]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/mm/mmu.c
ARM: 8006/1: Remove redundant code
[mirror_ubuntu-zesty-kernel.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31 #include <asm/procinfo.h>
32 #include <asm/memory.h>
33
34 #include <asm/mach/arch.h>
35 #include <asm/mach/map.h>
36 #include <asm/mach/pci.h>
37
38 #include "mm.h"
39 #include "tcm.h"
40
41 /*
42 * empty_zero_page is a special page that is used for
43 * zero-initialized data and COW.
44 */
45 struct page *empty_zero_page;
46 EXPORT_SYMBOL(empty_zero_page);
47
48 /*
49 * The pmd table for the upper-most set of pages.
50 */
51 pmd_t *top_pmd;
52
53 #define CPOLICY_UNCACHED 0
54 #define CPOLICY_BUFFERED 1
55 #define CPOLICY_WRITETHROUGH 2
56 #define CPOLICY_WRITEBACK 3
57 #define CPOLICY_WRITEALLOC 4
58
59 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
60 static unsigned int ecc_mask __initdata = 0;
61 pgprot_t pgprot_user;
62 pgprot_t pgprot_kernel;
63 pgprot_t pgprot_hyp_device;
64 pgprot_t pgprot_s2;
65 pgprot_t pgprot_s2_device;
66
67 EXPORT_SYMBOL(pgprot_user);
68 EXPORT_SYMBOL(pgprot_kernel);
69
70 struct cachepolicy {
71 const char policy[16];
72 unsigned int cr_mask;
73 pmdval_t pmd;
74 pteval_t pte;
75 pteval_t pte_s2;
76 };
77
78 #ifdef CONFIG_ARM_LPAE
79 #define s2_policy(policy) policy
80 #else
81 #define s2_policy(policy) 0
82 #endif
83
84 static struct cachepolicy cache_policies[] __initdata = {
85 {
86 .policy = "uncached",
87 .cr_mask = CR_W|CR_C,
88 .pmd = PMD_SECT_UNCACHED,
89 .pte = L_PTE_MT_UNCACHED,
90 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
91 }, {
92 .policy = "buffered",
93 .cr_mask = CR_C,
94 .pmd = PMD_SECT_BUFFERED,
95 .pte = L_PTE_MT_BUFFERABLE,
96 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
97 }, {
98 .policy = "writethrough",
99 .cr_mask = 0,
100 .pmd = PMD_SECT_WT,
101 .pte = L_PTE_MT_WRITETHROUGH,
102 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
103 }, {
104 .policy = "writeback",
105 .cr_mask = 0,
106 .pmd = PMD_SECT_WB,
107 .pte = L_PTE_MT_WRITEBACK,
108 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
109 }, {
110 .policy = "writealloc",
111 .cr_mask = 0,
112 .pmd = PMD_SECT_WBWA,
113 .pte = L_PTE_MT_WRITEALLOC,
114 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
115 }
116 };
117
118 #ifdef CONFIG_CPU_CP15
119 /*
120 * These are useful for identifying cache coherency
121 * problems by allowing the cache or the cache and
122 * writebuffer to be turned off. (Note: the write
123 * buffer should not be on and the cache off).
124 */
125 static int __init early_cachepolicy(char *p)
126 {
127 int i;
128
129 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
130 int len = strlen(cache_policies[i].policy);
131
132 if (memcmp(p, cache_policies[i].policy, len) == 0) {
133 cachepolicy = i;
134 cr_alignment &= ~cache_policies[i].cr_mask;
135 cr_no_alignment &= ~cache_policies[i].cr_mask;
136 break;
137 }
138 }
139 if (i == ARRAY_SIZE(cache_policies))
140 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
141 /*
142 * This restriction is partly to do with the way we boot; it is
143 * unpredictable to have memory mapped using two different sets of
144 * memory attributes (shared, type, and cache attribs). We can not
145 * change these attributes once the initial assembly has setup the
146 * page tables.
