]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm/mm/mmu.c
ARM: Better virt_to_page() handling
[mirror_ubuntu-zesty-kernel.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
34
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38
39 #include "mm.h"
40 #include "tcm.h"
41
42 /*
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
45 */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48
49 /*
50 * The pmd table for the upper-most set of pages.
51 */
52 pmd_t *top_pmd;
53
54 #define CPOLICY_UNCACHED 0
55 #define CPOLICY_BUFFERED 1
56 #define CPOLICY_WRITETHROUGH 2
57 #define CPOLICY_WRITEBACK 3
58 #define CPOLICY_WRITEALLOC 4
59
60 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61 static unsigned int ecc_mask __initdata = 0;
62 pgprot_t pgprot_user;
63 pgprot_t pgprot_kernel;
64 pgprot_t pgprot_hyp_device;
65 pgprot_t pgprot_s2;
66 pgprot_t pgprot_s2_device;
67
68 EXPORT_SYMBOL(pgprot_user);
69 EXPORT_SYMBOL(pgprot_kernel);
70
71 struct cachepolicy {
72 const char policy[16];
73 unsigned int cr_mask;
74 pmdval_t pmd;
75 pteval_t pte;
76 pteval_t pte_s2;
77 };
78
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy) policy
81 #else
82 #define s2_policy(policy) 0
83 #endif
84
85 static struct cachepolicy cache_policies[] __initdata = {
86 {
87 .policy = "uncached",
88 .cr_mask = CR_W|CR_C,
89 .pmd = PMD_SECT_UNCACHED,
90 .pte = L_PTE_MT_UNCACHED,
91 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
92 }, {
93 .policy = "buffered",
94 .cr_mask = CR_C,
95 .pmd = PMD_SECT_BUFFERED,
96 .pte = L_PTE_MT_BUFFERABLE,
97 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
98 }, {
99 .policy = "writethrough",
100 .cr_mask = 0,
101 .pmd = PMD_SECT_WT,
102 .pte = L_PTE_MT_WRITETHROUGH,
103 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 }, {
105 .policy = "writeback",
106 .cr_mask = 0,
107 .pmd = PMD_SECT_WB,
108 .pte = L_PTE_MT_WRITEBACK,
109 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
110 }, {
111 .policy = "writealloc",
112 .cr_mask = 0,
113 .pmd = PMD_SECT_WBWA,
114 .pte = L_PTE_MT_WRITEALLOC,
115 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
116 }
117 };
118
119 #ifdef CONFIG_CPU_CP15
120 /*
121 * These are useful for identifying cache coherency
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
125 */
126 static int __init early_cachepolicy(char *p)
127 {
128 int i;
129
130 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 int len = strlen(cache_policies[i].policy);
132
133 if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 cachepolicy = i;
135 cr_alignment &= ~cache_policies[i].cr_mask;
136 cr_no_alignment &= ~cache_policies[i].cr_mask;
137 break;
138 }
139 }
140 if (i == ARRAY_SIZE(cache_policies))
141 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 /*
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
147 * page tables.
148 */
149 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy = CPOLICY_WRITEBACK;
152 }
153 flush_cache_all();
154 set_cr(cr_alignment);
155 return 0;
156 }
157 early_param("cachepolicy", early_cachepolicy);
158
159 static int __init early_nocache(char *__unused)
160 {
161 char *p = "buffered";
162 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 early_cachepolicy(p);
164 return 0;
165 }
166 early_param("nocache", early_nocache);
167
168 static int __init early_nowrite(char *__unused)
169 {
170 char *p = "uncached";
171 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 early_cachepolicy(p);
173 return 0;
174 }
175 early_param("nowb", early_nowrite);
176
177 #ifndef CONFIG_ARM_LPAE
178 static int __init early_ecc(char *p)
179 {
180 if (memcmp(p, "on", 2) == 0)
181 ecc_mask = PMD_PROTECTION;
182 else if (memcmp(p, "off", 3) == 0)
183 ecc_mask = 0;
184 return 0;
185 }
186 early_param("ecc", early_ecc);
187 #endif
188
189 static int __init noalign_setup(char *__unused)
190 {
191 cr_alignment &= ~CR_A;
192 cr_no_alignment &= ~CR_A;
193 set_cr(cr_alignment);
194 return 1;
195 }
196 __setup("noalign", noalign_setup);
197
198 #ifndef CONFIG_SMP
199 void adjust_cr(unsigned long mask, unsigned long set)
200 {
201 unsigned long flags;
202
203 mask &= ~CR_A;
204
205 set &= mask;
206
207 local_irq_save(flags);
208
209 cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 cr_alignment = (cr_alignment & ~mask) | set;
211
212 set_cr((get_cr() & ~mask) | set);
213
214 local_irq_restore(flags);
215 }
216 #endif
217
218 #else /* ifdef CONFIG_CPU_CP15 */
219
220 static int __init early_cachepolicy(char *p)
221 {
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
223 }
224 early_param("cachepolicy", early_cachepolicy);
225
226 static int __init noalign_setup(char *__unused)
227 {
228 pr_warning("noalign kernel parameter not supported without cp15\n");
229 }
230 __setup("noalign", noalign_setup);
231
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
233
234 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
236
237 static struct mem_type mem_types[] = {
238 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
239 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
240 L_PTE_SHARED,
