]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm/mm/init.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-hirsute-kernel.git] / arch / arm / mm / init.c
1 /*
2 * linux/arch/arm/mm/init.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18
19 #include <asm/mach-types.h>
20 #include <asm/setup.h>
21 #include <asm/sizes.h>
22 #include <asm/tlb.h>
23
24 #include <asm/mach/arch.h>
25 #include <asm/mach/map.h>
26
27 #include "mm.h"
28
29 extern void _text, _etext, __data_start, _end, __init_begin, __init_end;
30 extern unsigned long phys_initrd_start;
31 extern unsigned long phys_initrd_size;
32
33 /*
34 * This is used to pass memory configuration data from paging_init
35 * to mem_init, and by show_mem() to skip holes in the memory map.
36 */
37 static struct meminfo meminfo = { 0, };
38
39 #define for_each_nodebank(iter,mi,no) \
40 for (iter = 0; iter < mi->nr_banks; iter++) \
41 if (mi->bank[iter].node == no)
42
43 void show_mem(void)
44 {
45 int free = 0, total = 0, reserved = 0;
46 int shared = 0, cached = 0, slab = 0, node, i;
47 struct meminfo * mi = &meminfo;
48
49 printk("Mem-info:\n");
50 show_free_areas();
51 for_each_online_node(node) {
52 pg_data_t *n = NODE_DATA(node);
53 struct page *map = n->node_mem_map - n->node_start_pfn;
54
55 for_each_nodebank (i,mi,node) {
56 unsigned int pfn1, pfn2;
57 struct page *page, *end;
58
59 pfn1 = __phys_to_pfn(mi->bank[i].start);
60 pfn2 = __phys_to_pfn(mi->bank[i].size + mi->bank[i].start);
61
62 page = map + pfn1;
63 end = map + pfn2;
64
65 do {
66 total++;
67 if (PageReserved(page))
68 reserved++;
69 else if (PageSwapCache(page))
70 cached++;
71 else if (PageSlab(page))
72 slab++;
73 else if (!page_count(page))
74 free++;
75 else
76 shared += page_count(page) - 1;
77 page++;
78 } while (page < end);
79 }
80 }
81
82 printk("%d pages of RAM\n", total);
83 printk("%d free pages\n", free);
84 printk("%d reserved pages\n", reserved);
85 printk("%d slab pages\n", slab);
86 printk("%d pages shared\n", shared);
87 printk("%d pages swap cached\n", cached);
88 }
89
90 /*
91 * FIXME: We really want to avoid allocating the bootmap bitmap
92 * over the top of the initrd. Hopefully, this is located towards
93 * the start of a bank, so if we allocate the bootmap bitmap at
94 * the end, we won't clash.
95 */
96 static unsigned int __init
97 find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
98 {
99 unsigned int start_pfn, bank, bootmap_pfn;
100
101 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
102 bootmap_pfn = 0;
103
104 for_each_nodebank(bank, mi, node) {
105 unsigned int start, end;
106
107 start = mi->bank[bank].start >> PAGE_SHIFT;
108 end = (mi->bank[bank].size +
109 mi->bank[bank].start) >> PAGE_SHIFT;
110
111 if (end < start_pfn)
112 continue;
113
114 if (start < start_pfn)
115 start = start_pfn;
116
117 if (end <= start)
118 continue;
119
120 if (end - start >= bootmap_pages) {
121 bootmap_pfn = start;
122 break;
123 }
124 }
125
126 if (bootmap_pfn == 0)
127 BUG();
128
129 return bootmap_pfn;
130 }
131
132 static int __init check_initrd(struct meminfo *mi)
133 {
134 int initrd_node = -2;
135 #ifdef CONFIG_BLK_DEV_INITRD
136 unsigned long end = phys_initrd_start + phys_initrd_size;
137
138 /*
139 * Make sure that the initrd is within a valid area of
140 * memory.
141 */
142 if (phys_initrd_size) {
143 unsigned int i;
144
145 initrd_node = -1;
146
147 for (i = 0; i < mi->nr_banks; i++) {
148 unsigned long bank_end;
149
150 bank_end = mi->bank[i].start + mi->bank[i].size;
151
152 if (mi->bank[i].start <= phys_initrd_start &&
153 end <= bank_end)
154 initrd_node = mi->bank[i].node;
155 }
156 }
157
158 if (initrd_node == -1) {
159 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
160 "physical memory - disabling initrd\n",
161 phys_initrd_start, end);
162 phys_initrd_start = phys_initrd_size = 0;
163 }
164 #endif
165
166 return initrd_node;
167 }
168
169 static inline void map_memory_bank(struct membank *bank)
170 {
171 #ifdef CONFIG_MMU
172 struct map_desc map;
173
174 map.pfn = __phys_to_pfn(bank->start);
175 map.virtual = __phys_to_virt(bank->start);
176 map.length = bank->size;
177 map.type = MT_MEMORY;
178
179 create_mapping(&map);
180 #endif
181 }
182
183 static unsigned long __init
184 bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
185 {
186 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
187 unsigned long start_pfn, end_pfn, boot_pfn;
188 unsigned int boot_pages;
189 pg_data_t *pgdat;
190 int i;
191
192 start_pfn = -1UL;
193 end_pfn = 0;
194
195 /*
196 * Calculate the pfn range, and map the memory banks for this node.