147 */
148 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
149 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
150 cachepolicy = CPOLICY_WRITEBACK;
151 }
152 flush_cache_all();
153 set_cr(cr_alignment);
154 return 0;
155 }
156 early_param("cachepolicy", early_cachepolicy);
157
158 static int __init early_nocache(char *__unused)
159 {
160 char *p = "buffered";
161 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
162 early_cachepolicy(p);
163 return 0;
164 }
165 early_param("nocache", early_nocache);
166
167 static int __init early_nowrite(char *__unused)
168 {
169 char *p = "uncached";
170 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
171 early_cachepolicy(p);
172 return 0;
173 }
174 early_param("nowb", early_nowrite);
175
176 #ifndef CONFIG_ARM_LPAE
177 static int __init early_ecc(char *p)
178 {
179 if (memcmp(p, "on", 2) == 0)
180 ecc_mask = PMD_PROTECTION;
181 else if (memcmp(p, "off", 3) == 0)
182 ecc_mask = 0;
183 return 0;
184 }
185 early_param("ecc", early_ecc);
186 #endif
187
188 static int __init noalign_setup(char *__unused)
189 {
190 cr_alignment &= ~CR_A;
191 cr_no_alignment &= ~CR_A;
192 set_cr(cr_alignment);
193 return 1;
194 }
195 __setup("noalign", noalign_setup);
196
197 #ifndef CONFIG_SMP
198 void adjust_cr(unsigned long mask, unsigned long set)
199 {
200 unsigned long flags;
201
202 mask &= ~CR_A;
203
204 set &= mask;
205
206 local_irq_save(flags);
207
208 cr_no_alignment = (cr_no_alignment & ~mask) | set;
209 cr_alignment = (cr_alignment & ~mask) | set;
210
211 set_cr((get_cr() & ~mask) | set);
212
213 local_irq_restore(flags);
214 }
215 #endif
216
217 #else /* ifdef CONFIG_CPU_CP15 */
218
219 static int __init early_cachepolicy(char *p)
220 {
221 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
222 }
223 early_param("cachepolicy", early_cachepolicy);
224
225 static int __init noalign_setup(char *__unused)
226 {
227 pr_warning("noalign kernel parameter not supported without cp15\n");
228 }
229 __setup("noalign", noalign_setup);
230
231 #endif /* ifdef CONFIG_CPU_CP15 / else */
232
233 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
234 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
235
236 static struct mem_type mem_types[] = {
237 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
238 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
239 L_PTE_SHARED,
240 .prot_l1 = PMD_TYPE_TABLE,
241 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
242 .domain = DOMAIN_IO,
243 },
244 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
245 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
246 .prot_l1 = PMD_TYPE_TABLE,
247 .prot_sect = PROT_SECT_DEVICE,
248 .domain = DOMAIN_IO,
249 },
250 [MT_DEVICE_CACHED] = { /* ioremap_cached */
251 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
252 .prot_l1 = PMD_TYPE_TABLE,
253 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
254 .domain = DOMAIN_IO,
255 },
256 [MT_DEVICE_WC] = { /* ioremap_wc */
257 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
258 .prot_l1 = PMD_TYPE_TABLE,
259 .prot_sect = PROT_SECT_DEVICE,
260 .domain = DOMAIN_IO,
261 },
262 [MT_UNCACHED] = {
263 .prot_pte = PROT_PTE_DEVICE,
264 .prot_l1 = PMD_TYPE_TABLE,
265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 .domain = DOMAIN_IO,
267 },
268 [MT_CACHECLEAN] = {
269 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
270 .domain = DOMAIN_KERNEL,
271 },
272 #ifndef CONFIG_ARM_LPAE
273 [MT_MINICLEAN] = {
274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
275 .domain = DOMAIN_KERNEL,
276 },
277 #endif
278 [MT_LOW_VECTORS] = {
279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
280 L_PTE_RDONLY,
281 .prot_l1 = PMD_TYPE_TABLE,
282 .domain = DOMAIN_USER,
283 },
284 [MT_HIGH_VECTORS] = {
285 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
286 L_PTE_USER | L_PTE_RDONLY,
287 .prot_l1 = PMD_TYPE_TABLE,
288 .domain = DOMAIN_USER,
289 },
290 [MT_MEMORY] = {
291 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
292 .prot_l1 = PMD_TYPE_TABLE,
293 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
294 .domain = DOMAIN_KERNEL,
295 },
296 [MT_ROM] = {
297 .prot_sect = PMD_TYPE_SECT,
298 .domain = DOMAIN_KERNEL,
299 },
300 [MT_MEMORY_NONCACHED] = {
301 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
302 L_PTE_MT_BUFFERABLE,
303 .prot_l1 = PMD_TYPE_TABLE,
304 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
305 .domain = DOMAIN_KERNEL,
306 },
307 [MT_MEMORY_DTCM] = {
308 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
309 L_PTE_XN,
310 .prot_l1 = PMD_TYPE_TABLE,
311 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
312 .domain = DOMAIN_KERNEL,
313 },
314 [MT_MEMORY_ITCM] = {
315 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
316 .prot_l1 = PMD_TYPE_TABLE,
317 .domain = DOMAIN_KERNEL,
318 },
319 [MT_MEMORY_SO] = {
320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 L_PTE_MT_UNCACHED | L_PTE_XN,
322 .prot_l1 = PMD_TYPE_TABLE,
323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
324 PMD_SECT_UNCACHED | PMD_SECT_XN,
325 .domain = DOMAIN_KERNEL,
326 },
327 [MT_MEMORY_DMA_READY] = {
328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
329 .prot_l1 = PMD_TYPE_TABLE,
330 .domain = DOMAIN_KERNEL,
331 },
332 };
333
334 const struct mem_type *get_mem_type(unsigned int type)
335 {
336 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
337 }
338 EXPORT_SYMBOL(get_mem_type);
339
340 /*
341 * Adjust the PMD section entries according to the CPU in use.
342 */
343 static void __init build_mem_type_table(void)
344 {
345 struct cachepolicy *cp;
346 unsigned int cr = get_cr();
347 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
348 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
349 int cpu_arch = cpu_architecture();
350 int i;
351
352 if (cpu_arch < CPU_ARCH_ARMv6) {
353 #if defined(CONFIG_CPU_DCACHE_DISABLE)
354 if (cachepolicy > CPOLICY_BUFFERED)
355 cachepolicy = CPOLICY_BUFFERED;
356 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
357 if (cachepolicy > CPOLICY_WRITETHROUGH)
358 cachepolicy = CPOLICY_WRITETHROUGH;
359 #endif
360 }
361 if (cpu_arch < CPU_ARCH_ARMv5) {
362 if (cachepolicy >= CPOLICY_WRITEALLOC)
363 cachepolicy = CPOLICY_WRITEBACK;
364 ecc_mask = 0;
365 }
366 if (is_smp())
367 cachepolicy = CPOLICY_WRITEALLOC;
368
369 /*
370 * Strip out features not present on earlier architectures.
