]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm/mm/mmu.c
ARM: 9210/1: Mark the FDT_FIXED sections as shareable
[mirror_ubuntu-jammy-kernel.git] / arch / arm / mm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 */
7 #include <linux/module.h>
8 #include <linux/kernel.h>
9 #include <linux/errno.h>
10 #include <linux/init.h>
11 #include <linux/mman.h>
12 #include <linux/nodemask.h>
13 #include <linux/memblock.h>
14 #include <linux/fs.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sizes.h>
17
18 #include <asm/cp15.h>
19 #include <asm/cputype.h>
20 #include <asm/cachetype.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/smp_plat.h>
24 #include <asm/tlb.h>
25 #include <asm/highmem.h>
26 #include <asm/system_info.h>
27 #include <asm/traps.h>
28 #include <asm/procinfo.h>
29 #include <asm/memory.h>
30 #include <asm/pgalloc.h>
31 #include <asm/kasan_def.h>
32
33 #include <asm/mach/arch.h>
34 #include <asm/mach/map.h>
35 #include <asm/mach/pci.h>
36 #include <asm/fixmap.h>
37
38 #include "fault.h"
39 #include "mm.h"
40 #include "tcm.h"
41
42 extern unsigned long __atags_pointer;
43
44 /*
45 * empty_zero_page is a special page that is used for
46 * zero-initialized data and COW.
47 */
48 struct page *empty_zero_page;
49 EXPORT_SYMBOL(empty_zero_page);
50
51 /*
52 * The pmd table for the upper-most set of pages.
53 */
54 pmd_t *top_pmd;
55
56 pmdval_t user_pmd_table = _PAGE_USER_TABLE;
57
58 #define CPOLICY_UNCACHED 0
59 #define CPOLICY_BUFFERED 1
60 #define CPOLICY_WRITETHROUGH 2
61 #define CPOLICY_WRITEBACK 3
62 #define CPOLICY_WRITEALLOC 4
63
64 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
65 static unsigned int ecc_mask __initdata = 0;
66 pgprot_t pgprot_user;
67 pgprot_t pgprot_kernel;
68
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
71
72 struct cachepolicy {
73 const char policy[16];
74 unsigned int cr_mask;
75 pmdval_t pmd;
76 pteval_t pte;
77 };
78
79 static struct cachepolicy cache_policies[] __initdata = {
80 {
81 .policy = "uncached",
82 .cr_mask = CR_W|CR_C,
83 .pmd = PMD_SECT_UNCACHED,
84 .pte = L_PTE_MT_UNCACHED,
85 }, {
86 .policy = "buffered",
87 .cr_mask = CR_C,
88 .pmd = PMD_SECT_BUFFERED,
89 .pte = L_PTE_MT_BUFFERABLE,
90 }, {
91 .policy = "writethrough",
92 .cr_mask = 0,
93 .pmd = PMD_SECT_WT,
94 .pte = L_PTE_MT_WRITETHROUGH,
95 }, {
96 .policy = "writeback",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WB,
99 .pte = L_PTE_MT_WRITEBACK,
100 }, {
101 .policy = "writealloc",
102 .cr_mask = 0,
103 .pmd = PMD_SECT_WBWA,
104 .pte = L_PTE_MT_WRITEALLOC,
105 }
106 };
107
108 #ifdef CONFIG_CPU_CP15
109 static unsigned long initial_pmd_value __initdata = 0;
110
111 /*
112 * Initialise the cache_policy variable with the initial state specified
113 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
114 * the C code sets the page tables up with the same policy as the head
115 * assembly code, which avoids an illegal state where the TLBs can get
116 * confused. See comments in early_cachepolicy() for more information.
117 */
118 void __init init_default_cache_policy(unsigned long pmd)
119 {
120 int i;
121
122 initial_pmd_value = pmd;
123
124 pmd &= PMD_SECT_CACHE_MASK;
125
126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
127 if (cache_policies[i].pmd == pmd) {
128 cachepolicy = i;
129 break;
130 }
131
132 if (i == ARRAY_SIZE(cache_policies))
133 pr_err("ERROR: could not find cache policy\n");
134 }
135
136 /*
137 * These are useful for identifying cache coherency problems by allowing
138 * the cache or the cache and writebuffer to be turned off. (Note: the
139 * write buffer should not be on and the cache off).
140 */
141 static int __init early_cachepolicy(char *p)
142 {
143 int i, selected = -1;
144
145 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
146 int len = strlen(cache_policies[i].policy);
147
148 if (memcmp(p, cache_policies[i].policy, len) == 0) {
149 selected = i;
150 break;
151 }
152 }
153
154 if (selected == -1)
155 pr_err("ERROR: unknown or unsupported cache policy\n");
156
157 /*
158 * This restriction is partly to do with the way we boot; it is
159 * unpredictable to have memory mapped using two different sets of
160 * memory attributes (shared, type, and cache attribs). We can not
161 * change these attributes once the initial assembly has setup the
162 * page tables.
