 dma_common_free_remap(cpu_addr, size,
1669 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1670 }
1671
1672 __iommu_remove_mapping(dev, handle, size);
1673 __iommu_free_buffer(dev, pages, size, attrs);
1674 }
1675
1676 void arm_iommu_free_attrs(struct device *dev, size_t size,
1677 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1678 {
1679 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1680 }
1681
1682 void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1683 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1684 {
1685 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1686 }
1687
1688 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1689 void *cpu_addr, dma_addr_t dma_addr,
1690 size_t size, unsigned long attrs)
1691 {
1692 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1693 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1694
1695 if (!pages)
1696 return -ENXIO;
1697
1698 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1699 GFP_KERNEL);
1700 }
1701
1702 /*
1703 * Map a part of the scatter-gather list into contiguous io address space
1704 */
1705 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1706 size_t size, dma_addr_t *handle,
1707 enum dma_data_direction dir, unsigned long attrs,
1708 bool is_coherent)
1709 {
1710 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1711 dma_addr_t iova, iova_base;
1712 int ret = 0;
1713 unsigned int count;
1714 struct scatterlist *s;
1715 int prot;
1716
1717 size = PAGE_ALIGN(size);
1718 *handle = ARM_MAPPING_ERROR;
1719
1720 iova_base = iova = __alloc_iova(mapping, size);
1721 if (iova == ARM_MAPPING_ERROR)
1722 return -ENOMEM;
1723
1724 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1725 phys_addr_t phys = page_to_phys(sg_page(s));
1726 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1727
1728 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1729 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1730
1731 prot = __dma_info_to_prot(dir, attrs);
1732
1733 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1734 if (ret < 0)
1735 goto fail;
1736 count += len >> PAGE_SHIFT;
1737 iova += len;
1738 }
1739 *handle = iova_base;
1740
1741 return 0;
1742 fail:
1743 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1744 __free_iova(mapping, iova_base, size);
1745 return ret;
1746 }
1747
1748 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1749 enum dma_data_direction dir, unsigned long attrs,
1750 bool is_coherent)
1751 {
1752 struct scatterlist *s = sg, *dma = sg, *start = sg;
1753 int i, count = 0;
1754 unsigned int offset = s->offset;
1755 unsigned int size = s->offset + s->length;
1756 unsigned int max = dma_get_max_seg_size(dev);
1757
1758 for (i = 1; i < nents; i++) {
1759 s = sg_next(s);
1760
1761 s->dma_address = ARM_MAPPING_ERROR;
1762 s->dma_length = 0;
1763
1764 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1765 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1766 dir, attrs, is_coherent) < 0)
1767 goto bad_mapping;
1768
1769 dma->dma_address += offset;
1770 dma->dma_length = size - offset;
1771
1772 size = offset = s->offset;
1773 start = s;
1774 dma = sg_next(dma);
1775 count += 1;
1776 }
1777 size += s->length;
1778 }
1779 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1780 is_coherent) < 0)
1781 goto bad_mapping;
1782
1783 dma->dma_address += offset;
1784 dma->dma_length = size - offset;
1785
1786 return count+1;
1787
1788 bad_mapping:
1789 for_each_sg(sg, s, count, i)
1790 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1791 return 0;
1792 }
1793
1794 /**
1795 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1796 * @dev: valid struct device pointer
1797 * @sg: list of buffers
1798 * @nents: number of buffers to map
1799 * @dir: DMA transfer direction
1800 *
1801 * Map a set of i/o coherent buffers described by scatterlist in streaming
1802 * mode for DMA. The scatter gather list elements are merged together (if
1803 * possible) and tagged with the appropriate dma address and length. They are
1804 * obtained via sg_dma_{address,length}.
1805 */
1806 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1807 int nents, enum dma_data_direction dir, unsigned long attrs)
1808 {
1809 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1810 }
1811
1812 /**
1813 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1814 * @dev: valid struct device pointer
1815 * @sg: list of buffers
1816 * @nents: number of buffers to map
1817 * @dir: DMA transfer direction
1818 *
1819 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1820 * The scatter gather list elements are merged together (if possible) and
1821 * tagged with the appropriate dma address and length. They are obtained via
1822 * sg_dma_{address,length}.