371 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
372 * without extended page tables don't have the 'Shared' bit.
373 */
374 if (cpu_arch < CPU_ARCH_ARMv5)
375 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
376 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
377 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
378 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
379 mem_types[i].prot_sect &= ~PMD_SECT_S;
380
381 /*
382 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
383 * "update-able on write" bit on ARM610). However, Xscale and
384 * Xscale3 require this bit to be cleared.
385 */
386 if (cpu_is_xscale() || cpu_is_xsc3()) {
387 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
388 mem_types[i].prot_sect &= ~PMD_BIT4;
389 mem_types[i].prot_l1 &= ~PMD_BIT4;
390 }
391 } else if (cpu_arch < CPU_ARCH_ARMv6) {
392 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
393 if (mem_types[i].prot_l1)
394 mem_types[i].prot_l1 |= PMD_BIT4;
395 if (mem_types[i].prot_sect)
396 mem_types[i].prot_sect |= PMD_BIT4;
397 }
398 }
399
400 /*
401 * Mark the device areas according to the CPU/architecture.
402 */
403 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
404 if (!cpu_is_xsc3()) {
405 /*
406 * Mark device regions on ARMv6+ as execute-never
407 * to prevent speculative instruction fetches.
408 */
409 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
410 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
411 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
412 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
413 }
414 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
415 /*
416 * For ARMv7 with TEX remapping,
417 * - shared device is SXCB=1100
418 * - nonshared device is SXCB=0100
419 * - write combine device mem is SXCB=0001
420 * (Uncached Normal memory)
421 */
422 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
423 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
424 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
425 } else if (cpu_is_xsc3()) {
426 /*
427 * For Xscale3,
428 * - shared device is TEXCB=00101
429 * - nonshared device is TEXCB=01000
430 * - write combine device mem is TEXCB=00100
431 * (Inner/Outer Uncacheable in xsc3 parlance)
432 */
433 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
434 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
435 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
436 } else {
437 /*
438 * For ARMv6 and ARMv7 without TEX remapping,
439 * - shared device is TEXCB=00001
440 * - nonshared device is TEXCB=01000
441 * - write combine device mem is TEXCB=00100
442 * (Uncached Normal in ARMv6 parlance).
443 */
444 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
445 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
446 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
447 }
448 } else {
449 /*
450 * On others, write combining is "Uncached/Buffered"
451 */
452 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
453 }
454
455 /*
456 * Now deal with the memory-type mappings
457 */
458 cp = &cache_policies[cachepolicy];
459 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
460 s2_pgprot = cp->pte_s2;
461 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
462
463 /*
464 * ARMv6 and above have extended page tables.
465 */
466 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
467 #ifndef CONFIG_ARM_LPAE
468 /*
469 * Mark cache clean areas and XIP ROM read only
470 * from SVC mode and no access from userspace.
471 */
472 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
473 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
474 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
475 #endif
476
477 if (is_smp()) {
478 /*
479 * Mark memory with the "shared" attribute
480 * for SMP systems
481 */
482 user_pgprot |= L_PTE_SHARED;
483 kern_pgprot |= L_PTE_SHARED;
484 vecs_pgprot |= L_PTE_SHARED;
485 s2_pgprot |= L_PTE_SHARED;
486 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
487 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
488 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
489 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
490 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
491 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
492 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
493 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
494 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
495 }
496 }
497
498 /*
499 * Non-cacheable Normal - intended for memory areas that must
500 * not cause dirty cache line writebacks when used
501 */
502 if (cpu_arch >= CPU_ARCH_ARMv6) {
503 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
504 /* Non-cacheable Normal is XCB = 001 */
505 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
506 PMD_SECT_BUFFERED;
507 } else {
508 /* For both ARMv6 and non-TEX-remapping ARMv7 */
509 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
510 PMD_SECT_TEX(1);
511 }
512 } else {
513 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
514 }
515
516 #ifdef CONFIG_ARM_LPAE
517 /*
518 * Do not generate access flag faults for the kernel mappings.
