]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm/mm/mmu.c
Merge remote-tracking branches 'asoc/fix/alc5632', 'asoc/fix/cs42l52', 'asoc/fix...
[mirror_ubuntu-artful-kernel.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
34
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38
39 #include "mm.h"
40 #include "tcm.h"
41
42 /*
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
45 */
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
48
49 /*
50 * The pmd table for the upper-most set of pages.
51 */
52 pmd_t *top_pmd;
53
54 #define CPOLICY_UNCACHED 0
55 #define CPOLICY_BUFFERED 1
56 #define CPOLICY_WRITETHROUGH 2
57 #define CPOLICY_WRITEBACK 3
58 #define CPOLICY_WRITEALLOC 4
59
60 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61 static unsigned int ecc_mask __initdata = 0;
62 pgprot_t pgprot_user;
63 pgprot_t pgprot_kernel;
64 pgprot_t pgprot_hyp_device;
65 pgprot_t pgprot_s2;
66 pgprot_t pgprot_s2_device;
67
68 EXPORT_SYMBOL(pgprot_user);
69 EXPORT_SYMBOL(pgprot_kernel);
70
71 struct cachepolicy {
72 const char policy[16];
73 unsigned int cr_mask;
74 pmdval_t pmd;
75 pteval_t pte;
76 pteval_t pte_s2;
77 };
78
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy) policy
81 #else
82 #define s2_policy(policy) 0
83 #endif
84
85 static struct cachepolicy cache_policies[] __initdata = {
86 {
87 .policy = "uncached",
88 .cr_mask = CR_W|CR_C,
89 .pmd = PMD_SECT_UNCACHED,
90 .pte = L_PTE_MT_UNCACHED,
91 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
92 }, {
93 .policy = "buffered",
94 .cr_mask = CR_C,
95 .pmd = PMD_SECT_BUFFERED,
96 .pte = L_PTE_MT_BUFFERABLE,
97 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
98 }, {
99 .policy = "writethrough",
100 .cr_mask = 0,
101 .pmd = PMD_SECT_WT,
102 .pte = L_PTE_MT_WRITETHROUGH,
103 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 }, {
105 .policy = "writeback",
106 .cr_mask = 0,
107 .pmd = PMD_SECT_WB,
108 .pte = L_PTE_MT_WRITEBACK,
109 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
110 }, {
111 .policy = "writealloc",
112 .cr_mask = 0,
113 .pmd = PMD_SECT_WBWA,
114 .pte = L_PTE_MT_WRITEALLOC,
115 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
116 }
117 };
118
119 #ifdef CONFIG_CPU_CP15
120 /*
121 * These are useful for identifying cache coherency
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
125 */
126 static int __init early_cachepolicy(char *p)
127 {
128 int i;
129
130 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 int len = strlen(cache_policies[i].policy);
132
133 if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 cachepolicy = i;
135 cr_alignment &= ~cache_policies[i].cr_mask;
136 cr_no_alignment &= ~cache_policies[i].cr_mask;
137 break;
138 }
139 }
140 if (i == ARRAY_SIZE(cache_policies))
141 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
142 /*
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
147 * page tables.