197 */
198 for_each_nodebank(i, mi, node) {
199 struct membank *bank = &mi->bank[i];
200 unsigned long start, end;
201
202 start = bank->start >> PAGE_SHIFT;
203 end = (bank->start + bank->size) >> PAGE_SHIFT;
204
205 if (start_pfn > start)
206 start_pfn = start;
207 if (end_pfn < end)
208 end_pfn = end;
209
210 map_memory_bank(bank);
211 }
212
213 /*
214 * If there is no memory in this node, ignore it.
215 */
216 if (end_pfn == 0)
217 return end_pfn;
218
219 /*
220 * Allocate the bootmem bitmap page.
221 */
222 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
223 boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
224
225 /*
226 * Initialise the bootmem allocator for this node, handing the
227 * memory banks over to bootmem.
228 */
229 node_set_online(node);
230 pgdat = NODE_DATA(node);
231 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
232
233 for_each_nodebank(i, mi, node)
234 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
235
236 /*
237 * Reserve the bootmem bitmap for this node.
238 */
239 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
240 boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT);
241
242 #ifdef CONFIG_BLK_DEV_INITRD
243 /*
244 * If the initrd is in this node, reserve its memory.
245 */
246 if (node == initrd_node) {
247 reserve_bootmem_node(pgdat, phys_initrd_start,
248 phys_initrd_size, BOOTMEM_DEFAULT);
249 initrd_start = __phys_to_virt(phys_initrd_start);
250 initrd_end = initrd_start + phys_initrd_size;
251 }
252 #endif
253
254 /*
255 * Finally, reserve any node zero regions.
256 */
257 if (node == 0)
258 reserve_node_zero(pgdat);
259
260 /*
261 * initialise the zones within this node.
262 */
263 memset(zone_size, 0, sizeof(zone_size));
264 memset(zhole_size, 0, sizeof(zhole_size));
265
266 /*
267 * The size of this node has already been determined. If we need
268 * to do anything fancy with the allocation of this memory to the
269 * zones, now is the time to do it.
270 */
271 zone_size[0] = end_pfn - start_pfn;
272
273 /*
274 * For each bank in this node, calculate the size of the holes.
275 * holes = node_size - sum(bank_sizes_in_node)
276 */
277 zhole_size[0] = zone_size[0];
278 for_each_nodebank(i, mi, node)
279 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
280
281 /*
282 * Adjust the sizes according to any special requirements for
283 * this machine type.
284 */
285 arch_adjust_zones(node, zone_size, zhole_size);
286
287 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
288
289 return end_pfn;
290 }
291
292 void __init bootmem_init(struct meminfo *mi)
293 {
294 unsigned long memend_pfn = 0;
295 int node, initrd_node, i;
296
297 /*
298 * Invalidate the node number for empty or invalid memory banks
299 */
300 for (i = 0; i < mi->nr_banks; i++)
301 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
302 mi->bank[i].node = -1;
303
304 memcpy(&meminfo, mi, sizeof(meminfo));
305
306 /*
307 * Locate which node contains the ramdisk image, if any.
308 */
309 initrd_node = check_initrd(mi);
310
311 /*
312 * Run through each node initialising the bootmem allocator.
313 */
314 for_each_node(node) {
315 unsigned long end_pfn;
316
317 end_pfn = bootmem_init_node(node, initrd_node, mi);
318
319 /*
320 * Remember the highest memory PFN.
321 */
322 if (end_pfn > memend_pfn)
323 memend_pfn = end_pfn;
324 }
325
326 high_memory = __va(memend_pfn << PAGE_SHIFT);
327
328 /*
329 * This doesn't seem to be used by the Linux memory manager any
330 * more, but is used by ll_rw_block. If we can get rid of it, we
331 * also get rid of some of the stuff above as well.
332 *
333 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
334 * the system, not the maximum PFN.