241 .prot_l1 = PMD_TYPE_TABLE,
242 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
243 .domain = DOMAIN_IO,
244 },
245 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
246 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
247 .prot_l1 = PMD_TYPE_TABLE,
248 .prot_sect = PROT_SECT_DEVICE,
249 .domain = DOMAIN_IO,
250 },
251 [MT_DEVICE_CACHED] = { /* ioremap_cached */
252 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
253 .prot_l1 = PMD_TYPE_TABLE,
254 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
255 .domain = DOMAIN_IO,
256 },
257 [MT_DEVICE_WC] = { /* ioremap_wc */
258 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
259 .prot_l1 = PMD_TYPE_TABLE,
260 .prot_sect = PROT_SECT_DEVICE,
261 .domain = DOMAIN_IO,
262 },
263 [MT_UNCACHED] = {
264 .prot_pte = PROT_PTE_DEVICE,
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
267 .domain = DOMAIN_IO,
268 },
269 [MT_CACHECLEAN] = {
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 .domain = DOMAIN_KERNEL,
272 },
273 #ifndef CONFIG_ARM_LPAE
274 [MT_MINICLEAN] = {
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
276 .domain = DOMAIN_KERNEL,
277 },
278 #endif
279 [MT_LOW_VECTORS] = {
280 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
281 L_PTE_RDONLY,
282 .prot_l1 = PMD_TYPE_TABLE,
283 .domain = DOMAIN_USER,
284 },
285 [MT_HIGH_VECTORS] = {
286 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
287 L_PTE_USER | L_PTE_RDONLY,
288 .prot_l1 = PMD_TYPE_TABLE,
289 .domain = DOMAIN_USER,
290 },
291 [MT_MEMORY_RWX] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 .domain = DOMAIN_KERNEL,
296 },
297 [MT_MEMORY_RW] = {
298 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299 L_PTE_XN,
300 .prot_l1 = PMD_TYPE_TABLE,
301 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
302 .domain = DOMAIN_KERNEL,
303 },
304 [MT_ROM] = {
305 .prot_sect = PMD_TYPE_SECT,
306 .domain = DOMAIN_KERNEL,
307 },
308 [MT_MEMORY_RWX_NONCACHED] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 L_PTE_MT_BUFFERABLE,
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
314 },
315 [MT_MEMORY_RW_DTCM] = {
316 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
317 L_PTE_XN,
318 .prot_l1 = PMD_TYPE_TABLE,
319 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
320 .domain = DOMAIN_KERNEL,
321 },
322 [MT_MEMORY_RWX_ITCM] = {
323 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
324 .prot_l1 = PMD_TYPE_TABLE,
325 .domain = DOMAIN_KERNEL,
326 },
327 [MT_MEMORY_RW_SO] = {
328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329 L_PTE_MT_UNCACHED | L_PTE_XN,
330 .prot_l1 = PMD_TYPE_TABLE,
331 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
332 PMD_SECT_UNCACHED | PMD_SECT_XN,
333 .domain = DOMAIN_KERNEL,
334 },
335 [MT_MEMORY_DMA_READY] = {
336 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
337 L_PTE_XN,
338 .prot_l1 = PMD_TYPE_TABLE,
339 .domain = DOMAIN_KERNEL,
340 },
341 };
342
343 const struct mem_type *get_mem_type(unsigned int type)
344 {
345 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
346 }
347 EXPORT_SYMBOL(get_mem_type);
348
349 #define PTE_SET_FN(_name, pteop) \
350 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
351 void *data) \
352 { \
353 pte_t pte = pteop(*ptep); \
354 \
355 set_pte_ext(ptep, pte, 0); \
356 return 0; \
357 } \
358
359 #define SET_MEMORY_FN(_name, callback) \
360 int set_memory_##_name(unsigned long addr, int numpages) \
361 { \
362 unsigned long start = addr; \
363 unsigned long size = PAGE_SIZE*numpages; \
364 unsigned end = start + size; \
365 \
366 if (start < MODULES_VADDR || start >= MODULES_END) \
367 return -EINVAL;\
368 \
369 if (end < MODULES_VADDR || end >= MODULES_END) \
370 return -EINVAL; \
371 \
372 apply_to_page_range(&init_mm, start, size, callback, NULL); \
373 flush_tlb_kernel_range(start, end); \
374 return 0;\
375 }
376
377 PTE_SET_FN(ro, pte_wrprotect)
378 PTE_SET_FN(rw, pte_mkwrite)
379 PTE_SET_FN(x, pte_mkexec)
380 PTE_SET_FN(nx, pte_mknexec)
381
382 SET_MEMORY_FN(ro, pte_set_ro)
383 SET_MEMORY_FN(rw, pte_set_rw)
384 SET_MEMORY_FN(x, pte_set_x)
385 SET_MEMORY_FN(nx, pte_set_nx)
386
387 /*
388 * Adjust the PMD section entries according to the CPU in use.
389 */
390 static void __init build_mem_type_table(void)
391 {
392 struct cachepolicy *cp;
393 unsigned int cr = get_cr();
394 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
395 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
396 int cpu_arch = cpu_architecture();
397 int i;
398
399 if (cpu_arch < CPU_ARCH_ARMv6) {
400 #if defined(CONFIG_CPU_DCACHE_DISABLE)
401 if (cachepolicy > CPOLICY_BUFFERED)
402 cachepolicy = CPOLICY_BUFFERED;
403 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
404 if (cachepolicy > CPOLICY_WRITETHROUGH)
405 cachepolicy = CPOLICY_WRITETHROUGH;
406 #endif
407 }
408 if (cpu_arch < CPU_ARCH_ARMv5) {
409 if (cachepolicy >= CPOLICY_WRITEALLOC)
410 cachepolicy = CPOLICY_WRITEBACK;
411 ecc_mask = 0;
412 }
413 if (is_smp())
414 cachepolicy = CPOLICY_WRITEALLOC;
415
416 /*
417 * Strip out features not present on earlier architectures.