148 */
149 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy = CPOLICY_WRITEBACK;
152 }
153 flush_cache_all();
154 set_cr(cr_alignment);
155 return 0;
156 }
157 early_param("cachepolicy", early_cachepolicy);
158
159 static int __init early_nocache(char *__unused)
160 {
161 char *p = "buffered";
162 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 early_cachepolicy(p);
164 return 0;
165 }
166 early_param("nocache", early_nocache);
167
168 static int __init early_nowrite(char *__unused)
169 {
170 char *p = "uncached";
171 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 early_cachepolicy(p);
173 return 0;
174 }
175 early_param("nowb", early_nowrite);
176
177 #ifndef CONFIG_ARM_LPAE
178 static int __init early_ecc(char *p)
179 {
180 if (memcmp(p, "on", 2) == 0)
181 ecc_mask = PMD_PROTECTION;
182 else if (memcmp(p, "off", 3) == 0)
183 ecc_mask = 0;
184 return 0;
185 }
186 early_param("ecc", early_ecc);
187 #endif
188
189 static int __init noalign_setup(char *__unused)
190 {
191 cr_alignment &= ~CR_A;
192 cr_no_alignment &= ~CR_A;
193 set_cr(cr_alignment);
194 return 1;
195 }
196 __setup("noalign", noalign_setup);
197
198 #ifndef CONFIG_SMP
199 void adjust_cr(unsigned long mask, unsigned long set)
200 {
201 unsigned long flags;
202
203 mask &= ~CR_A;
204
205 set &= mask;
206
207 local_irq_save(flags);
208
209 cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 cr_alignment = (cr_alignment & ~mask) | set;
211
212 set_cr((get_cr() & ~mask) | set);
213
214 local_irq_restore(flags);
215 }
216 #endif
217
218 #else /* ifdef CONFIG_CPU_CP15 */
219
220 static int __init early_cachepolicy(char *p)
221 {
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
223 }
224 early_param("cachepolicy", early_cachepolicy);
225
226 static int __init noalign_setup(char *__unused)
227 {
228 pr_warning("noalign kernel parameter not supported without cp15\n");
229 }
230 __setup("noalign", noalign_setup);
231
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
233
234 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
236 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
237
238 static struct mem_type mem_types[] = {
239 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
240 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
241 L_PTE_SHARED,
242 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
243 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
244 L_PTE_SHARED,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
247 .domain = DOMAIN_IO,
248 },
249 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
250 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
251 .prot_l1 = PMD_TYPE_TABLE,
252 .prot_sect = PROT_SECT_DEVICE,
253 .domain = DOMAIN_IO,
254 },
255 [MT_DEVICE_CACHED] = { /* ioremap_cached */
256 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
257 .prot_l1 = PMD_TYPE_TABLE,
258 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
259 .domain = DOMAIN_IO,
260 },
261 [MT_DEVICE_WC] = { /* ioremap_wc */
262 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
263 .prot_l1 = PMD_TYPE_TABLE,
264 .prot_sect = PROT_SECT_DEVICE,
265 .domain = DOMAIN_IO,
266 },
267 [MT_UNCACHED] = {
268 .prot_pte = PROT_PTE_DEVICE,
269 .prot_l1 = PMD_TYPE_TABLE,
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 .domain = DOMAIN_IO,
272 },
273 [MT_CACHECLEAN] = {
274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275 .domain = DOMAIN_KERNEL,
276 },
277 #ifndef CONFIG_ARM_LPAE
278 [MT_MINICLEAN] = {
279 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
280 .domain = DOMAIN_KERNEL,
281 },
282 #endif
283 [MT_LOW_VECTORS] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_RDONLY,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .domain = DOMAIN_USER,
288 },
289 [MT_HIGH_VECTORS] = {
290 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
291 L_PTE_USER | L_PTE_RDONLY,
292 .prot_l1 = PMD_TYPE_TABLE,
293 .domain = DOMAIN_USER,
294 },
295 [MT_MEMORY_RWX] = {
296 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
297 .prot_l1 = PMD_TYPE_TABLE,
298 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
299 .domain = DOMAIN_KERNEL,
300 },
301 [MT_MEMORY_RW] = {
302 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 L_PTE_XN,
304 .prot_l1 = PMD_TYPE_TABLE,
305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 .domain = DOMAIN_KERNEL,
307 },
308 [MT_ROM] = {
309 .prot_sect = PMD_TYPE_SECT,
310 .domain = DOMAIN_KERNEL,
311 },
312 [MT_MEMORY_RWX_NONCACHED] = {
313 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