163 */
164 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
165 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
166 cache_policies[cachepolicy].policy);
167 return 0;
168 }
169
170 if (selected != cachepolicy) {
171 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
172 cachepolicy = selected;
173 flush_cache_all();
174 set_cr(cr);
175 }
176 return 0;
177 }
178 early_param("cachepolicy", early_cachepolicy);
179
180 static int __init early_nocache(char *__unused)
181 {
182 char *p = "buffered";
183 pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
184 early_cachepolicy(p);
185 return 0;
186 }
187 early_param("nocache", early_nocache);
188
189 static int __init early_nowrite(char *__unused)
190 {
191 char *p = "uncached";
192 pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
193 early_cachepolicy(p);
194 return 0;
195 }
196 early_param("nowb", early_nowrite);
197
198 #ifndef CONFIG_ARM_LPAE
199 static int __init early_ecc(char *p)
200 {
201 if (memcmp(p, "on", 2) == 0)
202 ecc_mask = PMD_PROTECTION;
203 else if (memcmp(p, "off", 3) == 0)
204 ecc_mask = 0;
205 return 0;
206 }
207 early_param("ecc", early_ecc);
208 #endif
209
210 #else /* ifdef CONFIG_CPU_CP15 */
211
212 static int __init early_cachepolicy(char *p)
213 {
214 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
215 return 0;
216 }
217 early_param("cachepolicy", early_cachepolicy);
218
219 static int __init noalign_setup(char *__unused)
220 {
221 pr_warn("noalign kernel parameter not supported without cp15\n");
222 return 1;
223 }
224 __setup("noalign", noalign_setup);
225
226 #endif /* ifdef CONFIG_CPU_CP15 / else */
227
228 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
229 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
230 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
231
232 static struct mem_type mem_types[] __ro_after_init = {
233 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
234 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
235 L_PTE_SHARED,
236 .prot_l1 = PMD_TYPE_TABLE,
237 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
238 .domain = DOMAIN_IO,
239 },
240 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
241 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
242 .prot_l1 = PMD_TYPE_TABLE,
243 .prot_sect = PROT_SECT_DEVICE,
244 .domain = DOMAIN_IO,
245 },
246 [MT_DEVICE_CACHED] = { /* ioremap_cache */
247 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
248 .prot_l1 = PMD_TYPE_TABLE,
249 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
250 .domain = DOMAIN_IO,
251 },
252 [MT_DEVICE_WC] = { /* ioremap_wc */
253 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
254 .prot_l1 = PMD_TYPE_TABLE,
255 .prot_sect = PROT_SECT_DEVICE,
256 .domain = DOMAIN_IO,
257 },
258 [MT_UNCACHED] = {
259 .prot_pte = PROT_PTE_DEVICE,
260 .prot_l1 = PMD_TYPE_TABLE,
261 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
262 .domain = DOMAIN_IO,
263 },
264 [MT_CACHECLEAN] = {
265 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
266 .domain = DOMAIN_KERNEL,
267 },
268 #ifndef CONFIG_ARM_LPAE
269 [MT_MINICLEAN] = {
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
271 .domain = DOMAIN_KERNEL,
272 },
273 #endif
274 [MT_LOW_VECTORS] = {
275 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
276 L_PTE_RDONLY,
277 .prot_l1 = PMD_TYPE_TABLE,
278 .domain = DOMAIN_VECTORS,
279 },
280 [MT_HIGH_VECTORS] = {
281 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282 L_PTE_USER | L_PTE_RDONLY,
283 .prot_l1 = PMD_TYPE_TABLE,
284 .domain = DOMAIN_VECTORS,
285 },
286 [MT_MEMORY_RWX] = {
287 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
288 .prot_l1 = PMD_TYPE_TABLE,
289 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
290 .domain = DOMAIN_KERNEL,
291 },
292 [MT_MEMORY_RW] = {
293 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
294 L_PTE_XN,
295 .prot_l1 = PMD_TYPE_TABLE,
296 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
297 .domain = DOMAIN_KERNEL,
298 },
299 [MT_MEMORY_RO] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
301 L_PTE_XN | L_PTE_RDONLY,
302 .prot_l1 = PMD_TYPE_TABLE,
303 .prot_sect = PMD_TYPE_SECT,
304 .domain = DOMAIN_KERNEL,
305 },
306 [MT_ROM] = {
307 .prot_sect = PMD_TYPE_SECT,
308 .domain = DOMAIN_KERNEL,
309 },
310 [MT_MEMORY_RWX_NONCACHED] = {
311 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
312 L_PTE_MT_BUFFERABLE,
313 .prot_l1 = PMD_TYPE_TABLE,
314 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
315 .domain = DOMAIN_KERNEL,
316 },
317 [MT_MEMORY_RW_DTCM] = {
318 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319 L_PTE_XN,
320 .prot_l1 = PMD_TYPE_TABLE,
321 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
322 .domain = DOMAIN_KERNEL,
323 },
324 [MT_MEMORY_RWX_ITCM] = {
325 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
326 .prot_l1 = PMD_TYPE_TABLE,
327 .domain = DOMAIN_KERNEL,
328 },
329 [MT_MEMORY_RW_SO] = {
330 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
331 L_PTE_MT_UNCACHED | L_PTE_XN,
332 .prot_l1 = PMD_TYPE_TABLE,
333 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
334 PMD_SECT_UNCACHED | PMD_SECT_XN,
335 .domain = DOMAIN_KERNEL,
336 },
337 [MT_MEMORY_DMA_READY] = {
338 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
339 L_PTE_XN,
340 .prot_l1 = PMD_TYPE_TABLE,
341 .domain = DOMAIN_KERNEL,
342 },
343 };
344
345 const struct mem_type *get_mem_type(unsigned int type)
346 {
347 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
348 }
349 EXPORT_SYMBOL(get_mem_type);
350
351 static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
352
353 static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
354 __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
355
356 static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
357 {
358 return &bm_pte[pte_index(addr)];
359 }
360
361 static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
362 {
363 return pte_offset_kernel(dir, addr);
364 }
365
366 static inline pmd_t * __init fixmap_pmd(unsigned long addr)
367 {
368 return pmd_off_k(addr);
369 }
370
371 void __init early_fixmap_init(void)
372 {
373 pmd_t *pmd;
374
375 /*
376 * The early fixmap range spans multiple pmds, for which
377 * we are not prepared:
378 */
379 BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
380 != FIXADDR_TOP >> PMD_SHIFT);
381
382 pmd = fixmap_pmd(FIXADDR_TOP);
383 pmd_populate_kernel(&init_mm, pmd, bm_pte);
384
385 pte_offset_fixmap = pte_offset_early_fixmap;
386 }
387
388 /*
389 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
390 * As a result, this can only be called with preemption disabled, as under
391 * stop_machine().
392 */
393 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
394 {
395 unsigned long vaddr = __fix_to_virt(idx);
396 pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
397
398 /* Make sure fixmap region does not exceed available allocation. */
399 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
400 BUG_ON(idx >= __end_of_fixed_addresses);
401
402 /* We support only device mappings before pgprot_kernel is set. */
403 if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
404 pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
405 return;
406
407 if (pgprot_val(prot))
408 set_pte_at(NULL, vaddr, pte,
409 pfn_pte(phys >> PAGE_SHIFT, prot));
410 else
411 pte_clear(NULL, vaddr, pte);
412 local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
413 }
414
415 /*
416 * Adjust the PMD section entries according to the CPU in use.
417 */
418 static void __init build_mem_type_table(void)
419 {
420 struct cachepolicy *cp;
421 unsigned int cr = get_cr();
422 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
423 int cpu_arch = cpu_architecture();
424 int i;
425
426 if (cpu_arch < CPU_ARCH_ARMv6) {
427 #if defined(CONFIG_CPU_DCACHE_DISABLE)
428 if (cachepolicy > CPOLICY_BUFFERED)
429 cachepolicy = CPOLICY_BUFFERED;
430 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
431 if (cachepolicy > CPOLICY_WRITETHROUGH)
432 cachepolicy = CPOLICY_WRITETHROUGH;
433 #endif
434 }
435 if (cpu_arch < CPU_ARCH_ARMv5) {
436 if (cachepolicy >= CPOLICY_WRITEALLOC)
437 cachepolicy = CPOLICY_WRITEBACK;
438 ecc_mask = 0;
439 }
440
441 if (is_smp()) {
442 if (cachepolicy != CPOLICY_WRITEALLOC) {
443 pr_warn("Forcing write-allocate cache policy for SMP\n");
444 cachepolicy = CPOLICY_WRITEALLOC;
445 }
446 if (!(initial_pmd_value & PMD_SECT_S)) {
447 pr_warn("Forcing shared mappings for SMP\n");
448 initial_pmd_value |= PMD_SECT_S;
449 }
450 }
451
452 /*
453 * Strip out features not present on earlier architectures.
