]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/mm/mm-armv.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/acme/net-2.6
[mirror_ubuntu-bionic-kernel.git] / arch / arm / mm / mm-armv.c
1 /*
2 * linux/arch/arm/mm/mm-armv.c
3 *
4 * Copyright (C) 1998-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Page table sludge for ARM v3 and v4 processor architectures.
11 */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/bootmem.h>
17 #include <linux/highmem.h>
18 #include <linux/nodemask.h>
19
20 #include <asm/pgalloc.h>
21 #include <asm/page.h>
22 #include <asm/io.h>
23 #include <asm/setup.h>
24 #include <asm/tlbflush.h>
25
26 #include <asm/mach/map.h>
27
28 #define CPOLICY_UNCACHED 0
29 #define CPOLICY_BUFFERED 1
30 #define CPOLICY_WRITETHROUGH 2
31 #define CPOLICY_WRITEBACK 3
32 #define CPOLICY_WRITEALLOC 4
33
34 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
35 static unsigned int ecc_mask __initdata = 0;
36 pgprot_t pgprot_kernel;
37
38 EXPORT_SYMBOL(pgprot_kernel);
39
40 pmd_t *top_pmd;
41
42 struct cachepolicy {
43 const char policy[16];
44 unsigned int cr_mask;
45 unsigned int pmd;
46 unsigned int pte;
47 };
48
49 static struct cachepolicy cache_policies[] __initdata = {
50 {
51 .policy = "uncached",
52 .cr_mask = CR_W|CR_C,
53 .pmd = PMD_SECT_UNCACHED,
54 .pte = 0,
55 }, {
56 .policy = "buffered",
57 .cr_mask = CR_C,
58 .pmd = PMD_SECT_BUFFERED,
59 .pte = PTE_BUFFERABLE,
60 }, {
61 .policy = "writethrough",
62 .cr_mask = 0,
63 .pmd = PMD_SECT_WT,
64 .pte = PTE_CACHEABLE,
65 }, {
66 .policy = "writeback",
67 .cr_mask = 0,
68 .pmd = PMD_SECT_WB,
69 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
70 }, {
71 .policy = "writealloc",
72 .cr_mask = 0,
73 .pmd = PMD_SECT_WBWA,
74 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
75 }
76 };
77
78 /*
79 * These are useful for identifing cache coherency
80 * problems by allowing the cache or the cache and
81 * writebuffer to be turned off. (Note: the write
82 * buffer should not be on and the cache off).
83 */
84 static void __init early_cachepolicy(char **p)
85 {
86 int i;
87
88 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
89 int len = strlen(cache_policies[i].policy);
90
91 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
92 cachepolicy = i;
93 cr_alignment &= ~cache_policies[i].cr_mask;
94 cr_no_alignment &= ~cache_policies[i].cr_mask;
95 *p += len;
96 break;
97 }
98 }
99 if (i == ARRAY_SIZE(cache_policies))
100 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
101 flush_cache_all();
102 set_cr(cr_alignment);
103 }
104
105 static void __init early_nocache(char **__unused)
106 {
107 char *p = "buffered";
108 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
109 early_cachepolicy(&p);
110 }
111
112 static void __init early_nowrite(char **__unused)
113 {
114 char *p = "uncached";
115 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
116 early_cachepolicy(&p);
117 }
118
119 static void __init early_ecc(char **p)
120 {
121 if (memcmp(*p, "on", 2) == 0) {
122 ecc_mask = PMD_PROTECTION;
123 *p += 2;
124 } else if (memcmp(*p, "off", 3) == 0) {
125 ecc_mask = 0;
126 *p += 3;
127 }
128 }
129
130 __early_param("nocache", early_nocache);
131 __early_param("nowb", early_nowrite);
132 __early_param("cachepolicy=", early_cachepolicy);
133 __early_param("ecc=", early_ecc);
134
135 static int __init noalign_setup(char *__unused)
136 {
137 cr_alignment &= ~CR_A;
138 cr_no_alignment &= ~CR_A;
139 set_cr(cr_alignment);
140 return 1;
141 }
142
143 __setup("noalign", noalign_setup);
144
145 #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)
146
147 static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt)
148 {
149 return pmd_offset(pgd, virt);
150 }
151
152 static inline pmd_t *pmd_off_k(unsigned long virt)
153 {
154 return pmd_off(pgd_offset_k(virt), virt);
155 }
156
157 /*
158 * need to get a 16k page for level 1
159 */
160 pgd_t *get_pgd_slow(struct mm_struct *mm)
161 {
162 pgd_t *new_pgd, *init_pgd;
163 pmd_t *new_pmd, *init_pmd;
164 pte_t *new_pte, *init_pte;
165
166 new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
167 if (!new_pgd)
168 goto no_pgd;
169
170 memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));
171
172 /*
173 * Copy over the kernel and IO PGD entries
174 */
175 init_pgd = pgd_offset_k(0);
176 memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
177 (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));
178
179 clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));
180
181 if (!vectors_high()) {
182 /*
183 * On ARM, first page must always be allocated since it
184 * contains the machine vectors.