418 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
419 * without extended page tables don't have the 'Shared' bit.
420 */
421 if (cpu_arch < CPU_ARCH_ARMv5)
422 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
423 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
424 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
425 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
426 mem_types[i].prot_sect &= ~PMD_SECT_S;
427
428 /*
429 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
430 * "update-able on write" bit on ARM610). However, Xscale and
431 * Xscale3 require this bit to be cleared.
432 */
433 if (cpu_is_xscale() || cpu_is_xsc3()) {
434 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
435 mem_types[i].prot_sect &= ~PMD_BIT4;
436 mem_types[i].prot_l1 &= ~PMD_BIT4;
437 }
438 } else if (cpu_arch < CPU_ARCH_ARMv6) {
439 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
440 if (mem_types[i].prot_l1)
441 mem_types[i].prot_l1 |= PMD_BIT4;
442 if (mem_types[i].prot_sect)
443 mem_types[i].prot_sect |= PMD_BIT4;
444 }
445 }
446
447 /*
448 * Mark the device areas according to the CPU/architecture.
449 */
450 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
451 if (!cpu_is_xsc3()) {
452 /*
453 * Mark device regions on ARMv6+ as execute-never
454 * to prevent speculative instruction fetches.
455 */
456 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
457 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
458 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
459 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
460
461 /* Also setup NX memory mapping */
462 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
463 }
464 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
465 /*
466 * For ARMv7 with TEX remapping,
467 * - shared device is SXCB=1100
468 * - nonshared device is SXCB=0100
469 * - write combine device mem is SXCB=0001
470 * (Uncached Normal memory)
471 */
472 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
473 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
474 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
475 } else if (cpu_is_xsc3()) {
476 /*
477 * For Xscale3,
478 * - shared device is TEXCB=00101
479 * - nonshared device is TEXCB=01000
480 * - write combine device mem is TEXCB=00100
481 * (Inner/Outer Uncacheable in xsc3 parlance)
482 */
483 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
484 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
485 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
486 } else {
487 /*
488 * For ARMv6 and ARMv7 without TEX remapping,
489 * - shared device is TEXCB=00001
490 * - nonshared device is TEXCB=01000
491 * - write combine device mem is TEXCB=00100
492 * (Uncached Normal in ARMv6 parlance).
493 */
494 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
495 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
496 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
497 }
498 } else {
499 /*
500 * On others, write combining is "Uncached/Buffered"
501 */
502 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
503 }
504
505 /*
506 * Now deal with the memory-type mappings
507 */
508 cp = &cache_policies[cachepolicy];
509 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
510 s2_pgprot = cp->pte_s2;
511 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
512
513 /*
514 * We don't use domains on ARMv6 (since this causes problems with
515 * v6/v7 kernels), so we must use a separate memory type for user
516 * r/o, kernel r/w to map the vectors page.
517 */
518 #ifndef CONFIG_ARM_LPAE
519 if (cpu_arch == CPU_ARCH_ARMv6)
520 vecs_pgprot |= L_PTE_MT_VECTORS;
521 #endif
522
523 /*
524 * ARMv6 and above have extended page tables.
525 */
526 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
527 #ifndef CONFIG_ARM_LPAE
528 /*
529 * Mark cache clean areas and XIP ROM read only
530 * from SVC mode and no access from userspace.
531 */
532 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
533 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
534 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
535 #endif
536
537 if (is_smp()) {
538 /*
539 * Mark memory with the "shared" attribute
540 * for SMP systems
541 */
542 user_pgprot |= L_PTE_SHARED;
543 kern_pgprot |= L_PTE_SHARED;
544 vecs_pgprot |= L_PTE_SHARED;
545 s2_pgprot |= L_PTE_SHARED;
546 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
547 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
548 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
549 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
550 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
551 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
552 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
553 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
554 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
555 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
556 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
557 }
558 }
559
560 /*
561 * Non-cacheable Normal - intended for memory areas that must
562 * not cause dirty cache line writebacks when used
563 */
564 if (cpu_arch >= CPU_ARCH_ARMv6) {
565 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
566 /* Non-cacheable Normal is XCB = 001 */
567 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
568 PMD_SECT_BUFFERED;
569 } else {
570 /* For both ARMv6 and non-TEX-remapping ARMv7 */
571 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
572 PMD_SECT_TEX(1);
573 }
574 } else {
575 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
576 }
577
578 #ifdef CONFIG_ARM_LPAE
579 /*
580 * Do not generate access flag faults for the kernel mappings.