1823 */
1824 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1825 int nents, enum dma_data_direction dir, unsigned long attrs)
1826 {
1827 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1828 }
1829
1830 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1831 int nents, enum dma_data_direction dir,
1832 unsigned long attrs, bool is_coherent)
1833 {
1834 struct scatterlist *s;
1835 int i;
1836
1837 for_each_sg(sg, s, nents, i) {
1838 if (sg_dma_len(s))
1839 __iommu_remove_mapping(dev, sg_dma_address(s),
1840 sg_dma_len(s));
1841 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1842 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1843 s->length, dir);
1844 }
1845 }
1846
1847 /**
1848 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1849 * @dev: valid struct device pointer
1850 * @sg: list of buffers
1851 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1852 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1853 *
1854 * Unmap a set of streaming mode DMA translations. Again, CPU access
1855 * rules concerning calls here are the same as for dma_unmap_single().
1856 */
1857 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1858 int nents, enum dma_data_direction dir,
1859 unsigned long attrs)
1860 {
1861 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1862 }
1863
1864 /**
1865 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1866 * @dev: valid struct device pointer
1867 * @sg: list of buffers
1868 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1869 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1870 *
1871 * Unmap a set of streaming mode DMA translations. Again, CPU access
1872 * rules concerning calls here are the same as for dma_unmap_single().
1873 */
1874 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1875 enum dma_data_direction dir,
1876 unsigned long attrs)
1877 {
1878 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1879 }
1880
1881 /**
1882 * arm_iommu_sync_sg_for_cpu
1883 * @dev: valid struct device pointer
1884 * @sg: list of buffers
1885 * @nents: number of buffers to map (returned from dma_map_sg)
1886 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1887 */
1888 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1889 int nents, enum dma_data_direction dir)
1890 {
1891 struct scatterlist *s;
1892 int i;
1893
1894 for_each_sg(sg, s, nents, i)
1895 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1896
1897 }
1898
1899 /**
1900 * arm_iommu_sync_sg_for_device
1901 * @dev: valid struct device pointer
1902 * @sg: list of buffers
1903 * @nents: number of buffers to map (returned from dma_map_sg)
1904 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1905 */
1906 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1907 int nents, enum dma_data_direction dir)
1908 {
1909 struct scatterlist *s;
1910 int i;
1911
1912 for_each_sg(sg, s, nents, i)
1913 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1914 }
1915
1916
1917 /**
1918 * arm_coherent_iommu_map_page
1919 * @dev: valid struct device pointer
1920 * @page: page that buffer resides in
1921 * @offset: offset into page for start of buffer
1922 * @size: size of buffer to map
1923 * @dir: DMA transfer direction
1924 *
1925 * Coherent IOMMU aware version of arm_dma_map_page()
1926 */
1927 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1928 unsigned long offset, size_t size, enum dma_data_direction dir,
1929 unsigned long attrs)
1930 {
1931 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1932 dma_addr_t dma_addr;
1933 int ret, prot, len = PAGE_ALIGN(size + offset);
1934
1935 dma_addr = __alloc_iova(mapping, len);
1936 if (dma_addr == ARM_MAPPING_ERROR)
1937 return dma_addr;
1938
1939 prot = __dma_info_to_prot(dir, attrs);
1940
1941 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1942 if (ret < 0)
1943 goto fail;
1944
1945 return dma_addr + offset;
1946 fail:
1947 __free_iova(mapping, dma_addr, len);
1948 return ARM_MAPPING_ERROR;
1949 }
1950
1951 /**
1952 * arm_iommu_map_page
1953 * @dev: valid struct device pointer
1954 * @page: page that buffer resides in
1955 * @offset: offset into page for start of buffer
1956 * @size: size of buffer to map
1957 * @dir: DMA transfer direction
1958 *
1959 * IOMMU aware version of arm_dma_map_page()
1960 */
1961 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1962 unsigned long offset, size_t size, enum dma_data_direction dir,
1963 unsigned long attrs)
1964 {
1965 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1966 __dma_page_cpu_to_dev(page, offset, size, dir);
1967
1968 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1969 }
1970
1971 /**
1972 * arm_coherent_iommu_unmap_page
1973 * @dev: valid struct device pointer