519 */
520 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
521 mem_types[i].prot_pte |= PTE_EXT_AF;
522 if (mem_types[i].prot_sect)
523 mem_types[i].prot_sect |= PMD_SECT_AF;
524 }
525 kern_pgprot |= PTE_EXT_AF;
526 vecs_pgprot |= PTE_EXT_AF;
527 #endif
528
529 for (i = 0; i < 16; i++) {
530 pteval_t v = pgprot_val(protection_map[i]);
531 protection_map[i] = __pgprot(v | user_pgprot);
532 }
533
534 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
535 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
536
537 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
538 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
539 L_PTE_DIRTY | kern_pgprot);
540 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
541 pgprot_s2_device = __pgprot(s2_device_pgprot);
542 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
543
544 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
545 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
546 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
547 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
548 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
549 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
550 mem_types[MT_ROM].prot_sect |= cp->pmd;
551
552 switch (cp->pmd) {
553 case PMD_SECT_WT:
554 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
555 break;
556 case PMD_SECT_WB:
557 case PMD_SECT_WBWA:
558 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
559 break;
560 }
561 pr_info("Memory policy: %sData cache %s\n",
562 ecc_mask ? "ECC enabled, " : "", cp->policy);
563
564 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
565 struct mem_type *t = &mem_types[i];
566 if (t->prot_l1)
567 t->prot_l1 |= PMD_DOMAIN(t->domain);
568 if (t->prot_sect)
569 t->prot_sect |= PMD_DOMAIN(t->domain);
570 }
571 }
572
573 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
574 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
575 unsigned long size, pgprot_t vma_prot)
576 {
577 if (!pfn_valid(pfn))
578 return pgprot_noncached(vma_prot);
579 else if (file->f_flags & O_SYNC)
580 return pgprot_writecombine(vma_prot);
581 return vma_prot;
582 }
583 EXPORT_SYMBOL(phys_mem_access_prot);
584 #endif
585
586 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
587
588 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
589 {
590 void *ptr = __va(memblock_alloc(sz, align));
591 memset(ptr, 0, sz);
592 return ptr;
593 }
594
595 static void __init *early_alloc(unsigned long sz)
596 {
597 return early_alloc_aligned(sz, sz);
598 }
599
600 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
601 {
602 if (pmd_none(*pmd)) {
603 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
604 __pmd_populate(pmd, __pa(pte), prot);
605 }
606 BUG_ON(pmd_bad(*pmd));
607 return pte_offset_kernel(pmd, addr);
608 }
609
610 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
611 unsigned long end, unsigned long pfn,
612 const struct mem_type *type)
613 {
614 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
615 do {
616 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
617 pfn++;
618 } while (pte++, addr += PAGE_SIZE, addr != end);
619 }
620
621 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
622 unsigned long end, phys_addr_t phys,
623 const struct mem_type *type)
624 {
625 pmd_t *p = pmd;
626
627 #ifndef CONFIG_ARM_LPAE
628 /*
629 * In classic MMU format, puds and pmds are folded in to
630 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
631 * group of L1 entries making up one logical pointer to
632 * an L2 table (2MB), where as PMDs refer to the individual
633 * L1 entries (1MB). Hence increment to get the correct
634 * offset for odd 1MB sections.
635 * (See arch/arm/include/asm/pgtable-2level.h)
636 */
637 if (addr & SECTION_SIZE)
638 pmd++;
639 #endif
640 do {
641 *pmd = __pmd(phys | type->prot_sect);
642 phys += SECTION_SIZE;
643 } while (pmd++, addr += SECTION_SIZE, addr != end);
644
645 flush_pmd_entry(p);
646 }
647
648 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
649 unsigned long end, phys_addr_t phys,
650 const struct mem_type *type)
651 {
652 pmd_t *pmd = pmd_offset(pud, addr);
653 unsigned long next;
654
655 do {
656 /*
657 * With LPAE, we must loop over to map
658 * all the pmds for the given range.
659 */
660 next = pmd_addr_end(addr, end);
661
662 /*
663 * Try a section mapping - addr, next and phys must all be
664 * aligned to a section boundary.
665 */
666 if (type->prot_sect &&
667 ((addr | next | phys) & ~SECTION_MASK) == 0) {
668 __map_init_section(pmd, addr, next, phys, type);
669 } else {
670 alloc_init_pte(pmd, addr, next,
671 __phys_to_pfn(phys), type);
672 }
673
674 phys += next - addr;
675
676 } while (pmd++, addr = next, addr != end);
677 }
678
679 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
680 unsigned long end, phys_addr_t phys,
681 const struct mem_type *type)
682 {
683 pud_t *pud = pud_offset(pgd, addr);
684 unsigned long next;
685
686 do {
687 next = pud_addr_end(addr, end);
688 alloc_init_pmd(pud, addr, next, phys, type);
689 phys += next - addr;
690 } while (pud++, addr = next, addr != end);
691 }
692
693 #ifndef CONFIG_ARM_LPAE
694 static void __init create_36bit_mapping(struct map_desc *md,
695 const struct mem_type *type)
696 {
697 unsigned long addr, length, end;
698 phys_addr_t phys;
699 pgd_t *pgd;
700
701 addr = md->virtual;
702 phys = __pfn_to_phys(md->pfn);
703 length = PAGE_ALIGN(md->length);
704
705 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
706 printk(KERN_ERR "MM: CPU does not support supersection "
707 "mapping for 0x%08llx at 0x%08lx\n",
708 (long long)__pfn_to_phys((u64)md->pfn), addr);
709 return;
710 }
711
712 /* N.B. ARMv6 supersections are only defined to work with domain 0.
713 * Since domain assignments can in fact be arbitrary, the
714 * 'domain == 0' check below is required to insure that ARMv6
715 * supersections are only allocated for domain 0 regardless
716 * of the actual domain assignments in use.
717 */
718 if (type->domain) {
719 printk(KERN_ERR "MM: invalid domain in supersection "
720 "mapping for 0x%08llx at 0x%08lx\n",
721 (long long)__pfn_to_phys((u64)md->pfn), addr);
722 return;
723 }
724
725 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
726 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
727 " at 0x%08lx invalid alignment\n",
728 (long long)__pfn_to_phys((u64)md->pfn), addr);
729 return;
730 }
731
732 /*
733 * Shift bits [35:32] of address into bits [23:20] of PMD
734 * (See ARMv6 spec).