454 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
455 * without extended page tables don't have the 'Shared' bit.
456 */
457 if (cpu_arch < CPU_ARCH_ARMv5)
458 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
459 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
460 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
461 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
462 mem_types[i].prot_sect &= ~PMD_SECT_S;
463
464 /*
465 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
466 * "update-able on write" bit on ARM610). However, Xscale and
467 * Xscale3 require this bit to be cleared.
468 */
469 if (cpu_is_xscale_family()) {
470 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
471 mem_types[i].prot_sect &= ~PMD_BIT4;
472 mem_types[i].prot_l1 &= ~PMD_BIT4;
473 }
474 } else if (cpu_arch < CPU_ARCH_ARMv6) {
475 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
476 if (mem_types[i].prot_l1)
477 mem_types[i].prot_l1 |= PMD_BIT4;
478 if (mem_types[i].prot_sect)
479 mem_types[i].prot_sect |= PMD_BIT4;
480 }
481 }
482
483 /*
484 * Mark the device areas according to the CPU/architecture.
485 */
486 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
487 if (!cpu_is_xsc3()) {
488 /*
489 * Mark device regions on ARMv6+ as execute-never
490 * to prevent speculative instruction fetches.
491 */
492 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
493 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
494 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
495 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
496
497 /* Also setup NX memory mapping */
498 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
499 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
500 }
501 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
502 /*
503 * For ARMv7 with TEX remapping,
504 * - shared device is SXCB=1100
505 * - nonshared device is SXCB=0100
506 * - write combine device mem is SXCB=0001
507 * (Uncached Normal memory)
508 */
509 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
510 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
511 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
512 } else if (cpu_is_xsc3()) {
513 /*
514 * For Xscale3,
515 * - shared device is TEXCB=00101
516 * - nonshared device is TEXCB=01000
517 * - write combine device mem is TEXCB=00100
518 * (Inner/Outer Uncacheable in xsc3 parlance)
519 */
520 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
521 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
522 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
523 } else {
524 /*
525 * For ARMv6 and ARMv7 without TEX remapping,
526 * - shared device is TEXCB=00001
527 * - nonshared device is TEXCB=01000
528 * - write combine device mem is TEXCB=00100
529 * (Uncached Normal in ARMv6 parlance).
530 */
531 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
532 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
533 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
534 }
535 } else {
536 /*
537 * On others, write combining is "Uncached/Buffered"
538 */
539 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
540 }
541
542 /*
543 * Now deal with the memory-type mappings
544 */
545 cp = &cache_policies[cachepolicy];
546 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
547
548 #ifndef CONFIG_ARM_LPAE
549 /*
550 * We don't use domains on ARMv6 (since this causes problems with
551 * v6/v7 kernels), so we must use a separate memory type for user
552 * r/o, kernel r/w to map the vectors page.
553 */
554 if (cpu_arch == CPU_ARCH_ARMv6)
555 vecs_pgprot |= L_PTE_MT_VECTORS;
556
557 /*
558 * Check is it with support for the PXN bit
559 * in the Short-descriptor translation table format descriptors.
560 */
561 if (cpu_arch == CPU_ARCH_ARMv7 &&
562 (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
563 user_pmd_table |= PMD_PXNTABLE;
564 }
565 #endif
566
567 /*
568 * ARMv6 and above have extended page tables.
569 */
570 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
571 #ifndef CONFIG_ARM_LPAE
572 /*
573 * Mark cache clean areas and XIP ROM read only
574 * from SVC mode and no access from userspace.
575 */
576 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
577 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
578 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
579 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
580 #endif
581
582 /*
583 * If the initial page tables were created with the S bit
584 * set, then we need to do the same here for the same
585 * reasons given in early_cachepolicy().
586 */
587 if (initial_pmd_value & PMD_SECT_S) {
588 user_pgprot |= L_PTE_SHARED;
589 kern_pgprot |= L_PTE_SHARED;
590 vecs_pgprot |= L_PTE_SHARED;
591 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
592 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
593 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
594 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
595 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
596 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
597 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
598 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
599 mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
600 mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
601 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
602 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
603 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
604 }
605 }
606
607 /*
608 * Non-cacheable Normal - intended for memory areas that must
609 * not cause dirty cache line writebacks when used
610 */
611 if (cpu_arch >= CPU_ARCH_ARMv6) {
612 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
613 /* Non-cacheable Normal is XCB = 001 */
614 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
615 PMD_SECT_BUFFERED;
616 } else {
617 /* For both ARMv6 and non-TEX-remapping ARMv7 */
618 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
619 PMD_SECT_TEX(1);
620 }
621 } else {
622 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
623 }
624
625 #ifdef CONFIG_ARM_LPAE
626 /*
627 * Do not generate access flag faults for the kernel mappings.