335 */
336 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
337 }
338
339 static inline void free_area(unsigned long addr, unsigned long end, char *s)
340 {
341 unsigned int size = (end - addr) >> 10;
342
343 for (; addr < end; addr += PAGE_SIZE) {
344 struct page *page = virt_to_page(addr);
345 ClearPageReserved(page);
346 init_page_count(page);
347 free_page(addr);
348 totalram_pages++;
349 }
350
351 if (size && s)
352 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
353 }
354
355 static inline void
356 free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
357 {
358 struct page *start_pg, *end_pg;
359 unsigned long pg, pgend;
360
361 /*
362 * Convert start_pfn/end_pfn to a struct page pointer.
363 */
364 start_pg = pfn_to_page(start_pfn);
365 end_pg = pfn_to_page(end_pfn);
366
367 /*
368 * Convert to physical addresses, and
369 * round start upwards and end downwards.
370 */
371 pg = PAGE_ALIGN(__pa(start_pg));
372 pgend = __pa(end_pg) & PAGE_MASK;
373
374 /*
375 * If there are free pages between these,
376 * free the section of the memmap array.
377 */
378 if (pg < pgend)
379 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
380 }
381
382 /*
383 * The mem_map array can get very big. Free the unused area of the memory map.
384 */
385 static void __init free_unused_memmap_node(int node, struct meminfo *mi)
386 {
387 unsigned long bank_start, prev_bank_end = 0;
388 unsigned int i;
389
390 /*
391 * [FIXME] This relies on each bank being in address order. This
392 * may not be the case, especially if the user has provided the
393 * information on the command line.
394 */
395 for_each_nodebank(i, mi, node) {
396 bank_start = mi->bank[i].start >> PAGE_SHIFT;
397 if (bank_start < prev_bank_end) {
398 printk(KERN_ERR "MEM: unordered memory banks. "
399 "Not freeing memmap.\n");
400 break;
401 }
402
403 /*
404 * If we had a previous bank, and there is a space
405 * between the current bank and the previous, free it.
406 */
407 if (prev_bank_end && prev_bank_end != bank_start)
408 free_memmap(node, prev_bank_end, bank_start);
409
410 prev_bank_end = (mi->bank[i].start +
411 mi->bank[i].size) >> PAGE_SHIFT;
412 }
413 }
414
415 /*
416 * mem_init() marks the free areas in the mem_map and tells us how much
417 * memory is free. This is done after various parts of the system have
418 * claimed their memory after the kernel image.
419 */
420 void __init mem_init(void)
421 {
422 unsigned int codepages, datapages, initpages;
423 int i, node;
424
425 codepages = &_etext - &_text;
426 datapages = &_end - &__data_start;
427 initpages = &__init_end - &__init_begin;
428
429 #ifndef CONFIG_DISCONTIGMEM
430 max_mapnr = virt_to_page(high_memory) - mem_map;
431 #endif
432
433 /* this will put all unused low memory onto the freelists */
434 for_each_online_node(node) {
435 pg_data_t *pgdat = NODE_DATA(node);
436
437 free_unused_memmap_node(node, &meminfo);
438
439 if (pgdat->node_spanned_pages != 0)
440 totalram_pages += free_all_bootmem_node(pgdat);
441 }
442
443 #ifdef CONFIG_SA1111
444 /* now that our DMA memory is actually so designated, we can free it */
445 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
446 #endif
447
448 /*
449 * Since our memory may not be contiguous, calculate the
450 * real number of pages we have in this system
451 */
452 printk(KERN_INFO "Memory:");
453
454 num_physpages = 0;
455 for (i = 0; i < meminfo.nr_banks; i++) {
456 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
457 printk(" %ldMB", meminfo.bank[i].size >> 20);
458 }
459
460 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
461 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
462 "%dK data, %dK init)\n",
463 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
464 codepages >> 10, datapages >> 10, initpages >> 10);
465
466 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
467 extern int sysctl_overcommit_memory;
468 /*
469 * On a machine this small we won't get
470 * anywhere without overcommit, so turn
471 * it on by default.
472 */
473 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
474 }
475 }
476
477 void free_initmem(void)
478 {
479 if (!machine_is_integrator() && !machine_is_cintegrator()) {
480 free_area((unsigned long)(&__init_begin),
481 (unsigned long)(&__init_end),
482 "init");
483 }
484 }
485
486 #ifdef CONFIG_BLK_DEV_INITRD
487
488 static int keep_initrd;
489
490 void free_initrd_mem(unsigned long start, unsigned long end)
491 {
492 if (!keep_initrd)
493 free_area(start, end, "initrd");
494 }
495
496 static int __init keepinitrd_setup(char *__unused)
497 {
498 keep_initrd = 1;
499 return 1;
500 }
501
502 __setup("keepinitrd", keepinitrd_setup);
503 #endif