185 */
186 new_pmd = pmd_alloc(mm, new_pgd, 0);
187 if (!new_pmd)
188 goto no_pmd;
189
190 new_pte = pte_alloc_map(mm, new_pmd, 0);
191 if (!new_pte)
192 goto no_pte;
193
194 init_pmd = pmd_offset(init_pgd, 0);
195 init_pte = pte_offset_map_nested(init_pmd, 0);
196 set_pte(new_pte, *init_pte);
197 pte_unmap_nested(init_pte);
198 pte_unmap(new_pte);
199 }
200
201 return new_pgd;
202
203 no_pte:
204 pmd_free(new_pmd);
205 no_pmd:
206 free_pages((unsigned long)new_pgd, 2);
207 no_pgd:
208 return NULL;
209 }
210
211 void free_pgd_slow(pgd_t *pgd)
212 {
213 pmd_t *pmd;
214 struct page *pte;
215
216 if (!pgd)
217 return;
218
219 /* pgd is always present and good */
220 pmd = pmd_off(pgd, 0);
221 if (pmd_none(*pmd))
222 goto free;
223 if (pmd_bad(*pmd)) {
224 pmd_ERROR(*pmd);
225 pmd_clear(pmd);
226 goto free;
227 }
228
229 pte = pmd_page(*pmd);
230 pmd_clear(pmd);
231 dec_page_state(nr_page_table_pages);
232 pte_lock_deinit(pte);
233 pte_free(pte);
234 pmd_free(pmd);
235 free:
236 free_pages((unsigned long) pgd, 2);
237 }
238
239 /*
240 * Create a SECTION PGD between VIRT and PHYS in domain
241 * DOMAIN with protection PROT. This operates on half-
242 * pgdir entry increments.
243 */
244 static inline void
245 alloc_init_section(unsigned long virt, unsigned long phys, int prot)
246 {
247 pmd_t *pmdp = pmd_off_k(virt);
248
249 if (virt & (1 << 20))
250 pmdp++;
251
252 *pmdp = __pmd(phys | prot);
253 flush_pmd_entry(pmdp);
254 }
255
256 /*
257 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
258 */
259 static inline void
260 alloc_init_supersection(unsigned long virt, unsigned long phys, int prot)
261 {
262 int i;
263
264 for (i = 0; i < 16; i += 1) {
265 alloc_init_section(virt, phys, prot | PMD_SECT_SUPER);
266
267 virt += (PGDIR_SIZE / 2);
268 }
269 }
270
271 /*
272 * Add a PAGE mapping between VIRT and PHYS in domain
273 * DOMAIN with protection PROT. Note that due to the
274 * way we map the PTEs, we must allocate two PTE_SIZE'd
275 * blocks - one for the Linux pte table, and one for
276 * the hardware pte table.
277 */
278 static inline void
279 alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot)
280 {
281 pmd_t *pmdp = pmd_off_k(virt);
282 pte_t *ptep;
283
284 if (pmd_none(*pmdp)) {
285 ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
286 sizeof(pte_t));
287
288 __pmd_populate(pmdp, __pa(ptep) | prot_l1);
289 }
290 ptep = pte_offset_kernel(pmdp, virt);
291
292 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
293 }
294
295 struct mem_types {
296 unsigned int prot_pte;
297 unsigned int prot_l1;
298 unsigned int prot_sect;
299 unsigned int domain;
300 };
301
302 static struct mem_types mem_types[] __initdata = {
303 [MT_DEVICE] = {
304 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
305 L_PTE_WRITE,
306 .prot_l1 = PMD_TYPE_TABLE,
307 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
308 PMD_SECT_AP_WRITE,
309 .domain = DOMAIN_IO,
310 },
311 [MT_CACHECLEAN] = {
312 .prot_sect = PMD_TYPE_SECT,
313 .domain = DOMAIN_KERNEL,
314 },
315 [MT_MINICLEAN] = {
316 .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE,
317 .domain = DOMAIN_KERNEL,
318 },
319 [MT_LOW_VECTORS] = {
320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 L_PTE_EXEC,
322 .prot_l1 = PMD_TYPE_TABLE,
323 .domain = DOMAIN_USER,
324 },
325 [MT_HIGH_VECTORS] = {
326 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
327 L_PTE_USER | L_PTE_EXEC,
328 .prot_l1 = PMD_TYPE_TABLE,
329 .domain = DOMAIN_USER,
330 },
331 [MT_MEMORY] = {
332 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
333 .domain = DOMAIN_KERNEL,
334 },
335 [MT_ROM] = {
336 .prot_sect = PMD_TYPE_SECT,
337 .domain = DOMAIN_KERNEL,
338 },
339 [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */
340 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341 L_PTE_WRITE,
342 .prot_l1 = PMD_TYPE_TABLE,
343 .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED |
344 PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE |
345 PMD_SECT_TEX(1),
346 .domain = DOMAIN_IO,
347 }
348 };
349
350 /*
351 * Adjust the PMD section entries according to the CPU in use.