581 */
582 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
583 mem_types[i].prot_pte |= PTE_EXT_AF;
584 if (mem_types[i].prot_sect)
585 mem_types[i].prot_sect |= PMD_SECT_AF;
586 }
587 kern_pgprot |= PTE_EXT_AF;
588 vecs_pgprot |= PTE_EXT_AF;
589 #endif
590
591 for (i = 0; i < 16; i++) {
592 pteval_t v = pgprot_val(protection_map[i]);
593 protection_map[i] = __pgprot(v | user_pgprot);
594 }
595
596 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
597 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
598
599 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
600 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
601 L_PTE_DIRTY | kern_pgprot);
602 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
603 pgprot_s2_device = __pgprot(s2_device_pgprot);
604 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
605
606 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
607 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
608 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
609 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
610 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
611 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
612 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
613 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
614 mem_types[MT_ROM].prot_sect |= cp->pmd;
615
616 switch (cp->pmd) {
617 case PMD_SECT_WT:
618 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
619 break;
620 case PMD_SECT_WB:
621 case PMD_SECT_WBWA:
622 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
623 break;
624 }
625 pr_info("Memory policy: %sData cache %s\n",
626 ecc_mask ? "ECC enabled, " : "", cp->policy);
627
628 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
629 struct mem_type *t = &mem_types[i];
630 if (t->prot_l1)
631 t->prot_l1 |= PMD_DOMAIN(t->domain);
632 if (t->prot_sect)
633 t->prot_sect |= PMD_DOMAIN(t->domain);
634 }
635 }
636
637 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
638 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
639 unsigned long size, pgprot_t vma_prot)
640 {
641 if (!pfn_valid(pfn))
642 return pgprot_noncached(vma_prot);
643 else if (file->f_flags & O_SYNC)
644 return pgprot_writecombine(vma_prot);
645 return vma_prot;
646 }
647 EXPORT_SYMBOL(phys_mem_access_prot);
648 #endif
649
650 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
651
652 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
653 {
654 void *ptr = __va(memblock_alloc(sz, align));
655 memset(ptr, 0, sz);
656 return ptr;
657 }
658
659 static void __init *early_alloc(unsigned long sz)
660 {
661 return early_alloc_aligned(sz, sz);
662 }
663
664 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
665 {
666 if (pmd_none(*pmd)) {
667 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
668 __pmd_populate(pmd, __pa(pte), prot);
669 }
670 BUG_ON(pmd_bad(*pmd));
671 return pte_offset_kernel(pmd, addr);
672 }
673
674 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
675 unsigned long end, unsigned long pfn,
676 const struct mem_type *type)
677 {
678 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
679 do {
680 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
681 pfn++;
682 } while (pte++, addr += PAGE_SIZE, addr != end);
683 }
684
685 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
686 unsigned long end, phys_addr_t phys,
687 const struct mem_type *type)
688 {
689 pmd_t *p = pmd;
690
691 #ifndef CONFIG_ARM_LPAE
692 /*
693 * In classic MMU format, puds and pmds are folded in to
694 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
695 * group of L1 entries making up one logical pointer to
696 * an L2 table (2MB), where as PMDs refer to the individual
697 * L1 entries (1MB). Hence increment to get the correct
698 * offset for odd 1MB sections.
699 * (See arch/arm/include/asm/pgtable-2level.h)
700 */
701 if (addr & SECTION_SIZE)
702 pmd++;
703 #endif
704 do {
705 *pmd = __pmd(phys | type->prot_sect);
706 phys += SECTION_SIZE;
707 } while (pmd++, addr += SECTION_SIZE, addr != end);
708
709 flush_pmd_entry(p);
710 }
711
712 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
713 unsigned long end, phys_addr_t phys,
714 const struct mem_type *type)
715 {
716 pmd_t *pmd = pmd_offset(pud, addr);
717 unsigned long next;
718
719 do {
720 /*
721 * With LPAE, we must loop over to map
722 * all the pmds for the given range.
723 */
724 next = pmd_addr_end(addr, end);
725
726 /*
727 * Try a section mapping - addr, next and phys must all be
728 * aligned to a section boundary.
729 */
730 if (type->prot_sect &&
731 ((addr | next | phys) & ~SECTION_MASK) == 0) {
732 __map_init_section(pmd, addr, next, phys, type);
733 } else {
734 alloc_init_pte(pmd, addr, next,
735 __phys_to_pfn(phys), type);
736 }
737
738 phys += next - addr;
739
740 } while (pmd++, addr = next, addr != end);
741 }
742
743 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
744 unsigned long end, phys_addr_t phys,
745 const struct mem_type *type)
746 {
747 pud_t *pud = pud_offset(pgd, addr);
748 unsigned long next;
749
750 do {
751 next = pud_addr_end(addr, end);
752 alloc_init_pmd(pud, addr, next, phys, type);
753 phys += next - addr;
754 } while (pud++, addr = next, addr != end);
755 }
756
757 #ifndef CONFIG_ARM_LPAE
758 static void __init create_36bit_mapping(struct map_desc *md,
759 const struct mem_type *type)
760 {
761 unsigned long addr, length, end;
762 phys_addr_t phys;
763 pgd_t *pgd;
764
765 addr = md->virtual;
766 phys = __pfn_to_phys(md->pfn);
767 length = PAGE_ALIGN(md->length);
768
769 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
770 printk(KERN_ERR "MM: CPU does not support supersection "
771 "mapping for 0x%08llx at 0x%08lx\n",
772 (long long)__pfn_to_phys((u64)md->pfn), addr);
773 return;
774 }
775
776 /* N.B. ARMv6 supersections are only defined to work with domain 0.
777 * Since domain assignments can in fact be arbitrary, the
778 * 'domain == 0' check below is required to insure that ARMv6
779 * supersections are only allocated for domain 0 regardless
780 * of the actual domain assignments in use.
781 */
782 if (type->domain) {
783 printk(KERN_ERR "MM: invalid domain in supersection "
784 "mapping for 0x%08llx at 0x%08lx\n",
785 (long long)__pfn_to_phys((u64)md->pfn), addr);
786 return;
787 }
788
789 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
790 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
791 " at 0x%08lx invalid alignment\n",
792 (long long)__pfn_to_phys((u64)md->pfn), addr);
793 return;
794 }
795
796 /*
797 * Shift bits [35:32] of address into bits [23:20] of PMD
798 * (See ARMv6 spec).