314 L_PTE_MT_BUFFERABLE,
315 .prot_l1 = PMD_TYPE_TABLE,
316 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
317 .domain = DOMAIN_KERNEL,
318 },
319 [MT_MEMORY_RW_DTCM] = {
320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 L_PTE_XN,
322 .prot_l1 = PMD_TYPE_TABLE,
323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
324 .domain = DOMAIN_KERNEL,
325 },
326 [MT_MEMORY_RWX_ITCM] = {
327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
328 .prot_l1 = PMD_TYPE_TABLE,
329 .domain = DOMAIN_KERNEL,
330 },
331 [MT_MEMORY_RW_SO] = {
332 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
333 L_PTE_MT_UNCACHED | L_PTE_XN,
334 .prot_l1 = PMD_TYPE_TABLE,
335 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
336 PMD_SECT_UNCACHED | PMD_SECT_XN,
337 .domain = DOMAIN_KERNEL,
338 },
339 [MT_MEMORY_DMA_READY] = {
340 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341 L_PTE_XN,
342 .prot_l1 = PMD_TYPE_TABLE,
343 .domain = DOMAIN_KERNEL,
344 },
345 };
346
347 const struct mem_type *get_mem_type(unsigned int type)
348 {
349 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
350 }
351 EXPORT_SYMBOL(get_mem_type);
352
353 #define PTE_SET_FN(_name, pteop) \
354 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
355 void *data) \
356 { \
357 pte_t pte = pteop(*ptep); \
358 \
359 set_pte_ext(ptep, pte, 0); \
360 return 0; \
361 } \
362
363 #define SET_MEMORY_FN(_name, callback) \
364 int set_memory_##_name(unsigned long addr, int numpages) \
365 { \
366 unsigned long start = addr; \
367 unsigned long size = PAGE_SIZE*numpages; \
368 unsigned end = start + size; \
369 \
370 if (start < MODULES_VADDR || start >= MODULES_END) \
371 return -EINVAL;\
372 \
373 if (end < MODULES_VADDR || end >= MODULES_END) \
374 return -EINVAL; \
375 \
376 apply_to_page_range(&init_mm, start, size, callback, NULL); \
377 flush_tlb_kernel_range(start, end); \
378 return 0;\
379 }
380
381 PTE_SET_FN(ro, pte_wrprotect)
382 PTE_SET_FN(rw, pte_mkwrite)
383 PTE_SET_FN(x, pte_mkexec)
384 PTE_SET_FN(nx, pte_mknexec)
385
386 SET_MEMORY_FN(ro, pte_set_ro)
387 SET_MEMORY_FN(rw, pte_set_rw)
388 SET_MEMORY_FN(x, pte_set_x)
389 SET_MEMORY_FN(nx, pte_set_nx)
390
391 /*
392 * Adjust the PMD section entries according to the CPU in use.
393 */
394 static void __init build_mem_type_table(void)
395 {
396 struct cachepolicy *cp;
397 unsigned int cr = get_cr();
398 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
399 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
400 int cpu_arch = cpu_architecture();
401 int i;
402
403 if (cpu_arch < CPU_ARCH_ARMv6) {
404 #if defined(CONFIG_CPU_DCACHE_DISABLE)
405 if (cachepolicy > CPOLICY_BUFFERED)
406 cachepolicy = CPOLICY_BUFFERED;
407 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
408 if (cachepolicy > CPOLICY_WRITETHROUGH)
409 cachepolicy = CPOLICY_WRITETHROUGH;
410 #endif
411 }
412 if (cpu_arch < CPU_ARCH_ARMv5) {
413 if (cachepolicy >= CPOLICY_WRITEALLOC)
414 cachepolicy = CPOLICY_WRITEBACK;
415 ecc_mask = 0;
416 }
417 if (is_smp())
418 cachepolicy = CPOLICY_WRITEALLOC;
419
420 /*
421 * Strip out features not present on earlier architectures.
422 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
423 * without extended page tables don't have the 'Shared' bit.
424 */
425 if (cpu_arch < CPU_ARCH_ARMv5)
426 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
427 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
428 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
429 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
430 mem_types[i].prot_sect &= ~PMD_SECT_S;
431
432 /*
433 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
434 * "update-able on write" bit on ARM610). However, Xscale and
435 * Xscale3 require this bit to be cleared.
436 */
437 if (cpu_is_xscale() || cpu_is_xsc3()) {
438 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
439 mem_types[i].prot_sect &= ~PMD_BIT4;
440 mem_types[i].prot_l1 &= ~PMD_BIT4;
441 }
442 } else if (cpu_arch < CPU_ARCH_ARMv6) {
443 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
444 if (mem_types[i].prot_l1)
445 mem_types[i].prot_l1 |= PMD_BIT4;
446 if (mem_types[i].prot_sect)
447 mem_types[i].prot_sect |= PMD_BIT4;
448 }
449 }
450
451 /*
452 * Mark the device areas according to the CPU/architecture.
453 */
454 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
455 if (!cpu_is_xsc3()) {
456 /*
457 * Mark device regions on ARMv6+ as execute-never
458 * to prevent speculative instruction fetches.