352 */
353 void __init build_mem_type_table(void)
354 {
355 struct cachepolicy *cp;
356 unsigned int cr = get_cr();
357 unsigned int user_pgprot;
358 int cpu_arch = cpu_architecture();
359 int i;
360
361 #if defined(CONFIG_CPU_DCACHE_DISABLE)
362 if (cachepolicy > CPOLICY_BUFFERED)
363 cachepolicy = CPOLICY_BUFFERED;
364 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
365 if (cachepolicy > CPOLICY_WRITETHROUGH)
366 cachepolicy = CPOLICY_WRITETHROUGH;
367 #endif
368 if (cpu_arch < CPU_ARCH_ARMv5) {
369 if (cachepolicy >= CPOLICY_WRITEALLOC)
370 cachepolicy = CPOLICY_WRITEBACK;
371 ecc_mask = 0;
372 }
373
374 if (cpu_arch <= CPU_ARCH_ARMv5TEJ) {
375 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
376 if (mem_types[i].prot_l1)
377 mem_types[i].prot_l1 |= PMD_BIT4;
378 if (mem_types[i].prot_sect)
379 mem_types[i].prot_sect |= PMD_BIT4;
380 }
381 }
382
383 cp = &cache_policies[cachepolicy];
384 user_pgprot = cp->pte;
385
386 /*
387 * ARMv6 and above have extended page tables.
388 */
389 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
390 /*
391 * bit 4 becomes XN which we must clear for the
392 * kernel memory mapping.
393 */
394 mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;
395 mem_types[MT_ROM].prot_sect &= ~PMD_BIT4;
396 /*
397 * Mark cache clean areas and XIP ROM read only
398 * from SVC mode and no access from userspace.
399 */
400 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
401 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
402 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
403
404 /*
405 * Mark the device area as "shared device"
406 */
407 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
408 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
409
410 /*
411 * User pages need to be mapped with the ASID
412 * (iow, non-global)
413 */
414 user_pgprot |= L_PTE_ASID;
415 }
416
417 if (cpu_arch >= CPU_ARCH_ARMv5) {
418 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
419 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;
420 } else {
421 mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte;
422 mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte;
423 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
424 }
425
426 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
427 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
428 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
429 mem_types[MT_ROM].prot_sect |= cp->pmd;
430
431 for (i = 0; i < 16; i++) {
432 unsigned long v = pgprot_val(protection_map[i]);
433 v = (v & ~(PTE_BUFFERABLE|PTE_CACHEABLE)) | user_pgprot;
434 protection_map[i] = __pgprot(v);
435 }
436
437 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
438 L_PTE_DIRTY | L_PTE_WRITE |
439 L_PTE_EXEC | cp->pte);
440
441 switch (cp->pmd) {
442 case PMD_SECT_WT:
443 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
444 break;
445 case PMD_SECT_WB:
446 case PMD_SECT_WBWA:
447 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
448 break;
449 }
450 printk("Memory policy: ECC %sabled, Data cache %s\n",
451 ecc_mask ? "en" : "dis", cp->policy);
452 }
453
454 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
455
456 /*
457 * Create the page directory entries and any necessary
458 * page tables for the mapping specified by `md'. We
459 * are able to cope here with varying sizes and address
460 * offsets, and we take full advantage of sections and
461 * supersections.