799 */
800 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
801
802 pgd = pgd_offset_k(addr);
803 end = addr + length;
804 do {
805 pud_t *pud = pud_offset(pgd, addr);
806 pmd_t *pmd = pmd_offset(pud, addr);
807 int i;
808
809 for (i = 0; i < 16; i++)
810 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
811
812 addr += SUPERSECTION_SIZE;
813 phys += SUPERSECTION_SIZE;
814 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
815 } while (addr != end);
816 }
817 #endif /* !CONFIG_ARM_LPAE */
818
819 /*
820 * Create the page directory entries and any necessary
821 * page tables for the mapping specified by `md'. We
822 * are able to cope here with varying sizes and address
823 * offsets, and we take full advantage of sections and
824 * supersections.
825 */
826 static void __init create_mapping(struct map_desc *md)
827 {
828 unsigned long addr, length, end;
829 phys_addr_t phys;
830 const struct mem_type *type;
831 pgd_t *pgd;
832
833 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
834 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
835 " at 0x%08lx in user region\n",
836 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
837 return;
838 }
839
840 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
841 md->virtual >= PAGE_OFFSET &&
842 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
843 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
844 " at 0x%08lx out of vmalloc space\n",
845 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
846 }
847
848 type = &mem_types[md->type];
849
850 #ifndef CONFIG_ARM_LPAE
851 /*
852 * Catch 36-bit addresses
853 */
854 if (md->pfn >= 0x100000) {
855 create_36bit_mapping(md, type);
856 return;
857 }
858 #endif
859
860 addr = md->virtual & PAGE_MASK;
861 phys = __pfn_to_phys(md->pfn);
862 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
863
864 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
865 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
866 "be mapped using pages, ignoring.\n",
867 (long long)__pfn_to_phys(md->pfn), addr);
868 return;
869 }
870
871 pgd = pgd_offset_k(addr);
872 end = addr + length;
873 do {
874 unsigned long next = pgd_addr_end(addr, end);
875
876 alloc_init_pud(pgd, addr, next, phys, type);
877
878 phys += next - addr;
879 addr = next;
880 } while (pgd++, addr != end);
881 }
882
883 /*
884 * Create the architecture specific mappings
885 */
886 void __init iotable_init(struct map_desc *io_desc, int nr)
887 {
888 struct map_desc *md;
889 struct vm_struct *vm;
890 struct static_vm *svm;
891
892 if (!nr)
893 return;
894
895 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
896
897 for (md = io_desc; nr; md++, nr--) {
898 create_mapping(md);
899
900 vm = &svm->vm;
901 vm->addr = (void *)(md->virtual & PAGE_MASK);
902 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
903 vm->phys_addr = __pfn_to_phys(md->pfn);
904 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
905 vm->flags |= VM_ARM_MTYPE(md->type);
906 vm->caller = iotable_init;
907 add_static_vm_early(svm++);
908 }
909 }
910
911 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
912 void *caller)
913 {
914 struct vm_struct *vm;
915 struct static_vm *svm;
916
917 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
918
919 vm = &svm->vm;
920 vm->addr = (void *)addr;
921 vm->size = size;
922 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
923 vm->caller = caller;
924 add_static_vm_early(svm);
925 }
926
927 #ifndef CONFIG_ARM_LPAE
928
929 /*
930 * The Linux PMD is made of two consecutive section entries covering 2MB
931 * (see definition in include/asm/pgtable-2level.h). However a call to
932 * create_mapping() may optimize static mappings by using individual
933 * 1MB section mappings. This leaves the actual PMD potentially half
934 * initialized if the top or bottom section entry isn't used, leaving it
935 * open to problems if a subsequent ioremap() or vmalloc() tries to use
936 * the virtual space left free by that unused section entry.
937 *
938 * Let's avoid the issue by inserting dummy vm entries covering the unused
939 * PMD halves once the static mappings are in place.
940 */
941
942 static void __init pmd_empty_section_gap(unsigned long addr)
943 {
944 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
945 }
946
947 static void __init fill_pmd_gaps(void)
948 {
949 struct static_vm *svm;
950 struct vm_struct *vm;
951 unsigned long addr, next = 0;
952 pmd_t *pmd;
953
954 list_for_each_entry(svm, &static_vmlist, list) {
955 vm = &svm->vm;
956 addr = (unsigned long)vm->addr;
957 if (addr < next)
958 continue;
959
960 /*
961 * Check if this vm starts on an odd section boundary.
962 * If so and the first section entry for this PMD is free
963 * then we block the corresponding virtual address.
964 */
965 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
966 pmd = pmd_off_k(addr);
967 if (pmd_none(*pmd))
968 pmd_empty_section_gap(addr & PMD_MASK);
969 }
970
971 /*
972 * Then check if this vm ends on an odd section boundary.
973 * If so and the second section entry for this PMD is empty
974 * then we block the corresponding virtual address.