628 */
629 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
630 mem_types[i].prot_pte |= PTE_EXT_AF;
631 if (mem_types[i].prot_sect)
632 mem_types[i].prot_sect |= PMD_SECT_AF;
633 }
634 kern_pgprot |= PTE_EXT_AF;
635 vecs_pgprot |= PTE_EXT_AF;
636
637 /*
638 * Set PXN for user mappings
639 */
640 user_pgprot |= PTE_EXT_PXN;
641 #endif
642
643 for (i = 0; i < 16; i++) {
644 pteval_t v = pgprot_val(protection_map[i]);
645 protection_map[i] = __pgprot(v | user_pgprot);
646 }
647
648 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
649 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
650
651 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
652 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
653 L_PTE_DIRTY | kern_pgprot);
654
655 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
656 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
657 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
658 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
659 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
660 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
661 mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
662 mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
663 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
664 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
665 mem_types[MT_ROM].prot_sect |= cp->pmd;
666
667 switch (cp->pmd) {
668 case PMD_SECT_WT:
669 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
670 break;
671 case PMD_SECT_WB:
672 case PMD_SECT_WBWA:
673 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
674 break;
675 }
676 pr_info("Memory policy: %sData cache %s\n",
677 ecc_mask ? "ECC enabled, " : "", cp->policy);
678
679 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
680 struct mem_type *t = &mem_types[i];
681 if (t->prot_l1)
682 t->prot_l1 |= PMD_DOMAIN(t->domain);
683 if (t->prot_sect)
684 t->prot_sect |= PMD_DOMAIN(t->domain);
685 }
686 }
687
688 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
689 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
690 unsigned long size, pgprot_t vma_prot)
691 {
692 if (!pfn_valid(pfn))
693 return pgprot_noncached(vma_prot);
694 else if (file->f_flags & O_SYNC)
695 return pgprot_writecombine(vma_prot);
696 return vma_prot;
697 }
698 EXPORT_SYMBOL(phys_mem_access_prot);
699 #endif
700
701 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
702
703 static void __init *early_alloc(unsigned long sz)
704 {
705 void *ptr = memblock_alloc(sz, sz);
706
707 if (!ptr)
708 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
709 __func__, sz, sz);
710
711 return ptr;
712 }
713
714 static void *__init late_alloc(unsigned long sz)
715 {
716 void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
717
718 if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
719 BUG();
720 return ptr;
721 }
722
723 static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
724 unsigned long prot,
725 void *(*alloc)(unsigned long sz))
726 {
727 if (pmd_none(*pmd)) {
728 pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
729 __pmd_populate(pmd, __pa(pte), prot);
730 }
731 BUG_ON(pmd_bad(*pmd));
732 return pte_offset_kernel(pmd, addr);
733 }
734
735 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
736 unsigned long prot)
737 {
738 return arm_pte_alloc(pmd, addr, prot, early_alloc);
739 }
740
741 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
742 unsigned long end, unsigned long pfn,
743 const struct mem_type *type,
744 void *(*alloc)(unsigned long sz),
745 bool ng)
746 {
747 pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
748 do {
749 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
750 ng ? PTE_EXT_NG : 0);
751 pfn++;
752 } while (pte++, addr += PAGE_SIZE, addr != end);
753 }
754
755 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
756 unsigned long end, phys_addr_t phys,
757 const struct mem_type *type, bool ng)
758 {
759 pmd_t *p = pmd;
760
761 #ifndef CONFIG_ARM_LPAE
762 /*
763 * In classic MMU format, puds and pmds are folded in to
764 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
765 * group of L1 entries making up one logical pointer to
766 * an L2 table (2MB), where as PMDs refer to the individual
767 * L1 entries (1MB). Hence increment to get the correct
768 * offset for odd 1MB sections.
769 * (See arch/arm/include/asm/pgtable-2level.h)
770 */
771 if (addr & SECTION_SIZE)
772 pmd++;
773 #endif
774 do {
775 *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
776 phys += SECTION_SIZE;
777 } while (pmd++, addr += SECTION_SIZE, addr != end);
778
779 flush_pmd_entry(p);
780 }
781
782 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
783 unsigned long end, phys_addr_t phys,
784 const struct mem_type *type,
785 void *(*alloc)(unsigned long sz), bool ng)
786 {
787 pmd_t *pmd = pmd_offset(pud, addr);
788 unsigned long next;
789
790 do {
791 /*
792 * With LPAE, we must loop over to map
793 * all the pmds for the given range.
794 */
795 next = pmd_addr_end(addr, end);
796
797 /*
798 * Try a section mapping - addr, next and phys must all be
799 * aligned to a section boundary.
800 */
801 if (type->prot_sect &&
802 ((addr | next | phys) & ~SECTION_MASK) == 0) {
803 __map_init_section(pmd, addr, next, phys, type, ng);
804 } else {
805 alloc_init_pte(pmd, addr, next,
806 __phys_to_pfn(phys), type, alloc, ng);
807 }
808
809 phys += next - addr;
810
811 } while (pmd++, addr = next, addr != end);
812 }
813
814 static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
815 unsigned long end, phys_addr_t phys,
816 const struct mem_type *type,
817 void *(*alloc)(unsigned long sz), bool ng)
818 {
819 pud_t *pud = pud_offset(p4d, addr);
820 unsigned long next;
821
822 do {
823 next = pud_addr_end(addr, end);
824 alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
825 phys += next - addr;
826 } while (pud++, addr = next, addr != end);
827 }
828
829 static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
830 unsigned long end, phys_addr_t phys,
831 const struct mem_type *type,
832 void *(*alloc)(unsigned long sz), bool ng)
833 {
834 p4d_t *p4d = p4d_offset(pgd, addr);
835 unsigned long next;
836
837 do {
838 next = p4d_addr_end(addr, end);
839 alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
840 phys += next - addr;
841 } while (p4d++, addr = next, addr != end);
842 }
843
844 #ifndef CONFIG_ARM_LPAE
845 static void __init create_36bit_mapping(struct mm_struct *mm,
846 struct map_desc *md,
847 const struct mem_type *type,
848 bool ng)
849 {
850 unsigned long addr, length, end;
851 phys_addr_t phys;
852 pgd_t *pgd;
853
854 addr = md->virtual;
855 phys = __pfn_to_phys(md->pfn);
856 length = PAGE_ALIGN(md->length);
857
858 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
859 pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
860 (long long)__pfn_to_phys((u64)md->pfn), addr);
861 return;
862 }
863
864 /* N.B. ARMv6 supersections are only defined to work with domain 0.
865 * Since domain assignments can in fact be arbitrary, the
866 * 'domain == 0' check below is required to insure that ARMv6
867 * supersections are only allocated for domain 0 regardless
868 * of the actual domain assignments in use.
869 */
870 if (type->domain) {
871 pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
872 (long long)__pfn_to_phys((u64)md->pfn), addr);
873 return;
874 }
875
876 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
877 pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
878 (long long)__pfn_to_phys((u64)md->pfn), addr);
879 return;
880 }
881
882 /*
883 * Shift bits [35:32] of address into bits [23:20] of PMD
884 * (See ARMv6 spec).
885 */
886 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
887
888 pgd = pgd_offset(mm, addr);
889 end = addr + length;
890 do {
891 p4d_t *p4d = p4d_offset(pgd, addr);
892 pud_t *pud = pud_offset(p4d, addr);
893 pmd_t *pmd = pmd_offset(pud, addr);
894 int i;
895
896 for (i = 0; i < 16; i++)
897 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
898 (ng ? PMD_SECT_nG : 0));
899
900 addr += SUPERSECTION_SIZE;
901 phys += SUPERSECTION_SIZE;
902 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
903 } while (addr != end);
904 }
905 #endif /* !CONFIG_ARM_LPAE */
906
907 static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
908 void *(*alloc)(unsigned long sz),
909 bool ng)
910 {
911 unsigned long addr, length, end;
912 phys_addr_t phys;
913 const struct mem_type *type;
914 pgd_t *pgd;
915
916 type = &mem_types[md->type];
917
918 #ifndef CONFIG_ARM_LPAE
919 /*
920 * Catch 36-bit addresses
921 */
922 if (md->pfn >= 0x100000) {
923 create_36bit_mapping(mm, md, type, ng);
924 return;
925 }
926 #endif
927
928 addr = md->virtual & PAGE_MASK;
929 phys = __pfn_to_phys(md->pfn);
930 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
931
932 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
933 pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
934 (long long)__pfn_to_phys(md->pfn), addr);
935 return;
936 }
937
938 pgd = pgd_offset(mm, addr);
939 end = addr + length;
940 do {
941 unsigned long next = pgd_addr_end(addr, end);
942
943 alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
944
945 phys += next - addr;
946 addr = next;
947 } while (pgd++, addr != end);
948 }
949
950 /*
951 * Create the page directory entries and any necessary
952 * page tables for the mapping specified by `md'. We
953 * are able to cope here with varying sizes and address
954 * offsets, and we take full advantage of sections and
955 * supersections.