1974 * @handle: DMA address of buffer
1975 * @size: size of buffer (same as passed to dma_map_page)
1976 * @dir: DMA transfer direction (same as passed to dma_map_page)
1977 *
1978 * Coherent IOMMU aware version of arm_dma_unmap_page()
1979 */
1980 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1981 size_t size, enum dma_data_direction dir, unsigned long attrs)
1982 {
1983 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984 dma_addr_t iova = handle & PAGE_MASK;
1985 int offset = handle & ~PAGE_MASK;
1986 int len = PAGE_ALIGN(size + offset);
1987
1988 if (!iova)
1989 return;
1990
1991 iommu_unmap(mapping->domain, iova, len);
1992 __free_iova(mapping, iova, len);
1993 }
1994
1995 /**
1996 * arm_iommu_unmap_page
1997 * @dev: valid struct device pointer
1998 * @handle: DMA address of buffer
1999 * @size: size of buffer (same as passed to dma_map_page)
2000 * @dir: DMA transfer direction (same as passed to dma_map_page)
2001 *
2002 * IOMMU aware version of arm_dma_unmap_page()
2003 */
2004 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
2005 size_t size, enum dma_data_direction dir, unsigned long attrs)
2006 {
2007 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008 dma_addr_t iova = handle & PAGE_MASK;
2009 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010 int offset = handle & ~PAGE_MASK;
2011 int len = PAGE_ALIGN(size + offset);
2012
2013 if (!iova)
2014 return;
2015
2016 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
2017 __dma_page_dev_to_cpu(page, offset, size, dir);
2018
2019 iommu_unmap(mapping->domain, iova, len);
2020 __free_iova(mapping, iova, len);
2021 }
2022
2023 /**
2024 * arm_iommu_map_resource - map a device resource for DMA
2025 * @dev: valid struct device pointer
2026 * @phys_addr: physical address of resource
2027 * @size: size of resource to map
2028 * @dir: DMA transfer direction
2029 */
2030 static dma_addr_t arm_iommu_map_resource(struct device *dev,
2031 phys_addr_t phys_addr, size_t size,
2032 enum dma_data_direction dir, unsigned long attrs)
2033 {
2034 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2035 dma_addr_t dma_addr;
2036 int ret, prot;
2037 phys_addr_t addr = phys_addr & PAGE_MASK;
2038 unsigned int offset = phys_addr & ~PAGE_MASK;
2039 size_t len = PAGE_ALIGN(size + offset);
2040
2041 dma_addr = __alloc_iova(mapping, len);
2042 if (dma_addr == ARM_MAPPING_ERROR)
2043 return dma_addr;
2044
2045 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
2046
2047 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
2048 if (ret < 0)
2049 goto fail;
2050
2051 return dma_addr + offset;
2052 fail:
2053 __free_iova(mapping, dma_addr, len);
2054 return ARM_MAPPING_ERROR;
2055 }
2056
2057 /**
2058 * arm_iommu_unmap_resource - unmap a device DMA resource
2059 * @dev: valid struct device pointer
2060 * @dma_handle: DMA address to resource
2061 * @size: size of resource to map
2062 * @dir: DMA transfer direction
2063 */
2064 static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
2065 size_t size, enum dma_data_direction dir,
2066 unsigned long attrs)
2067 {
2068 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2069 dma_addr_t iova = dma_handle & PAGE_MASK;
2070 unsigned int offset = dma_handle & ~PAGE_MASK;
2071 size_t len = PAGE_ALIGN(size + offset);
2072
2073 if (!iova)
2074 return;
2075
2076 iommu_unmap(mapping->domain, iova, len);
2077 __free_iova(mapping, iova, len);
2078 }
2079
2080 static void arm_iommu_sync_single_for_cpu(struct device *dev,
2081 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2082 {
2083 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2084 dma_addr_t iova = handle & PAGE_MASK;
2085 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2086 unsigned int offset = handle & ~PAGE_MASK;
2087
2088 if (!iova)
2089 return;
2090
2091 __dma_page_dev_to_cpu(page, offset, size, dir);
2092 }
2093
2094 static void arm_iommu_sync_single_for_device(struct device *dev,
2095 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2096 {
2097 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2098 dma_addr_t iova = handle & PAGE_MASK;
2099 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2100 unsigned int offset = handle & ~PAGE_MASK;
2101
2102 if (!iova)
2103 return;
2104
2105 __dma_page_cpu_to_dev(page, offset, size, dir);
2106 }
2107
2108 const struct dma_map_ops iommu_ops = {
2109 .alloc = arm_iommu_alloc_attrs,
2110 .free = arm_iommu_free_attrs,
2111 .mmap = arm_iommu_mmap_attrs,
2112 .get_sgtable = arm_iommu_get_sgtable,
2113
2114 .map_page = arm_iommu_map_page,
2115 .unmap_page = arm_iommu_unmap_page,
2116 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2117 .sync_single_for_device = arm_iommu_sync_single_for_device,
2118
2119 .map_sg = arm_iommu_map_sg,