975 */
976 addr += vm->size;
977 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
978 pmd = pmd_off_k(addr) + 1;
979 if (pmd_none(*pmd))
980 pmd_empty_section_gap(addr);
981 }
982
983 /* no need to look at any vm entry until we hit the next PMD */
984 next = (addr + PMD_SIZE - 1) & PMD_MASK;
985 }
986 }
987
988 #else
989 #define fill_pmd_gaps() do { } while (0)
990 #endif
991
992 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
993 static void __init pci_reserve_io(void)
994 {
995 struct static_vm *svm;
996
997 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
998 if (svm)
999 return;
1000
1001 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1002 }
1003 #else
1004 #define pci_reserve_io() do { } while (0)
1005 #endif
1006
1007 #ifdef CONFIG_DEBUG_LL
1008 void __init debug_ll_io_init(void)
1009 {
1010 struct map_desc map;
1011
1012 debug_ll_addr(&map.pfn, &map.virtual);
1013 if (!map.pfn || !map.virtual)
1014 return;
1015 map.pfn = __phys_to_pfn(map.pfn);
1016 map.virtual &= PAGE_MASK;
1017 map.length = PAGE_SIZE;
1018 map.type = MT_DEVICE;
1019 iotable_init(&map, 1);
1020 }
1021 #endif
1022
1023 static void * __initdata vmalloc_min =
1024 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1025
1026 /*
1027 * vmalloc=size forces the vmalloc area to be exactly 'size'
1028 * bytes. This can be used to increase (or decrease) the vmalloc
1029 * area - the default is 240m.
1030 */
1031 static int __init early_vmalloc(char *arg)
1032 {
1033 unsigned long vmalloc_reserve = memparse(arg, NULL);
1034
1035 if (vmalloc_reserve < SZ_16M) {
1036 vmalloc_reserve = SZ_16M;
1037 printk(KERN_WARNING
1038 "vmalloc area too small, limiting to %luMB\n",
1039 vmalloc_reserve >> 20);
1040 }
1041
1042 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1043 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1044 printk(KERN_WARNING
1045 "vmalloc area is too big, limiting to %luMB\n",
1046 vmalloc_reserve >> 20);
1047 }
1048
1049 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1050 return 0;
1051 }
1052 early_param("vmalloc", early_vmalloc);
1053
1054 phys_addr_t arm_lowmem_limit __initdata = 0;
1055
1056 void __init sanity_check_meminfo(void)
1057 {
1058 phys_addr_t memblock_limit = 0;
1059 int i, j, highmem = 0;
1060 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1061
1062 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1063 struct membank *bank = &meminfo.bank[j];
1064 phys_addr_t size_limit;
1065
1066 *bank = meminfo.bank[i];
1067 size_limit = bank->size;
1068
1069 if (bank->start >= vmalloc_limit)
1070 highmem = 1;
1071 else
1072 size_limit = vmalloc_limit - bank->start;
1073
1074 bank->highmem = highmem;
1075
1076 #ifdef CONFIG_HIGHMEM
1077 /*
1078 * Split those memory banks which are partially overlapping
1079 * the vmalloc area greatly simplifying things later.
1080 */
1081 if (!highmem && bank->size > size_limit) {
1082 if (meminfo.nr_banks >= NR_BANKS) {
1083 printk(KERN_CRIT "NR_BANKS too low, "
1084 "ignoring high memory\n");
1085 } else {
1086 memmove(bank + 1, bank,
1087 (meminfo.nr_banks - i) * sizeof(*bank));
1088 meminfo.nr_banks++;
1089 i++;
1090 bank[1].size -= size_limit;
1091 bank[1].start = vmalloc_limit;
1092 bank[1].highmem = highmem = 1;
1093 j++;
1094 }
1095 bank->size = size_limit;
1096 }
1097 #else
1098 /*
1099 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1100 */
1101 if (highmem) {
1102 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1103 "(!CONFIG_HIGHMEM).\n",
1104 (unsigned long long)bank->start,
1105 (unsigned long long)bank->start + bank->size - 1);
1106 continue;
1107 }
1108
1109 /*
1110 * Check whether this memory bank would partially overlap
1111 * the vmalloc area.
1112 */
1113 if (bank->size > size_limit) {
1114 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1115 "to -%.8llx (vmalloc region overlap).\n",
1116 (unsigned long long)bank->start,
1117 (unsigned long long)bank->start + bank->size - 1,
1118 (unsigned long long)bank->start + size_limit - 1);
1119 bank->size = size_limit;
1120 }
1121 #endif
1122 if (!bank->highmem) {
1123 phys_addr_t bank_end = bank->start + bank->size;
1124
1125 if (bank_end > arm_lowmem_limit)
1126 arm_lowmem_limit = bank_end;
1127
1128 /*
1129 * Find the first non-section-aligned page, and point
1130 * memblock_limit at it. This relies on rounding the
1131 * limit down to be section-aligned, which happens at
1132 * the end of this function.
1133 *
1134 * With this algorithm, the start or end of almost any
1135 * bank can be non-section-aligned. The only exception
1136 * is that the start of the bank 0 must be section-
1137 * aligned, since otherwise memory would need to be
1138 * allocated when mapping the start of bank 0, which
1139 * occurs before any free memory is mapped.
1140 */
1141 if (!memblock_limit) {
1142 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1143 memblock_limit = bank->start;
1144 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1145 memblock_limit = bank_end;
1146 }
1147 }
1148 j++;
1149 }
1150 #ifdef CONFIG_HIGHMEM
1151 if (highmem) {
1152 const char *reason = NULL;
1153
1154 if (cache_is_vipt_aliasing()) {
1155 /*
1156 * Interactions between kmap and other mappings
1157 * make highmem support with aliasing VIPT caches
1158 * rather difficult.
1159 */
1160 reason = "with VIPT aliasing cache";
1161 }
1162 if (reason) {
1163 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1164 reason);
1165 while (j > 0 && meminfo.bank[j - 1].highmem)
1166 j--;
1167 }
1168 }
1169 #endif
1170 meminfo.nr_banks = j;
1171 high_memory = __va(arm_lowmem_limit - 1) + 1;
1172
1173 /*
1174 * Round the memblock limit down to a section size. This
1175 * helps to ensure that we will allocate memory from the
1176 * last full section, which should be mapped.