956 */
957 static void __init create_mapping(struct map_desc *md)
958 {
959 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
960 pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
961 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
962 return;
963 }
964
965 if (md->type == MT_DEVICE &&
966 md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
967 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
968 pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
969 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
970 }
971
972 __create_mapping(&init_mm, md, early_alloc, false);
973 }
974
975 void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
976 bool ng)
977 {
978 #ifdef CONFIG_ARM_LPAE
979 p4d_t *p4d;
980 pud_t *pud;
981
982 p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
983 if (WARN_ON(!p4d))
984 return;
985 pud = pud_alloc(mm, p4d, md->virtual);
986 if (WARN_ON(!pud))
987 return;
988 pmd_alloc(mm, pud, 0);
989 #endif
990 __create_mapping(mm, md, late_alloc, ng);
991 }
992
993 /*
994 * Create the architecture specific mappings
995 */
996 void __init iotable_init(struct map_desc *io_desc, int nr)
997 {
998 struct map_desc *md;
999 struct vm_struct *vm;
1000 struct static_vm *svm;
1001
1002 if (!nr)
1003 return;
1004
1005 svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1006 if (!svm)
1007 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1008 __func__, sizeof(*svm) * nr, __alignof__(*svm));
1009
1010 for (md = io_desc; nr; md++, nr--) {
1011 create_mapping(md);
1012
1013 vm = &svm->vm;
1014 vm->addr = (void *)(md->virtual & PAGE_MASK);
1015 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1016 vm->phys_addr = __pfn_to_phys(md->pfn);
1017 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1018 vm->flags |= VM_ARM_MTYPE(md->type);
1019 vm->caller = iotable_init;
1020 add_static_vm_early(svm++);
1021 }
1022 }
1023
1024 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1025 void *caller)
1026 {
1027 struct vm_struct *vm;
1028 struct static_vm *svm;
1029
1030 svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1031 if (!svm)
1032 panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1033 __func__, sizeof(*svm), __alignof__(*svm));
1034
1035 vm = &svm->vm;
1036 vm->addr = (void *)addr;
1037 vm->size = size;
1038 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1039 vm->caller = caller;
1040 add_static_vm_early(svm);
1041 }
1042
1043 #ifndef CONFIG_ARM_LPAE
1044
1045 /*
1046 * The Linux PMD is made of two consecutive section entries covering 2MB
1047 * (see definition in include/asm/pgtable-2level.h). However a call to
1048 * create_mapping() may optimize static mappings by using individual
1049 * 1MB section mappings. This leaves the actual PMD potentially half
1050 * initialized if the top or bottom section entry isn't used, leaving it
1051 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1052 * the virtual space left free by that unused section entry.
1053 *
1054 * Let's avoid the issue by inserting dummy vm entries covering the unused
1055 * PMD halves once the static mappings are in place.
1056 */
1057
1058 static void __init pmd_empty_section_gap(unsigned long addr)
1059 {
1060 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1061 }
1062
1063 static void __init fill_pmd_gaps(void)
1064 {
1065 struct static_vm *svm;
1066 struct vm_struct *vm;
1067 unsigned long addr, next = 0;
1068 pmd_t *pmd;
1069
1070 list_for_each_entry(svm, &static_vmlist, list) {
1071 vm = &svm->vm;
1072 addr = (unsigned long)vm->addr;
1073 if (addr < next)
1074 continue;
1075
1076 /*
1077 * Check if this vm starts on an odd section boundary.
1078 * If so and the first section entry for this PMD is free
1079 * then we block the corresponding virtual address.
1080 */
1081 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1082 pmd = pmd_off_k(addr);
1083 if (pmd_none(*pmd))
1084 pmd_empty_section_gap(addr & PMD_MASK);
1085 }
1086
1087 /*
1088 * Then check if this vm ends on an odd section boundary.
1089 * If so and the second section entry for this PMD is empty
1090 * then we block the corresponding virtual address.
1091 */
1092 addr += vm->size;
1093 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1094 pmd = pmd_off_k(addr) + 1;
1095 if (pmd_none(*pmd))
1096 pmd_empty_section_gap(addr);
1097 }
1098
1099 /* no need to look at any vm entry until we hit the next PMD */
1100 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1101 }
1102 }
1103
1104 #else
1105 #define fill_pmd_gaps() do { } while (0)
1106 #endif
1107
1108 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1109 static void __init pci_reserve_io(void)
1110 {
1111 struct static_vm *svm;
1112
1113 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1114 if (svm)
1115 return;
1116
1117 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1118 }
1119 #else
1120 #define pci_reserve_io() do { } while (0)
1121 #endif
1122
1123 #ifdef CONFIG_DEBUG_LL
1124 void __init debug_ll_io_init(void)
1125 {
1126 struct map_desc map;
1127
1128 debug_ll_addr(&map.pfn, &map.virtual);
1129 if (!map.pfn || !map.virtual)
1130 return;
1131 map.pfn = __phys_to_pfn(map.pfn);
1132 map.virtual &= PAGE_MASK;
1133 map.length = PAGE_SIZE;
1134 map.type = MT_DEVICE;
1135 iotable_init(&map, 1);
1136 }
1137 #endif
1138
1139 static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1140
1141 /*
1142 * vmalloc=size forces the vmalloc area to be exactly 'size'
1143 * bytes. This can be used to increase (or decrease) the vmalloc
1144 * area - the default is 240MiB.
1145 */
1146 static int __init early_vmalloc(char *arg)
1147 {
1148 unsigned long vmalloc_reserve = memparse(arg, NULL);
1149 unsigned long vmalloc_max;
1150
1151 if (vmalloc_reserve < SZ_16M) {
1152 vmalloc_reserve = SZ_16M;
1153 pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1154 vmalloc_reserve >> 20);
1155 }
1156
1157 vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1158 if (vmalloc_reserve > vmalloc_max) {
1159 vmalloc_reserve = vmalloc_max;
1160 pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1161 vmalloc_reserve >> 20);
1162 }
1163
1164 vmalloc_size = vmalloc_reserve;
1165 return 0;
1166 }
1167 early_param("vmalloc", early_vmalloc);
1168
1169 phys_addr_t arm_lowmem_limit __initdata = 0;
1170
1171 void __init adjust_lowmem_bounds(void)
1172 {
1173 phys_addr_t block_start, block_end, memblock_limit = 0;
1174 u64 vmalloc_limit, i;
1175 phys_addr_t lowmem_limit = 0;
1176
1177 /*
1178 * Let's use our own (unoptimized) equivalent of __pa() that is
1179 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1180 * The result is used as the upper bound on physical memory address
1181 * and may itself be outside the valid range for which phys_addr_t
1182 * and therefore __pa() is defined.
