]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/mm/fault-armv.c
arm: remove several unnecessary module.h include instances
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mm / fault-armv.c
1 /*
2 * linux/arch/arm/mm/fault-armv.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2002 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/sched.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/bitops.h>
15 #include <linux/vmalloc.h>
16 #include <linux/init.h>
17 #include <linux/pagemap.h>
18 #include <linux/gfp.h>
19
20 #include <asm/bugs.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cachetype.h>
23 #include <asm/pgtable.h>
24 #include <asm/tlbflush.h>
25
26 #include "mm.h"
27
28 static pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
29
30 #if __LINUX_ARM_ARCH__ < 6
31 /*
32 * We take the easy way out of this problem - we make the
33 * PTE uncacheable. However, we leave the write buffer on.
34 *
35 * Note that the pte lock held when calling update_mmu_cache must also
36 * guard the pte (somewhere else in the same mm) that we modify here.
37 * Therefore those configurations which might call adjust_pte (those
38 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
39 */
40 static int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
41 unsigned long pfn, pte_t *ptep)
42 {
43 pte_t entry = *ptep;
44 int ret;
45
46 /*
47 * If this page is present, it's actually being shared.
48 */
49 ret = pte_present(entry);
50
51 /*
52 * If this page isn't present, or is already setup to
53 * fault (ie, is old), we can safely ignore any issues.
54 */
55 if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
56 flush_cache_page(vma, address, pfn);
57 outer_flush_range((pfn << PAGE_SHIFT),
58 (pfn << PAGE_SHIFT) + PAGE_SIZE);
59 pte_val(entry) &= ~L_PTE_MT_MASK;
60 pte_val(entry) |= shared_pte_mask;
61 set_pte_at(vma->vm_mm, address, ptep, entry);
62 flush_tlb_page(vma, address);
63 }
64
65 return ret;
66 }
67
68 #if USE_SPLIT_PTLOCKS
69 /*
70 * If we are using split PTE locks, then we need to take the page
71 * lock here. Otherwise we are using shared mm->page_table_lock
72 * which is already locked, thus cannot take it.
73 */
74 static inline void do_pte_lock(spinlock_t *ptl)
75 {
76 /*
77 * Use nested version here to indicate that we are already
78 * holding one similar spinlock.
79 */
80 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
81 }
82
83 static inline void do_pte_unlock(spinlock_t *ptl)
84 {
85 spin_unlock(ptl);
86 }
87 #else /* !USE_SPLIT_PTLOCKS */
88 static inline void do_pte_lock(spinlock_t *ptl) {}
89 static inline void do_pte_unlock(spinlock_t *ptl) {}
90 #endif /* USE_SPLIT_PTLOCKS */
91
92 static int adjust_pte(struct vm_area_struct *vma, unsigned long address,
93 unsigned long pfn)
94 {
95 spinlock_t *ptl;
96 pgd_t *pgd;
97 pud_t *pud;
98 pmd_t *pmd;
99 pte_t *pte;
100 int ret;
101
102 pgd = pgd_offset(vma->vm_mm, address);
103 if (pgd_none_or_clear_bad(pgd))
104 return 0;
105
106 pud = pud_offset(pgd, address);
107 if (pud_none_or_clear_bad(pud))
108 return 0;
109
110 pmd = pmd_offset(pud, address);
111 if (pmd_none_or_clear_bad(pmd))
112 return 0;
113
114 /*
115 * This is called while another page table is mapped, so we
116 * must use the nested version. This also means we need to
117 * open-code the spin-locking.
118 */
119 ptl = pte_lockptr(vma->vm_mm, pmd);
120 pte = pte_offset_map(pmd, address);
121 do_pte_lock(ptl);
122
123 ret = do_adjust_pte(vma, address, pfn, pte);
124
125 do_pte_unlock(ptl);
126 pte_unmap(pte);
127
128 return ret;
129 }
130
131 static void
132 make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
133 unsigned long addr, pte_t *ptep, unsigned long pfn)
134 {
135 struct mm_struct *mm = vma->vm_mm;
136 struct vm_area_struct *mpnt;
137 struct prio_tree_iter iter;
138 unsigned long offset;
139 pgoff_t pgoff;
140 int aliases = 0;
141
142 pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
143
144 /*
145 * If we have any shared mappings that are in the same mm
146 * space, then we need to handle them specially to maintain
147 * cache coherency.