2120 .unmap_sg = arm_iommu_unmap_sg,
2121 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2122 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2123
2124 .map_resource = arm_iommu_map_resource,
2125 .unmap_resource = arm_iommu_unmap_resource,
2126
2127 .mapping_error = arm_dma_mapping_error,
2128 .dma_supported = arm_dma_supported,
2129 };
2130
2131 const struct dma_map_ops iommu_coherent_ops = {
2132 .alloc = arm_coherent_iommu_alloc_attrs,
2133 .free = arm_coherent_iommu_free_attrs,
2134 .mmap = arm_coherent_iommu_mmap_attrs,
2135 .get_sgtable = arm_iommu_get_sgtable,
2136
2137 .map_page = arm_coherent_iommu_map_page,
2138 .unmap_page = arm_coherent_iommu_unmap_page,
2139
2140 .map_sg = arm_coherent_iommu_map_sg,
2141 .unmap_sg = arm_coherent_iommu_unmap_sg,
2142
2143 .map_resource = arm_iommu_map_resource,
2144 .unmap_resource = arm_iommu_unmap_resource,
2145
2146 .mapping_error = arm_dma_mapping_error,
2147 .dma_supported = arm_dma_supported,
2148 };
2149
2150 /**
2151 * arm_iommu_create_mapping
2152 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2153 * @base: start address of the valid IO address space
2154 * @size: maximum size of the valid IO address space
2155 *
2156 * Creates a mapping structure which holds information about used/unused
2157 * IO address ranges, which is required to perform memory allocation and
2158 * mapping with IOMMU aware functions.
2159 *
2160 * The client device need to be attached to the mapping with
2161 * arm_iommu_attach_device function.
2162 */
2163 struct dma_iommu_mapping *
2164 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2165 {
2166 unsigned int bits = size >> PAGE_SHIFT;
2167 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2168 struct dma_iommu_mapping *mapping;
2169 int extensions = 1;
2170 int err = -ENOMEM;
2171
2172 /* currently only 32-bit DMA address space is supported */
2173 if (size > DMA_BIT_MASK(32) + 1)
2174 return ERR_PTR(-ERANGE);
2175
2176 if (!bitmap_size)
2177 return ERR_PTR(-EINVAL);
2178
2179 if (bitmap_size > PAGE_SIZE) {
2180 extensions = bitmap_size / PAGE_SIZE;
2181 bitmap_size = PAGE_SIZE;
2182 }
2183
2184 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2185 if (!mapping)
2186 goto err;
2187
2188 mapping->bitmap_size = bitmap_size;
2189 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2190 GFP_KERNEL);
2191 if (!mapping->bitmaps)
2192 goto err2;
2193
2194 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2195 if (!mapping->bitmaps[0])
2196 goto err3;
2197
2198 mapping->nr_bitmaps = 1;
2199 mapping->extensions = extensions;
2200 mapping->base = base;
2201 mapping->bits = BITS_PER_BYTE * bitmap_size;
2202
2203 spin_lock_init(&mapping->lock);
2204
2205 mapping->domain = iommu_domain_alloc(bus);
2206 if (!mapping->domain)
2207 goto err4;
2208
2209 kref_init(&mapping->kref);
2210 return mapping;
2211 err4:
2212 kfree(mapping->bitmaps[0]);
2213 err3:
2214 kfree(mapping->bitmaps);
2215 err2:
2216 kfree(mapping);
2217 err:
2218 return ERR_PTR(err);
2219 }
2220 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2221
2222 static void release_iommu_mapping(struct kref *kref)
2223 {
2224 int i;
2225 struct dma_iommu_mapping *mapping =
2226 container_of(kref, struct dma_iommu_mapping, kref);
2227
2228 iommu_domain_free(mapping->domain);
2229 for (i = 0; i < mapping->nr_bitmaps; i++)
2230 kfree(mapping->bitmaps[i]);
2231 kfree(mapping->bitmaps);
2232 kfree(mapping);
2233 }
2234
2235 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2236 {
2237 int next_bitmap;
2238
2239 if (mapping->nr_bitmaps >= mapping->extensions)
2240 return -EINVAL;
2241
2242 next_bitmap = mapping->nr_bitmaps;
2243 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2244 GFP_ATOMIC);
2245 if (!mapping->bitmaps[next_bitmap])
2246 return -ENOMEM;
2247
2248 mapping->nr_bitmaps++;
2249
2250 return 0;
2251 }
2252
2253 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2254 {
2255 if (mapping)
2256 kref_put(&mapping->kref, release_iommu_mapping);
2257 }
2258 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2259
2260 static int __arm_iommu_attach_device(struct device *dev,
2261 struct dma_iommu_mapping *mapping)
2262 {
2263 int err;
2264
2265 err = iommu_attach_device(mapping->domain, dev);
2266 if (err)
2267 return err;
2268
2269 kref_get(&mapping->kref);
2270 to_dma_iommu_mapping(dev) = mapping;
2271
2272 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2273 return 0;
2274 }
2275
2276 /**
2277 * arm_iommu_attach_device
2278 * @dev: valid struct device pointer
2279 * @mapping: io address space mapping structure (returned from
2280 * arm_iommu_create_mapping)
2281 *
2282 * Attaches specified io address space mapping to the provided device.