1183 */
1184 vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1185 PAGE_OFFSET + PHYS_OFFSET;
1186
1187 /*
1188 * The first usable region must be PMD aligned. Mark its start
1189 * as MEMBLOCK_NOMAP if it isn't
1190 */
1191 for_each_mem_range(i, &block_start, &block_end) {
1192 if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1193 phys_addr_t len;
1194
1195 len = round_up(block_start, PMD_SIZE) - block_start;
1196 memblock_mark_nomap(block_start, len);
1197 }
1198 break;
1199 }
1200
1201 for_each_mem_range(i, &block_start, &block_end) {
1202 if (block_start < vmalloc_limit) {
1203 if (block_end > lowmem_limit)
1204 /*
1205 * Compare as u64 to ensure vmalloc_limit does
1206 * not get truncated. block_end should always
1207 * fit in phys_addr_t so there should be no
1208 * issue with assignment.
1209 */
1210 lowmem_limit = min_t(u64,
1211 vmalloc_limit,
1212 block_end);
1213
1214 /*
1215 * Find the first non-pmd-aligned page, and point
1216 * memblock_limit at it. This relies on rounding the
1217 * limit down to be pmd-aligned, which happens at the
1218 * end of this function.
1219 *
1220 * With this algorithm, the start or end of almost any
1221 * bank can be non-pmd-aligned. The only exception is
1222 * that the start of the bank 0 must be section-
1223 * aligned, since otherwise memory would need to be
1224 * allocated when mapping the start of bank 0, which
1225 * occurs before any free memory is mapped.
1226 */
1227 if (!memblock_limit) {
1228 if (!IS_ALIGNED(block_start, PMD_SIZE))
1229 memblock_limit = block_start;
1230 else if (!IS_ALIGNED(block_end, PMD_SIZE))
1231 memblock_limit = lowmem_limit;
1232 }
1233
1234 }
1235 }
1236
1237 arm_lowmem_limit = lowmem_limit;
1238
1239 high_memory = __va(arm_lowmem_limit - 1) + 1;
1240
1241 if (!memblock_limit)
1242 memblock_limit = arm_lowmem_limit;
1243
1244 /*
1245 * Round the memblock limit down to a pmd size. This
1246 * helps to ensure that we will allocate memory from the
1247 * last full pmd, which should be mapped.
1248 */
1249 memblock_limit = round_down(memblock_limit, PMD_SIZE);
1250
1251 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1252 if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1253 phys_addr_t end = memblock_end_of_DRAM();
1254
1255 pr_notice("Ignoring RAM at %pa-%pa\n",
1256 &memblock_limit, &end);
1257 pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1258
1259 memblock_remove(memblock_limit, end - memblock_limit);
1260 }
1261 }
1262
1263 memblock_set_current_limit(memblock_limit);
1264 }
1265
1266 static __init void prepare_page_table(void)
1267 {
1268 unsigned long addr;
1269 phys_addr_t end;
1270
1271 /*
1272 * Clear out all the mappings below the kernel image.
1273 */
1274 #ifdef CONFIG_KASAN
1275 /*
1276 * KASan's shadow memory inserts itself between the TASK_SIZE
1277 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1278 */
1279 for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1280 pmd_clear(pmd_off_k(addr));
1281 /*
1282 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1283 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1284 * are using a thumb-compiled kernel, there there will be 8MB more
1285 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1286 */
1287 for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1288 pmd_clear(pmd_off_k(addr));
1289 #else
1290 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1291 pmd_clear(pmd_off_k(addr));
1292 #endif
1293
1294 #ifdef CONFIG_XIP_KERNEL
1295 /* The XIP kernel is mapped in the module area -- skip over it */
1296 addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1297 #endif
1298 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1299 pmd_clear(pmd_off_k(addr));
1300
1301 /*
1302 * Find the end of the first block of lowmem.
1303 */
1304 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1305 if (end >= arm_lowmem_limit)
1306 end = arm_lowmem_limit;
1307
1308 /*
1309 * Clear out all the kernel space mappings, except for the first
1310 * memory bank, up to the vmalloc region.
1311 */
1312 for (addr = __phys_to_virt(end);
1313 addr < VMALLOC_START; addr += PMD_SIZE)
1314 pmd_clear(pmd_off_k(addr));
1315 }
1316
1317 #ifdef CONFIG_ARM_LPAE
1318 /* the first page is reserved for pgd */
1319 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1320 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1321 #else
1322 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1323 #endif
1324
1325 /*
1326 * Reserve the special regions of memory
1327 */
1328 void __init arm_mm_memblock_reserve(void)
1329 {
1330 /*
1331 * Reserve the page tables. These are already in use,
1332 * and can only be in node 0.
1333 */
1334 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1335
1336 #ifdef CONFIG_SA1111
1337 /*
1338 * Because of the SA1111 DMA bug, we want to preserve our
1339 * precious DMA-able memory...
1340 */
1341 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1342 #endif
1343 }
1344
1345 /*
1346 * Set up the device mappings. Since we clear out the page tables for all
1347 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1348 * device mappings. This means earlycon can be used to debug this function
1349 * Any other function or debugging method which may touch any device _will_
1350 * crash the kernel.
1351 */
1352 static void __init devicemaps_init(const struct machine_desc *mdesc)
1353 {
1354 struct map_desc map;
1355 unsigned long addr;
1356 void *vectors;
1357
1358 /*
1359 * Allocate the vector page early.
1360 */
1361 vectors = early_alloc(PAGE_SIZE * 2);
1362
1363 early_trap_init(vectors);
1364
1365 /*
1366 * Clear page table except top pmd used by early fixmaps
1367 */
1368 for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1369 pmd_clear(pmd_off_k(addr));
1370
1371 if (__atags_pointer) {
1372 /* create a read-only mapping of the device tree */
1373 map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1374 map.virtual = FDT_FIXED_BASE;
1375 map.length = FDT_FIXED_SIZE;
1376 map.type = MT_MEMORY_RO;
1377 create_mapping(&map);
1378 }
1379
1380 /*
1381 * Map the kernel if it is XIP.
1382 * It is always first in the modulearea.
1383 */
1384 #ifdef CONFIG_XIP_KERNEL
1385 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1386 map.virtual = MODULES_VADDR;
1387 map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1388 map.type = MT_ROM;
1389 create_mapping(&map);
1390 #endif
1391
1392 /*
1393 * Map the cache flushing regions.