1177 */
1178 if (memblock_limit)
1179 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1180 if (!memblock_limit)
1181 memblock_limit = arm_lowmem_limit;
1182
1183 memblock_set_current_limit(memblock_limit);
1184 }
1185
1186 static inline void prepare_page_table(void)
1187 {
1188 unsigned long addr;
1189 phys_addr_t end;
1190
1191 /*
1192 * Clear out all the mappings below the kernel image.
1193 */
1194 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1195 pmd_clear(pmd_off_k(addr));
1196
1197 #ifdef CONFIG_XIP_KERNEL
1198 /* The XIP kernel is mapped in the module area -- skip over it */
1199 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1200 #endif
1201 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1202 pmd_clear(pmd_off_k(addr));
1203
1204 /*
1205 * Find the end of the first block of lowmem.
1206 */
1207 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1208 if (end >= arm_lowmem_limit)
1209 end = arm_lowmem_limit;
1210
1211 /*
1212 * Clear out all the kernel space mappings, except for the first
1213 * memory bank, up to the vmalloc region.
1214 */
1215 for (addr = __phys_to_virt(end);
1216 addr < VMALLOC_START; addr += PMD_SIZE)
1217 pmd_clear(pmd_off_k(addr));
1218 }
1219
1220 #ifdef CONFIG_ARM_LPAE
1221 /* the first page is reserved for pgd */
1222 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1223 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1224 #else
1225 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1226 #endif
1227
1228 /*
1229 * Reserve the special regions of memory
1230 */
1231 void __init arm_mm_memblock_reserve(void)
1232 {
1233 /*
1234 * Reserve the page tables. These are already in use,
1235 * and can only be in node 0.
1236 */
1237 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1238
1239 #ifdef CONFIG_SA1111
1240 /*
1241 * Because of the SA1111 DMA bug, we want to preserve our
1242 * precious DMA-able memory...
1243 */
1244 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1245 #endif
1246 }
1247
1248 /*
1249 * Set up the device mappings. Since we clear out the page tables for all
1250 * mappings above VMALLOC_START, we will remove any debug device mappings.
1251 * This means you have to be careful how you debug this function, or any
1252 * called function. This means you can't use any function or debugging
1253 * method which may touch any device, otherwise the kernel _will_ crash.
1254 */
1255 static void __init devicemaps_init(const struct machine_desc *mdesc)
1256 {
1257 struct map_desc map;
1258 unsigned long addr;
1259 void *vectors;
1260
1261 /*
1262 * Allocate the vector page early.
1263 */
1264 vectors = early_alloc(PAGE_SIZE * 2);
1265
1266 early_trap_init(vectors);
1267
1268 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1269 pmd_clear(pmd_off_k(addr));
1270
1271 /*
1272 * Map the kernel if it is XIP.
1273 * It is always first in the modulearea.
1274 */
1275 #ifdef CONFIG_XIP_KERNEL
1276 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1277 map.virtual = MODULES_VADDR;
1278 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1279 map.type = MT_ROM;
1280 create_mapping(&map);
1281 #endif
1282
1283 /*
1284 * Map the cache flushing regions.
1285 */
1286 #ifdef FLUSH_BASE
1287 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1288 map.virtual = FLUSH_BASE;
1289 map.length = SZ_1M;
1290 map.type = MT_CACHECLEAN;
1291 create_mapping(&map);
1292 #endif
1293 #ifdef FLUSH_BASE_MINICACHE
1294 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1295 map.virtual = FLUSH_BASE_MINICACHE;
1296 map.length = SZ_1M;
1297 map.type = MT_MINICLEAN;
1298 create_mapping(&map);
1299 #endif
1300
1301 /*
1302 * Create a mapping for the machine vectors at the high-vectors
1303 * location (0xffff0000). If we aren't using high-vectors, also
1304 * create a mapping at the low-vectors virtual address.
1305 */
1306 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1307 map.virtual = 0xffff0000;
1308 map.length = PAGE_SIZE;
1309 #ifdef CONFIG_KUSER_HELPERS
1310 map.type = MT_HIGH_VECTORS;
1311 #else
1312 map.type = MT_LOW_VECTORS;
1313 #endif
1314 create_mapping(&map);
1315
1316 if (!vectors_high()) {
1317 map.virtual = 0;
1318 map.length = PAGE_SIZE * 2;
1319 map.type = MT_LOW_VECTORS;
1320 create_mapping(&map);
1321 }
1322
1323 /* Now create a kernel read-only mapping */
1324 map.pfn += 1;
1325 map.virtual = 0xffff0000 + PAGE_SIZE;
1326 map.length = PAGE_SIZE;
1327 map.type = MT_LOW_VECTORS;
1328 create_mapping(&map);
1329
1330 /*
1331 * Ask the machine support to map in the statically mapped devices.
1332 */
1333 if (mdesc->map_io)
1334 mdesc->map_io();
1335 else
1336 debug_ll_io_init();
1337 fill_pmd_gaps();
1338
1339 /* Reserve fixed i/o space in VMALLOC region */
1340 pci_reserve_io();
1341
1342 /*
1343 * Finally flush the caches and tlb to ensure that we're in a
1344 * consistent state wrt the writebuffer. This also ensures that
1345 * any write-allocated cache lines in the vector page are written
1346 * back. After this point, we can start to touch devices again.