148 */
149 flush_dcache_mmap_lock(mapping);
150 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
151 /*
152 * If this VMA is not in our MM, we can ignore it.
153 * Note that we intentionally mask out the VMA
154 * that we are fixing up.
155 */
156 if (mpnt->vm_mm != mm || mpnt == vma)
157 continue;
158 if (!(mpnt->vm_flags & VM_MAYSHARE))
159 continue;
160 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
161 aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
162 }
163 flush_dcache_mmap_unlock(mapping);
164 if (aliases)
165 do_adjust_pte(vma, addr, pfn, ptep);
166 }
167
168 /*
169 * Take care of architecture specific things when placing a new PTE into
170 * a page table, or changing an existing PTE. Basically, there are two
171 * things that we need to take care of:
172 *
173 * 1. If PG_dcache_clean is not set for the page, we need to ensure
174 * that any cache entries for the kernels virtual memory
175 * range are written back to the page.
176 * 2. If we have multiple shared mappings of the same space in
177 * an object, we need to deal with the cache aliasing issues.
178 *
179 * Note that the pte lock will be held.
180 */
181 void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
182 pte_t *ptep)
183 {
184 unsigned long pfn = pte_pfn(*ptep);
185 struct address_space *mapping;
186 struct page *page;
187
188 if (!pfn_valid(pfn))
189 return;
190
191 /*
192 * The zero page is never written to, so never has any dirty
193 * cache lines, and therefore never needs to be flushed.
194 */
195 page = pfn_to_page(pfn);
196 if (page == ZERO_PAGE(0))
197 return;
198
199 mapping = page_mapping(page);
200 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
201 __flush_dcache_page(mapping, page);
202 if (mapping) {
203 if (cache_is_vivt())
204 make_coherent(mapping, vma, addr, ptep, pfn);
205 else if (vma->vm_flags & VM_EXEC)
206 __flush_icache_all();
207 }
208 }
209 #endif /* __LINUX_ARM_ARCH__ < 6 */
210
211 /*
212 * Check whether the write buffer has physical address aliasing
213 * issues. If it has, we need to avoid them for the case where
214 * we have several shared mappings of the same object in user
215 * space.
216 */
217 static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
218 {
219 register unsigned long zero = 0, one = 1, val;
220
221 local_irq_disable();
222 mb();
223 *p1 = one;
224 mb();
225 *p2 = zero;
226 mb();
227 val = *p1;
228 mb();
229 local_irq_enable();
230 return val != zero;
231 }
232
233 void __init check_writebuffer_bugs(void)
234 {
235 struct page *page;
236 const char *reason;
237 unsigned long v = 1;
238
239 printk(KERN_INFO "CPU: Testing write buffer coherency: ");
240
241 page = alloc_page(GFP_KERNEL);
242 if (page) {
243 unsigned long *p1, *p2;
244 pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
245 L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
246
247 p1 = vmap(&page, 1, VM_IOREMAP, prot);
248 p2 = vmap(&page, 1, VM_IOREMAP, prot);
249
250 if (p1 && p2) {
251 v = check_writebuffer(p1, p2);
252 reason = "enabling work-around";
253 } else {
254 reason = "unable to map memory\n";
255 }
256
257 vunmap(p1);
258 vunmap(p2);
259 put_page(page);
260 } else {
261 reason = "unable to grab page\n";
262 }
263
264 if (v) {
265 printk("failed, %s\n", reason);
266 shared_pte_mask = L_PTE_MT_UNCACHED;
267 } else {
268 printk("ok\n");
269 }
270 }