1394 */
1395 #ifdef FLUSH_BASE
1396 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1397 map.virtual = FLUSH_BASE;
1398 map.length = SZ_1M;
1399 map.type = MT_CACHECLEAN;
1400 create_mapping(&map);
1401 #endif
1402 #ifdef FLUSH_BASE_MINICACHE
1403 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1404 map.virtual = FLUSH_BASE_MINICACHE;
1405 map.length = SZ_1M;
1406 map.type = MT_MINICLEAN;
1407 create_mapping(&map);
1408 #endif
1409
1410 /*
1411 * Create a mapping for the machine vectors at the high-vectors
1412 * location (0xffff0000). If we aren't using high-vectors, also
1413 * create a mapping at the low-vectors virtual address.
1414 */
1415 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1416 map.virtual = 0xffff0000;
1417 map.length = PAGE_SIZE;
1418 #ifdef CONFIG_KUSER_HELPERS
1419 map.type = MT_HIGH_VECTORS;
1420 #else
1421 map.type = MT_LOW_VECTORS;
1422 #endif
1423 create_mapping(&map);
1424
1425 if (!vectors_high()) {
1426 map.virtual = 0;
1427 map.length = PAGE_SIZE * 2;
1428 map.type = MT_LOW_VECTORS;
1429 create_mapping(&map);
1430 }
1431
1432 /* Now create a kernel read-only mapping */
1433 map.pfn += 1;
1434 map.virtual = 0xffff0000 + PAGE_SIZE;
1435 map.length = PAGE_SIZE;
1436 map.type = MT_LOW_VECTORS;
1437 create_mapping(&map);
1438
1439 /*
1440 * Ask the machine support to map in the statically mapped devices.
1441 */
1442 if (mdesc->map_io)
1443 mdesc->map_io();
1444 else
1445 debug_ll_io_init();
1446 fill_pmd_gaps();
1447
1448 /* Reserve fixed i/o space in VMALLOC region */
1449 pci_reserve_io();
1450
1451 /*
1452 * Finally flush the caches and tlb to ensure that we're in a
1453 * consistent state wrt the writebuffer. This also ensures that
1454 * any write-allocated cache lines in the vector page are written
1455 * back. After this point, we can start to touch devices again.
1456 */
1457 local_flush_tlb_all();
1458 flush_cache_all();
1459
1460 /* Enable asynchronous aborts */
1461 early_abt_enable();
1462 }
1463
1464 static void __init kmap_init(void)
1465 {
1466 #ifdef CONFIG_HIGHMEM
1467 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1468 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1469 #endif
1470
1471 early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1472 _PAGE_KERNEL_TABLE);
1473 }
1474
1475 static void __init map_lowmem(void)
1476 {
1477 phys_addr_t start, end;
1478 u64 i;
1479
1480 /* Map all the lowmem memory banks. */
1481 for_each_mem_range(i, &start, &end) {
1482 struct map_desc map;
1483
1484 pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1485 (long long)start, (long long)end);
1486 if (end > arm_lowmem_limit)
1487 end = arm_lowmem_limit;
1488 if (start >= end)
1489 break;
1490
1491 /*
1492 * If our kernel image is in the VMALLOC area we need to remove
1493 * the kernel physical memory from lowmem since the kernel will
1494 * be mapped separately.
1495 *
1496 * The kernel will typically be at the very start of lowmem,
1497 * but any placement relative to memory ranges is possible.
1498 *
1499 * If the memblock contains the kernel, we have to chisel out
1500 * the kernel memory from it and map each part separately. We
1501 * get 6 different theoretical cases:
1502 *
1503 * +--------+ +--------+
1504 * +-- start --+ +--------+ | Kernel | | Kernel |
1505 * | | | Kernel | | case 2 | | case 5 |
1506 * | | | case 1 | +--------+ | | +--------+
1507 * | Memory | +--------+ | | | Kernel |
1508 * | range | +--------+ | | | case 6 |
1509 * | | | Kernel | +--------+ | | +--------+
1510 * | | | case 3 | | Kernel | | |
1511 * +-- end ----+ +--------+ | case 4 | | |
1512 * +--------+ +--------+
1513 */
1514
1515 /* Case 5: kernel covers range, don't map anything, should be rare */
1516 if ((start > kernel_sec_start) && (end < kernel_sec_end))
1517 break;
1518
1519 /* Cases where the kernel is starting inside the range */
1520 if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1521 /* Case 6: kernel is embedded in the range, we need two mappings */
1522 if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1523 /* Map memory below the kernel */
1524 map.pfn = __phys_to_pfn(start);
1525 map.virtual = __phys_to_virt(start);
1526 map.length = kernel_sec_start - start;
1527 map.type = MT_MEMORY_RW;
1528 create_mapping(&map);
1529 /* Map memory above the kernel */
1530 map.pfn = __phys_to_pfn(kernel_sec_end);
1531 map.virtual = __phys_to_virt(kernel_sec_end);
1532 map.length = end - kernel_sec_end;
1533 map.type = MT_MEMORY_RW;
1534 create_mapping(&map);
1535 break;
1536 }
1537 /* Case 1: kernel and range start at the same address, should be common */
1538 if (kernel_sec_start == start)
1539 start = kernel_sec_end;
1540 /* Case 3: kernel and range end at the same address, should be rare */
1541 if (kernel_sec_end == end)
1542 end = kernel_sec_start;
1543 } else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1544 /* Case 2: kernel ends inside range, starts below it */
1545 start = kernel_sec_end;
1546 } else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1547 /* Case 4: kernel starts inside range, ends above it */
1548 end = kernel_sec_start;
1549 }
1550 map.pfn = __phys_to_pfn(start);
1551 map.virtual = __phys_to_virt(start);
1552 map.length = end - start;
1553 map.type = MT_MEMORY_RW;
1554 create_mapping(&map);
1555 }
1556 }
1557
1558 static void __init map_kernel(void)
1559 {
1560 /*
1561 * We use the well known kernel section start and end and split the area in the
1562 * middle like this:
1563 * . .
1564 * | RW memory |
1565 * +----------------+ kernel_x_start
1566 * | Executable |
1567 * | kernel memory |
1568 * +----------------+ kernel_x_end / kernel_nx_start
1569 * | Non-executable |
1570 * | kernel memory |
1571 * +----------------+ kernel_nx_end
1572 * | RW memory |
1573 * . .
1574 *
1575 * Notice that we are dealing with section sized mappings here so all of this
1576 * will be bumped to the closest section boundary. This means that some of the
1577 * non-executable part of the kernel memory is actually mapped as executable.
1578 * This will only persist until we turn on proper memory management later on
1579 * and we remap the whole kernel with page granularity.