735 */
736 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
737
738 pgd = pgd_offset_k(addr);
739 end = addr + length;
740 do {
741 pud_t *pud = pud_offset(pgd, addr);
742 pmd_t *pmd = pmd_offset(pud, addr);
743 int i;
744
745 for (i = 0; i < 16; i++)
746 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
747
748 addr += SUPERSECTION_SIZE;
749 phys += SUPERSECTION_SIZE;
750 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
751 } while (addr != end);
752 }
753 #endif /* !CONFIG_ARM_LPAE */
754
755 /*
756 * Create the page directory entries and any necessary
757 * page tables for the mapping specified by `md'. We
758 * are able to cope here with varying sizes and address
759 * offsets, and we take full advantage of sections and
760 * supersections.
761 */
762 static void __init create_mapping(struct map_desc *md)
763 {
764 unsigned long addr, length, end;
765 phys_addr_t phys;
766 const struct mem_type *type;
767 pgd_t *pgd;
768
769 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
770 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
771 " at 0x%08lx in user region\n",
772 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
773 return;
774 }
775
776 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
777 md->virtual >= PAGE_OFFSET &&
778 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
779 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
780 " at 0x%08lx out of vmalloc space\n",
781 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
782 }
783
784 type = &mem_types[md->type];
785
786 #ifndef CONFIG_ARM_LPAE
787 /*
788 * Catch 36-bit addresses
789 */
790 if (md->pfn >= 0x100000) {
791 create_36bit_mapping(md, type);
792 return;
793 }
794 #endif
795
796 addr = md->virtual & PAGE_MASK;
797 phys = __pfn_to_phys(md->pfn);
798 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
799
800 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
801 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
802 "be mapped using pages, ignoring.\n",
803 (long long)__pfn_to_phys(md->pfn), addr);
804 return;
805 }
806
807 pgd = pgd_offset_k(addr);
808 end = addr + length;
809 do {
810 unsigned long next = pgd_addr_end(addr, end);
811
812 alloc_init_pud(pgd, addr, next, phys, type);
813
814 phys += next - addr;
815 addr = next;
816 } while (pgd++, addr != end);
817 }
818
819 /*
820 * Create the architecture specific mappings
821 */
822 void __init iotable_init(struct map_desc *io_desc, int nr)
823 {
824 struct map_desc *md;
825 struct vm_struct *vm;
826 struct static_vm *svm;
827
828 if (!nr)
829 return;
830
831 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
832
833 for (md = io_desc; nr; md++, nr--) {
834 create_mapping(md);
835
836 vm = &svm->vm;
837 vm->addr = (void *)(md->virtual & PAGE_MASK);
838 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
839 vm->phys_addr = __pfn_to_phys(md->pfn);
840 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
841 vm->flags |= VM_ARM_MTYPE(md->type);
842 vm->caller = iotable_init;
843 add_static_vm_early(svm++);
844 }
845 }
846
847 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
848 void *caller)
849 {
850 struct vm_struct *vm;
851 struct static_vm *svm;
852
853 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
854
855 vm = &svm->vm;
856 vm->addr = (void *)addr;
857 vm->size = size;
858 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
859 vm->caller = caller;
860 add_static_vm_early(svm);
861 }
862
863 #ifndef CONFIG_ARM_LPAE
864
865 /*
866 * The Linux PMD is made of two consecutive section entries covering 2MB
867 * (see definition in include/asm/pgtable-2level.h). However a call to
868 * create_mapping() may optimize static mappings by using individual
869 * 1MB section mappings. This leaves the actual PMD potentially half
870 * initialized if the top or bottom section entry isn't used, leaving it
871 * open to problems if a subsequent ioremap() or vmalloc() tries to use
872 * the virtual space left free by that unused section entry.
873 *
874 * Let's avoid the issue by inserting dummy vm entries covering the unused
875 * PMD halves once the static mappings are in place.
876 */
877
878 static void __init pmd_empty_section_gap(unsigned long addr)
879 {
880 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
881 }
882
883 static void __init fill_pmd_gaps(void)
884 {
885 struct static_vm *svm;
886 struct vm_struct *vm;
887 unsigned long addr, next = 0;
888 pmd_t *pmd;
889
890 list_for_each_entry(svm, &static_vmlist, list) {
891 vm = &svm->vm;
892 addr = (unsigned long)vm->addr;
893 if (addr < next)
894 continue;
895
896 /*
897 * Check if this vm starts on an odd section boundary.
898 * If so and the first section entry for this PMD is free
899 * then we block the corresponding virtual address.
900 */
901 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
902 pmd = pmd_off_k(addr);
903 if (pmd_none(*pmd))
904 pmd_empty_section_gap(addr & PMD_MASK);
905 }
906
907 /*
908 * Then check if this vm ends on an odd section boundary.
909 * If so and the second section entry for this PMD is empty
910 * then we block the corresponding virtual address.