462 */
463 void __init create_mapping(struct map_desc *md)
464 {
465 unsigned long virt, length;
466 int prot_sect, prot_l1, domain;
467 pgprot_t prot_pte;
468 unsigned long off = (u32)__pfn_to_phys(md->pfn);
469
470 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
471 printk(KERN_WARNING "BUG: not creating mapping for "
472 "0x%016llx at 0x%08lx in user region\n",
473 __pfn_to_phys((u64)md->pfn), md->virtual);
474 return;
475 }
476
477 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
478 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
479 printk(KERN_WARNING "BUG: mapping for 0x%016llx at 0x%08lx "
480 "overlaps vmalloc space\n",
481 __pfn_to_phys((u64)md->pfn), md->virtual);
482 }
483
484 domain = mem_types[md->type].domain;
485 prot_pte = __pgprot(mem_types[md->type].prot_pte);
486 prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);
487 prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);
488
489 /*
490 * Catch 36-bit addresses
491 */
492 if(md->pfn >= 0x100000) {
493 if(domain) {
494 printk(KERN_ERR "MM: invalid domain in supersection "
495 "mapping for 0x%016llx at 0x%08lx\n",
496 __pfn_to_phys((u64)md->pfn), md->virtual);
497 return;
498 }
499 if((md->virtual | md->length | __pfn_to_phys(md->pfn))
500 & ~SUPERSECTION_MASK) {
501 printk(KERN_ERR "MM: cannot create mapping for "
502 "0x%016llx at 0x%08lx invalid alignment\n",
503 __pfn_to_phys((u64)md->pfn), md->virtual);
504 return;
505 }
506
507 /*
508 * Shift bits [35:32] of address into bits [23:20] of PMD
509 * (See ARMv6 spec).
510 */
511 off |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
512 }
513
514 virt = md->virtual;
515 off -= virt;
516 length = md->length;
517
518 if (mem_types[md->type].prot_l1 == 0 &&
519 (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {
520 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
521 "be mapped using pages, ignoring.\n",
522 __pfn_to_phys(md->pfn), md->virtual);
523 return;
524 }
525
526 while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
527 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
528
529 virt += PAGE_SIZE;
530 length -= PAGE_SIZE;
531 }
532
533 /* N.B. ARMv6 supersections are only defined to work with domain 0.
534 * Since domain assignments can in fact be arbitrary, the
535 * 'domain == 0' check below is required to insure that ARMv6
536 * supersections are only allocated for domain 0 regardless
537 * of the actual domain assignments in use.
538 */
539 if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) {
540 /*
541 * Align to supersection boundary if !high pages.
542 * High pages have already been checked for proper
543 * alignment above and they will fail the SUPSERSECTION_MASK
544 * check because of the way the address is encoded into
545 * offset.
546 */
547 if (md->pfn <= 0x100000) {
548 while ((virt & ~SUPERSECTION_MASK ||
549 (virt + off) & ~SUPERSECTION_MASK) &&
550 length >= (PGDIR_SIZE / 2)) {
551 alloc_init_section(virt, virt + off, prot_sect);
552
553 virt += (PGDIR_SIZE / 2);
554 length -= (PGDIR_SIZE / 2);
555 }
556 }
557
558 while (length >= SUPERSECTION_SIZE) {
559 alloc_init_supersection(virt, virt + off, prot_sect);
560
561 virt += SUPERSECTION_SIZE;
562 length -= SUPERSECTION_SIZE;
563 }
564 }
565
566 /*
567 * A section mapping covers half a "pgdir" entry.
568 */
569 while (length >= (PGDIR_SIZE / 2)) {
570 alloc_init_section(virt, virt + off, prot_sect);
571
572 virt += (PGDIR_SIZE / 2);
573 length -= (PGDIR_SIZE / 2);
574 }
575
576 while (length >= PAGE_SIZE) {
577 alloc_init_page(virt, virt + off, prot_l1, prot_pte);
578
579 virt += PAGE_SIZE;
580 length -= PAGE_SIZE;
581 }
582 }
583
584 /*
585 * In order to soft-boot, we need to insert a 1:1 mapping in place of
586 * the user-mode pages. This will then ensure that we have predictable
587 * results when turning the mmu off
588 */
589 void setup_mm_for_reboot(char mode)
590 {
591 unsigned long base_pmdval;
592 pgd_t *pgd;
593 int i;
594
595 if (current->mm && current->mm->pgd)
596 pgd = current->mm->pgd;
597 else
598 pgd = init_mm.pgd;
599
600 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
601 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ)
602 base_pmdval |= PMD_BIT4;
603
604 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
605 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
606 pmd_t *pmd;
607
608 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
609 pmd[0] = __pmd(pmdval);
610 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
611 flush_pmd_entry(pmd);
612 }
613 }
614
615 /*
616 * Create the architecture specific mappings
617 */
618 void __init iotable_init(struct map_desc *io_desc, int nr)
619 {
620 int i;
621
622 for (i = 0; i < nr; i++)
623 create_mapping(io_desc + i);
624 }