1580 */
1581 phys_addr_t kernel_x_start = kernel_sec_start;
1582 phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1583 phys_addr_t kernel_nx_start = kernel_x_end;
1584 phys_addr_t kernel_nx_end = kernel_sec_end;
1585 struct map_desc map;
1586
1587 map.pfn = __phys_to_pfn(kernel_x_start);
1588 map.virtual = __phys_to_virt(kernel_x_start);
1589 map.length = kernel_x_end - kernel_x_start;
1590 map.type = MT_MEMORY_RWX;
1591 create_mapping(&map);
1592
1593 /* If the nx part is small it may end up covered by the tail of the RWX section */
1594 if (kernel_x_end == kernel_nx_end)
1595 return;
1596
1597 map.pfn = __phys_to_pfn(kernel_nx_start);
1598 map.virtual = __phys_to_virt(kernel_nx_start);
1599 map.length = kernel_nx_end - kernel_nx_start;
1600 map.type = MT_MEMORY_RW;
1601 create_mapping(&map);
1602 }
1603
1604 #ifdef CONFIG_ARM_PV_FIXUP
1605 typedef void pgtables_remap(long long offset, unsigned long pgd);
1606 pgtables_remap lpae_pgtables_remap_asm;
1607
1608 /*
1609 * early_paging_init() recreates boot time page table setup, allowing machines
1610 * to switch over to a high (>4G) address space on LPAE systems
1611 */
1612 static void __init early_paging_init(const struct machine_desc *mdesc)
1613 {
1614 pgtables_remap *lpae_pgtables_remap;
1615 unsigned long pa_pgd;
1616 unsigned int cr, ttbcr;
1617 long long offset;
1618
1619 if (!mdesc->pv_fixup)
1620 return;
1621
1622 offset = mdesc->pv_fixup();
1623 if (offset == 0)
1624 return;
1625
1626 /*
1627 * Offset the kernel section physical offsets so that the kernel
1628 * mapping will work out later on.
1629 */
1630 kernel_sec_start += offset;
1631 kernel_sec_end += offset;
1632
1633 /*
1634 * Get the address of the remap function in the 1:1 identity
1635 * mapping setup by the early page table assembly code. We
1636 * must get this prior to the pv update. The following barrier
1637 * ensures that this is complete before we fixup any P:V offsets.
1638 */
1639 lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1640 pa_pgd = __pa(swapper_pg_dir);
1641 barrier();
1642
1643 pr_info("Switching physical address space to 0x%08llx\n",
1644 (u64)PHYS_OFFSET + offset);
1645
1646 /* Re-set the phys pfn offset, and the pv offset */
1647 __pv_offset += offset;
1648 __pv_phys_pfn_offset += PFN_DOWN(offset);
1649
1650 /* Run the patch stub to update the constants */
1651 fixup_pv_table(&__pv_table_begin,
1652 (&__pv_table_end - &__pv_table_begin) << 2);
1653
1654 /*
1655 * We changing not only the virtual to physical mapping, but also
1656 * the physical addresses used to access memory. We need to flush
1657 * all levels of cache in the system with caching disabled to
1658 * ensure that all data is written back, and nothing is prefetched
1659 * into the caches. We also need to prevent the TLB walkers
1660 * allocating into the caches too. Note that this is ARMv7 LPAE
1661 * specific.
1662 */
1663 cr = get_cr();
1664 set_cr(cr & ~(CR_I | CR_C));
1665 asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1666 asm volatile("mcr p15, 0, %0, c2, c0, 2"
1667 : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1668 flush_cache_all();
1669
1670 /*
1671 * Fixup the page tables - this must be in the idmap region as
1672 * we need to disable the MMU to do this safely, and hence it
1673 * needs to be assembly. It's fairly simple, as we're using the
1674 * temporary tables setup by the initial assembly code.
1675 */
1676 lpae_pgtables_remap(offset, pa_pgd);
1677
1678 /* Re-enable the caches and cacheable TLB walks */
1679 asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1680 set_cr(cr);
1681 }
1682
1683 #else
1684
1685 static void __init early_paging_init(const struct machine_desc *mdesc)
1686 {
1687 long long offset;
1688
1689 if (!mdesc->pv_fixup)
1690 return;
1691
1692 offset = mdesc->pv_fixup();
1693 if (offset == 0)
1694 return;
1695
1696 pr_crit("Physical address space modification is only to support Keystone2.\n");
1697 pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1698 pr_crit("feature. Your kernel may crash now, have a good day.\n");
1699 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1700 }
1701
1702 #endif
1703
1704 static void __init early_fixmap_shutdown(void)
1705 {
1706 int i;
1707 unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1708
1709 pte_offset_fixmap = pte_offset_late_fixmap;
1710 pmd_clear(fixmap_pmd(va));
1711 local_flush_tlb_kernel_page(va);
1712
1713 for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1714 pte_t *pte;
1715 struct map_desc map;
1716
1717 map.virtual = fix_to_virt(i);
1718 pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1719
1720 /* Only i/o device mappings are supported ATM */
1721 if (pte_none(*pte) ||
1722 (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1723 continue;
1724
1725 map.pfn = pte_pfn(*pte);
1726 map.type = MT_DEVICE;
1727 map.length = PAGE_SIZE;
1728
1729 create_mapping(&map);
1730 }
1731 }
1732
1733 /*
1734 * paging_init() sets up the page tables, initialises the zone memory
1735 * maps, and sets up the zero page, bad page and bad page tables.
1736 */
1737 void __init paging_init(const struct machine_desc *mdesc)
1738 {
1739 void *zero_page;
1740
1741 pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1742 kernel_sec_start, kernel_sec_end);
1743
1744 prepare_page_table();
1745 map_lowmem();
1746 memblock_set_current_limit(arm_lowmem_limit);
1747 pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1748 /*
1749 * After this point early_alloc(), i.e. the memblock allocator, can
1750 * be used
1751 */
1752 map_kernel();
1753 dma_contiguous_remap();
1754 early_fixmap_shutdown();
1755 devicemaps_init(mdesc);
1756 kmap_init();
1757 tcm_init();
1758
1759 top_pmd = pmd_off_k(0xffff0000);
1760
1761 /* allocate the zero page. */
1762 zero_page = early_alloc(PAGE_SIZE);
1763
1764 bootmem_init();
1765
1766 empty_zero_page = virt_to_page(zero_page);
1767 __flush_dcache_page(NULL, empty_zero_page);
1768 }
1769
1770 void __init early_mm_init(const struct machine_desc *mdesc)
1771 {
1772 build_mem_type_table();
1773 early_paging_init(mdesc);
1774 }
1775
1776 void set_pte_at(struct mm_struct *mm, unsigned long addr,
1777 pte_t *ptep, pte_t pteval)
1778 {
1779 unsigned long ext = 0;
1780
1781 if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1782 if (!pte_special(pteval))
1783 __sync_icache_dcache(pteval);
1784 ext |= PTE_EXT_NG;
1785 }
1786
1787 set_pte_ext(ptep, pteval, ext);
1788 }