911 */
912 addr += vm->size;
913 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
914 pmd = pmd_off_k(addr) + 1;
915 if (pmd_none(*pmd))
916 pmd_empty_section_gap(addr);
917 }
918
919 /* no need to look at any vm entry until we hit the next PMD */
920 next = (addr + PMD_SIZE - 1) & PMD_MASK;
921 }
922 }
923
924 #else
925 #define fill_pmd_gaps() do { } while (0)
926 #endif
927
928 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
929 static void __init pci_reserve_io(void)
930 {
931 struct static_vm *svm;
932
933 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
934 if (svm)
935 return;
936
937 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
938 }
939 #else
940 #define pci_reserve_io() do { } while (0)
941 #endif
942
943 #ifdef CONFIG_DEBUG_LL
944 void __init debug_ll_io_init(void)
945 {
946 struct map_desc map;
947
948 debug_ll_addr(&map.pfn, &map.virtual);
949 if (!map.pfn || !map.virtual)
950 return;
951 map.pfn = __phys_to_pfn(map.pfn);
952 map.virtual &= PAGE_MASK;
953 map.length = PAGE_SIZE;
954 map.type = MT_DEVICE;
955 iotable_init(&map, 1);
956 }
957 #endif
958
959 static void * __initdata vmalloc_min =
960 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
961
962 /*
963 * vmalloc=size forces the vmalloc area to be exactly 'size'
964 * bytes. This can be used to increase (or decrease) the vmalloc
965 * area - the default is 240m.
966 */
967 static int __init early_vmalloc(char *arg)
968 {
969 unsigned long vmalloc_reserve = memparse(arg, NULL);
970
971 if (vmalloc_reserve < SZ_16M) {
972 vmalloc_reserve = SZ_16M;
973 printk(KERN_WARNING
974 "vmalloc area too small, limiting to %luMB\n",
975 vmalloc_reserve >> 20);
976 }
977
978 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
979 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
980 printk(KERN_WARNING
981 "vmalloc area is too big, limiting to %luMB\n",
982 vmalloc_reserve >> 20);
983 }
984
985 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
986 return 0;
987 }
988 early_param("vmalloc", early_vmalloc);
989
990 phys_addr_t arm_lowmem_limit __initdata = 0;
991
992 void __init sanity_check_meminfo(void)
993 {
994 phys_addr_t memblock_limit = 0;
995 int i, j, highmem = 0;
996 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
997
998 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
999 struct membank *bank = &meminfo.bank[j];
1000 phys_addr_t size_limit;
1001
1002 *bank = meminfo.bank[i];
1003 size_limit = bank->size;
1004
1005 if (bank->start >= vmalloc_limit)
1006 highmem = 1;
1007 else
1008 size_limit = vmalloc_limit - bank->start;
1009
1010 bank->highmem = highmem;
1011
1012 #ifdef CONFIG_HIGHMEM
1013 /*
1014 * Split those memory banks which are partially overlapping
1015 * the vmalloc area greatly simplifying things later.
1016 */
1017 if (!highmem && bank->size > size_limit) {
1018 if (meminfo.nr_banks >= NR_BANKS) {
1019 printk(KERN_CRIT "NR_BANKS too low, "
1020 "ignoring high memory\n");
1021 } else {
1022 memmove(bank + 1, bank,
1023 (meminfo.nr_banks - i) * sizeof(*bank));
1024 meminfo.nr_banks++;
1025 i++;
1026 bank[1].size -= size_limit;
1027 bank[1].start = vmalloc_limit;
1028 bank[1].highmem = highmem = 1;
1029 j++;
1030 }
1031 bank->size = size_limit;
1032 }
1033 #else
1034 /*
1035 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1036 */
1037 if (highmem) {
1038 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1039 "(!CONFIG_HIGHMEM).\n",
1040 (unsigned long long)bank->start,
1041 (unsigned long long)bank->start + bank->size - 1);
1042 continue;
1043 }
1044
1045 /*
1046 * Check whether this memory bank would partially overlap
1047 * the vmalloc area.
1048 */
1049 if (bank->size > size_limit) {
1050 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1051 "to -%.8llx (vmalloc region overlap).\n",
1052 (unsigned long long)bank->start,
1053 (unsigned long long)bank->start + bank->size - 1,
1054 (unsigned long long)bank->start + size_limit - 1);
1055 bank->size = size_limit;
1056 }
1057 #endif
1058 if (!bank->highmem) {
1059 phys_addr_t bank_end = bank->start + bank->size;
1060
1061 if (bank_end > arm_lowmem_limit)
1062 arm_lowmem_limit = bank_end;
1063
1064 /*
1065 * Find the first non-section-aligned page, and point
1066 * memblock_limit at it. This relies on rounding the
1067 * limit down to be section-aligned, which happens at
1068 * the end of this function.
1069 *
1070 * With this algorithm, the start or end of almost any
1071 * bank can be non-section-aligned. The only exception
1072 * is that the start of the bank 0 must be section-
1073 * aligned, since otherwise memory would need to be
1074 * allocated when mapping the start of bank 0, which
1075 * occurs before any free memory is mapped.
1076 */
1077 if (!memblock_limit) {
1078 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1079 memblock_limit = bank->start;
1080 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1081 memblock_limit = bank_end;
1082 }
1083 }
1084 j++;
1085 }
1086 #ifdef CONFIG_HIGHMEM
1087 if (highmem) {
1088 const char *reason = NULL;
1089
1090 if (cache_is_vipt_aliasing()) {
1091 /*
1092 * Interactions between kmap and other mappings
1093 * make highmem support with aliasing VIPT caches
1094 * rather difficult.