1347 */
1348 local_flush_tlb_all();
1349 flush_cache_all();
1350 }
1351
1352 static void __init kmap_init(void)
1353 {
1354 #ifdef CONFIG_HIGHMEM
1355 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1356 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1357 #endif
1358 }
1359
1360 static void __init map_lowmem(void)
1361 {
1362 struct memblock_region *reg;
1363 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1364 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1365
1366 /* Map all the lowmem memory banks. */
1367 for_each_memblock(memory, reg) {
1368 phys_addr_t start = reg->base;
1369 phys_addr_t end = start + reg->size;
1370 struct map_desc map;
1371
1372 if (end > arm_lowmem_limit)
1373 end = arm_lowmem_limit;
1374 if (start >= end)
1375 break;
1376
1377 if (end < kernel_x_start || start >= kernel_x_end) {
1378 map.pfn = __phys_to_pfn(start);
1379 map.virtual = __phys_to_virt(start);
1380 map.length = end - start;
1381 map.type = MT_MEMORY_RWX;
1382
1383 create_mapping(&map);
1384 } else {
1385 /* This better cover the entire kernel */
1386 if (start < kernel_x_start) {
1387 map.pfn = __phys_to_pfn(start);
1388 map.virtual = __phys_to_virt(start);
1389 map.length = kernel_x_start - start;
1390 map.type = MT_MEMORY_RW;
1391
1392 create_mapping(&map);
1393 }
1394
1395 map.pfn = __phys_to_pfn(kernel_x_start);
1396 map.virtual = __phys_to_virt(kernel_x_start);
1397 map.length = kernel_x_end - kernel_x_start;
1398 map.type = MT_MEMORY_RWX;
1399
1400 create_mapping(&map);
1401
1402 if (kernel_x_end < end) {
1403 map.pfn = __phys_to_pfn(kernel_x_end);
1404 map.virtual = __phys_to_virt(kernel_x_end);
1405 map.length = end - kernel_x_end;
1406 map.type = MT_MEMORY_RW;
1407
1408 create_mapping(&map);
1409 }
1410 }
1411 }
1412 }
1413
1414 #ifdef CONFIG_ARM_LPAE
1415 /*
1416 * early_paging_init() recreates boot time page table setup, allowing machines
1417 * to switch over to a high (>4G) address space on LPAE systems
1418 */
1419 void __init early_paging_init(const struct machine_desc *mdesc,
1420 struct proc_info_list *procinfo)
1421 {
1422 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1423 unsigned long map_start, map_end;
1424 pgd_t *pgd0, *pgdk;
1425 pud_t *pud0, *pudk, *pud_start;
1426 pmd_t *pmd0, *pmdk;
1427 phys_addr_t phys;
1428 int i;
1429
1430 if (!(mdesc->init_meminfo))
1431 return;
1432
1433 /* remap kernel code and data */
1434 map_start = init_mm.start_code;
1435 map_end = init_mm.brk;
1436
1437 /* get a handle on things... */
1438 pgd0 = pgd_offset_k(0);
1439 pud_start = pud0 = pud_offset(pgd0, 0);
1440 pmd0 = pmd_offset(pud0, 0);
1441
1442 pgdk = pgd_offset_k(map_start);
1443 pudk = pud_offset(pgdk, map_start);
1444 pmdk = pmd_offset(pudk, map_start);
1445
1446 mdesc->init_meminfo();
1447
1448 /* Run the patch stub to update the constants */
1449 fixup_pv_table(&__pv_table_begin,
1450 (&__pv_table_end - &__pv_table_begin) << 2);
1451
1452 /*
1453 * Cache cleaning operations for self-modifying code
1454 * We should clean the entries by MVA but running a
1455 * for loop over every pv_table entry pointer would
1456 * just complicate the code.
1457 */
1458 flush_cache_louis();
1459 dsb();
1460 isb();
1461
1462 /* remap level 1 table */
1463 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1464 set_pud(pud0,
1465 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1466 pmd0 += PTRS_PER_PMD;
1467 }
1468
1469 /* remap pmds for kernel mapping */
1470 phys = __pa(map_start) & PMD_MASK;
1471 do {
1472 *pmdk++ = __pmd(phys | pmdprot);
1473 phys += PMD_SIZE;
1474 } while (phys < map_end);
1475
1476 flush_cache_all();
1477 cpu_switch_mm(pgd0, &init_mm);
1478 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1479 local_flush_bp_all();
1480 local_flush_tlb_all();
1481 }
1482
1483 #else
1484
1485 void __init early_paging_init(const struct machine_desc *mdesc,
1486 struct proc_info_list *procinfo)
1487 {
1488 if (mdesc->init_meminfo)
1489 mdesc->init_meminfo();
1490 }
1491
1492 #endif
1493
1494 /*
1495 * paging_init() sets up the page tables, initialises the zone memory
1496 * maps, and sets up the zero page, bad page and bad page tables.
1497 */
1498 void __init paging_init(const struct machine_desc *mdesc)
1499 {
1500 void *zero_page;
1501
1502 build_mem_type_table();
1503 prepare_page_table();
1504 map_lowmem();
1505 dma_contiguous_remap();
1506 devicemaps_init(mdesc);
1507 kmap_init();
1508 tcm_init();
1509
1510 top_pmd = pmd_off_k(0xffff0000);
1511
1512 /* allocate the zero page. */
1513 zero_page = early_alloc(PAGE_SIZE);
1514
1515 bootmem_init();
1516
1517 empty_zero_page = virt_to_page(zero_page);
1518 __flush_dcache_page(NULL, empty_zero_page);
1519 }