2283 * This replaces the dma operations (dma_map_ops pointer) with the
2284 * IOMMU aware version.
2285 *
2286 * More than one client might be attached to the same io address space
2287 * mapping.
2288 */
2289 int arm_iommu_attach_device(struct device *dev,
2290 struct dma_iommu_mapping *mapping)
2291 {
2292 int err;
2293
2294 err = __arm_iommu_attach_device(dev, mapping);
2295 if (err)
2296 return err;
2297
2298 set_dma_ops(dev, &iommu_ops);
2299 return 0;
2300 }
2301 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2302
2303 /**
2304 * arm_iommu_detach_device
2305 * @dev: valid struct device pointer
2306 *
2307 * Detaches the provided device from a previously attached map.
2308 * This voids the dma operations (dma_map_ops pointer)
2309 */
2310 void arm_iommu_detach_device(struct device *dev)
2311 {
2312 struct dma_iommu_mapping *mapping;
2313
2314 mapping = to_dma_iommu_mapping(dev);
2315 if (!mapping) {
2316 dev_warn(dev, "Not attached\n");
2317 return;
2318 }
2319
2320 iommu_detach_device(mapping->domain, dev);
2321 kref_put(&mapping->kref, release_iommu_mapping);
2322 to_dma_iommu_mapping(dev) = NULL;
2323 set_dma_ops(dev, NULL);
2324
2325 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2326 }
2327 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2328
2329 static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2330 {
2331 return coherent ? &iommu_coherent_ops : &iommu_ops;
2332 }
2333
2334 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2335 const struct iommu_ops *iommu)
2336 {
2337 struct dma_iommu_mapping *mapping;
2338
2339 if (!iommu)
2340 return false;
2341
2342 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2343 if (IS_ERR(mapping)) {
2344 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2345 size, dev_name(dev));
2346 return false;
2347 }
2348
2349 if (__arm_iommu_attach_device(dev, mapping)) {
2350 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2351 dev_name(dev));
2352 arm_iommu_release_mapping(mapping);
2353 return false;
2354 }
2355
2356 return true;
2357 }
2358
2359 static void arm_teardown_iommu_dma_ops(struct device *dev)
2360 {
2361 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2362
2363 if (!mapping)
2364 return;
2365
2366 arm_iommu_detach_device(dev);
2367 arm_iommu_release_mapping(mapping);
2368 }
2369
2370 #else
2371
2372 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2373 const struct iommu_ops *iommu)
2374 {
2375 return false;
2376 }
2377
2378 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2379
2380 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2381
2382 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2383
2384 static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2385 {
2386 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2387 }
2388
2389 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2390 const struct iommu_ops *iommu, bool coherent)
2391 {
2392 const struct dma_map_ops *dma_ops;
2393
2394 dev->archdata.dma_coherent = coherent;
2395
2396 /*
2397 * Don't override the dma_ops if they have already been set. Ideally
2398 * this should be the only location where dma_ops are set, remove this
2399 * check when all other callers of set_dma_ops will have disappeared.
2400 */
2401 if (dev->dma_ops)
2402 return;
2403
2404 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2405 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2406 else
2407 dma_ops = arm_get_dma_map_ops(coherent);
2408
2409 set_dma_ops(dev, dma_ops);
2410
2411 #ifdef CONFIG_XEN
2412 if (xen_initial_domain()) {
2413 dev->archdata.dev_dma_ops = dev->dma_ops;
2414 dev->dma_ops = xen_dma_ops;
2415 }
2416 #endif
2417 dev->archdata.dma_ops_setup = true;
2418 }
2419
2420 void arch_teardown_dma_ops(struct device *dev)
2421 {
2422 if (!dev->archdata.dma_ops_setup)
2423 return;
2424
2425 arm_teardown_iommu_dma_ops(dev);
2426 }