1095 */
1096 reason = "with VIPT aliasing cache";
1097 }
1098 if (reason) {
1099 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1100 reason);
1101 while (j > 0 && meminfo.bank[j - 1].highmem)
1102 j--;
1103 }
1104 }
1105 #endif
1106 meminfo.nr_banks = j;
1107 high_memory = __va(arm_lowmem_limit - 1) + 1;
1108
1109 /*
1110 * Round the memblock limit down to a section size. This
1111 * helps to ensure that we will allocate memory from the
1112 * last full section, which should be mapped.
1113 */
1114 if (memblock_limit)
1115 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1116 if (!memblock_limit)
1117 memblock_limit = arm_lowmem_limit;
1118
1119 memblock_set_current_limit(memblock_limit);
1120 }
1121
1122 static inline void prepare_page_table(void)
1123 {
1124 unsigned long addr;
1125 phys_addr_t end;
1126
1127 /*
1128 * Clear out all the mappings below the kernel image.
1129 */
1130 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1131 pmd_clear(pmd_off_k(addr));
1132
1133 #ifdef CONFIG_XIP_KERNEL
1134 /* The XIP kernel is mapped in the module area -- skip over it */
1135 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1136 #endif
1137 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1138 pmd_clear(pmd_off_k(addr));
1139
1140 /*
1141 * Find the end of the first block of lowmem.
1142 */
1143 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1144 if (end >= arm_lowmem_limit)
1145 end = arm_lowmem_limit;
1146
1147 /*
1148 * Clear out all the kernel space mappings, except for the first
1149 * memory bank, up to the vmalloc region.
1150 */
1151 for (addr = __phys_to_virt(end);
1152 addr < VMALLOC_START; addr += PMD_SIZE)
1153 pmd_clear(pmd_off_k(addr));
1154 }
1155
1156 #ifdef CONFIG_ARM_LPAE
1157 /* the first page is reserved for pgd */
1158 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1159 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1160 #else
1161 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1162 #endif
1163
1164 /*
1165 * Reserve the special regions of memory
1166 */
1167 void __init arm_mm_memblock_reserve(void)
1168 {
1169 /*
1170 * Reserve the page tables. These are already in use,
1171 * and can only be in node 0.
1172 */
1173 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1174
1175 #ifdef CONFIG_SA1111
1176 /*
1177 * Because of the SA1111 DMA bug, we want to preserve our
1178 * precious DMA-able memory...
1179 */
1180 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1181 #endif
1182 }
1183
1184 /*
1185 * Set up the device mappings. Since we clear out the page tables for all
1186 * mappings above VMALLOC_START, we will remove any debug device mappings.
1187 * This means you have to be careful how you debug this function, or any
1188 * called function. This means you can't use any function or debugging
1189 * method which may touch any device, otherwise the kernel _will_ crash.
1190 */
1191 static void __init devicemaps_init(const struct machine_desc *mdesc)
1192 {
1193 struct map_desc map;
1194 unsigned long addr;
1195 void *vectors;
1196
1197 /*
1198 * Allocate the vector page early.
1199 */
1200 vectors = early_alloc(PAGE_SIZE * 2);
1201
1202 early_trap_init(vectors);
1203
1204 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1205 pmd_clear(pmd_off_k(addr));
1206
1207 /*
1208 * Map the kernel if it is XIP.
1209 * It is always first in the modulearea.
1210 */
1211 #ifdef CONFIG_XIP_KERNEL
1212 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1213 map.virtual = MODULES_VADDR;
1214 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1215 map.type = MT_ROM;
1216 create_mapping(&map);
1217 #endif
1218
1219 /*
1220 * Map the cache flushing regions.
1221 */
1222 #ifdef FLUSH_BASE
1223 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1224 map.virtual = FLUSH_BASE;
1225 map.length = SZ_1M;
1226 map.type = MT_CACHECLEAN;
1227 create_mapping(&map);
1228 #endif
1229 #ifdef FLUSH_BASE_MINICACHE
1230 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1231 map.virtual = FLUSH_BASE_MINICACHE;
1232 map.length = SZ_1M;
1233 map.type = MT_MINICLEAN;
1234 create_mapping(&map);
1235 #endif
1236
1237 /*
1238 * Create a mapping for the machine vectors at the high-vectors
1239 * location (0xffff0000). If we aren't using high-vectors, also
1240 * create a mapping at the low-vectors virtual address.
1241 */
1242 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1243 map.virtual = 0xffff0000;
1244 map.length = PAGE_SIZE;
1245 #ifdef CONFIG_KUSER_HELPERS
1246 map.type = MT_HIGH_VECTORS;
1247 #else
1248 map.type = MT_LOW_VECTORS;
1249 #endif
1250 create_mapping(&map);
1251
1252 if (!vectors_high()) {
1253 map.virtual = 0;
1254 map.length = PAGE_SIZE * 2;
1255 map.type = MT_LOW_VECTORS;
1256 create_mapping(&map);
1257 }
1258
1259 /* Now create a kernel read-only mapping */
1260 map.pfn += 1;
1261 map.virtual = 0xffff0000 + PAGE_SIZE;
1262 map.length = PAGE_SIZE;
1263 map.type = MT_LOW_VECTORS;
1264 create_mapping(&map);
1265
1266 /*
1267 * Ask the machine support to map in the statically mapped devices.
1268 */
1269 if (mdesc->map_io)
1270 mdesc->map_io();
1271 else
1272 debug_ll_io_init();
1273 fill_pmd_gaps();
1274
1275 /* Reserve fixed i/o space in VMALLOC region */
1276 pci_reserve_io();
1277
1278 /*
1279 * Finally flush the caches and tlb to ensure that we're in a
1280 * consistent state wrt the writebuffer. This also ensures that
1281 * any write-allocated cache lines in the vector page are written
1282 * back. After this point, we can start to touch devices again.
1283 */
1284 local_flush_tlb_all();
1285 flush_cache_all();
1286 }
1287
1288 static void __init kmap_init(void)
1289 {
1290 #ifdef CONFIG_HIGHMEM
1291 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1292 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1293 #endif
1294 }
1295
1296 static void __init map_lowmem(void)
1297 {
1298 struct memblock_region *reg;
1299
1300 /* Map all the lowmem memory banks. */
1301 for_each_memblock(memory, reg) {
1302 phys_addr_t start = reg->base;
1303 phys_addr_t end = start + reg->size;
1304 struct map_desc map;
1305
1306 if (end > arm_lowmem_limit)
1307 end = arm_lowmem_limit;
1308 if (start >= end)
1309 break;
1310
1311 map.pfn = __phys_to_pfn(start);
1312 map.virtual = __phys_to_virt(start);
1313 map.length = end - start;
1314 map.type = MT_MEMORY;
1315
1316 create_mapping(&map);
1317 }
1318 }
1319
1320 #ifdef CONFIG_ARM_LPAE
1321 /*
1322 * early_paging_init() recreates boot time page table setup, allowing machines
1323 * to switch over to a high (>4G) address space on LPAE systems
1324 */
1325 void __init early_paging_init(const struct machine_desc *mdesc,
1326 struct proc_info_list *procinfo)
1327 {
1328 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1329 unsigned long map_start, map_end;
1330 pgd_t *pgd0, *pgdk;
1331 pud_t *pud0, *pudk, *pud_start;
1332 pmd_t *pmd0, *pmdk;
1333 phys_addr_t phys;
1334 int i;
1335
1336 if (!(mdesc->init_meminfo))
1337 return;
1338
1339 /* remap kernel code and data */
1340 map_start = init_mm.start_code;
1341 map_end = init_mm.brk;
1342
1343 /* get a handle on things... */
1344 pgd0 = pgd_offset_k(0);
1345 pud_start = pud0 = pud_offset(pgd0, 0);
1346 pmd0 = pmd_offset(pud0, 0);
1347
1348 pgdk = pgd_offset_k(map_start);
1349 pudk = pud_offset(pgdk, map_start);
1350 pmdk = pmd_offset(pudk, map_start);
1351
1352 mdesc->init_meminfo();
1353
1354 /* Run the patch stub to update the constants */
1355 fixup_pv_table(&__pv_table_begin,
1356 (&__pv_table_end - &__pv_table_begin) << 2);
1357
1358 /*
1359 * Cache cleaning operations for self-modifying code
1360 * We should clean the entries by MVA but running a
1361 * for loop over every pv_table entry pointer would
1362 * just complicate the code.
1363 */
1364 flush_cache_louis();
1365 dsb();
1366 isb();
1367
1368 /* remap level 1 table */
1369 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1370 set_pud(pud0,
1371 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1372 pmd0 += PTRS_PER_PMD;
1373 }
1374
1375 /* remap pmds for kernel mapping */
1376 phys = __pa(map_start) & PMD_MASK;
1377 do {
1378 *pmdk++ = __pmd(phys | pmdprot);
1379 phys += PMD_SIZE;
1380 } while (phys < map_end);
1381
1382 flush_cache_all();
1383 cpu_switch_mm(pgd0, &init_mm);
1384 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1385 local_flush_bp_all();
1386 local_flush_tlb_all();
1387 }
1388
1389 #else
1390
1391 void __init early_paging_init(const struct machine_desc *mdesc,
1392 struct proc_info_list *procinfo)
1393 {
1394 if (mdesc->init_meminfo)
1395 mdesc->init_meminfo();
1396 }
1397
1398 #endif
1399
1400 /*
1401 * paging_init() sets up the page tables, initialises the zone memory
1402 * maps, and sets up the zero page, bad page and bad page tables.
1403 */
1404 void __init paging_init(const struct machine_desc *mdesc)
1405 {
1406 void *zero_page;
1407
1408 build_mem_type_table();
1409 prepare_page_table();
1410 map_lowmem();
1411 dma_contiguous_remap();
1412 devicemaps_init(mdesc);
1413 kmap_init();
1414 tcm_init();
1415
1416 top_pmd = pmd_off_k(0xffff0000);
1417
1418 /* allocate the zero page. */
1419 zero_page = early_alloc(PAGE_SIZE);
1420
1421 bootmem_init();
1422
1423 empty_zero_page = virt_to_page(zero_page);
1424 __flush_dcache_page(NULL, empty_zero_page);
1425 }