459 */
460 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
461 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
462 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
463 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
464
465 /* Also setup NX memory mapping */
466 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
467 }
468 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
469 /*
470 * For ARMv7 with TEX remapping,
471 * - shared device is SXCB=1100
472 * - nonshared device is SXCB=0100
473 * - write combine device mem is SXCB=0001
474 * (Uncached Normal memory)
475 */
476 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
477 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
478 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
479 } else if (cpu_is_xsc3()) {
480 /*
481 * For Xscale3,
482 * - shared device is TEXCB=00101
483 * - nonshared device is TEXCB=01000
484 * - write combine device mem is TEXCB=00100
485 * (Inner/Outer Uncacheable in xsc3 parlance)
486 */
487 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
488 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
489 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
490 } else {
491 /*
492 * For ARMv6 and ARMv7 without TEX remapping,
493 * - shared device is TEXCB=00001
494 * - nonshared device is TEXCB=01000
495 * - write combine device mem is TEXCB=00100
496 * (Uncached Normal in ARMv6 parlance).
497 */
498 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
499 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
500 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
501 }
502 } else {
503 /*
504 * On others, write combining is "Uncached/Buffered"
505 */
506 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
507 }
508
509 /*
510 * Now deal with the memory-type mappings
511 */
512 cp = &cache_policies[cachepolicy];
513 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
514 s2_pgprot = cp->pte_s2;
515 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
516 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
517
518 /*
519 * ARMv6 and above have extended page tables.
520 */
521 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
522 #ifndef CONFIG_ARM_LPAE
523 /*
524 * Mark cache clean areas and XIP ROM read only
525 * from SVC mode and no access from userspace.
526 */
527 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
528 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
529 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
530 #endif
531
532 if (is_smp()) {
533 /*
534 * Mark memory with the "shared" attribute
535 * for SMP systems
536 */
537 user_pgprot |= L_PTE_SHARED;
538 kern_pgprot |= L_PTE_SHARED;
539 vecs_pgprot |= L_PTE_SHARED;
540 s2_pgprot |= L_PTE_SHARED;
541 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
542 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
543 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
544 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
545 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
546 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
547 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
548 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
549 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
550 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
551 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
552 }
553 }
554
555 /*
556 * Non-cacheable Normal - intended for memory areas that must
557 * not cause dirty cache line writebacks when used
558 */
559 if (cpu_arch >= CPU_ARCH_ARMv6) {
560 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
561 /* Non-cacheable Normal is XCB = 001 */
562 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
563 PMD_SECT_BUFFERED;
564 } else {
565 /* For both ARMv6 and non-TEX-remapping ARMv7 */
566 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
567 PMD_SECT_TEX(1);
568 }
569 } else {
570 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
571 }
572
573 #ifdef CONFIG_ARM_LPAE
574 /*
575 * Do not generate access flag faults for the kernel mappings.
576 */
577 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
578 mem_types[i].prot_pte |= PTE_EXT_AF;
579 if (mem_types[i].prot_sect)
580 mem_types[i].prot_sect |= PMD_SECT_AF;
581 }
582 kern_pgprot |= PTE_EXT_AF;
583 vecs_pgprot |= PTE_EXT_AF;
584 #endif
585
586 for (i = 0; i < 16; i++) {
587 pteval_t v = pgprot_val(protection_map[i]);
588 protection_map[i] = __pgprot(v | user_pgprot);
589 }
590
591 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
592 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
593
594 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
595 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
596 L_PTE_DIRTY | kern_pgprot);
597 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
598 pgprot_s2_device = __pgprot(s2_device_pgprot);
599 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
600
601 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
602 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
603 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
604 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
605 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
606 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
607 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
608 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
609 mem_types[MT_ROM].prot_sect |= cp->pmd;
610
611 switch (cp->pmd) {
612 case PMD_SECT_WT:
613 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
614 break;
615 case PMD_SECT_WB:
616 case PMD_SECT_WBWA:
617 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
618 break;
619 }
620 pr_info("Memory policy: %sData cache %s\n",
621 ecc_mask ? "ECC enabled, " : "", cp->policy);
622
623 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
624 struct mem_type *t = &mem_types[i];
625 if (t->prot_l1)
626 t->prot_l1 |= PMD_DOMAIN(t->domain);
627 if (t->prot_sect)
628 t->prot_sect |= PMD_DOMAIN(t->domain);
629 }
630 }
631
632 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
633 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
634 unsigned long size, pgprot_t vma_prot)
635 {
636 if (!pfn_valid(pfn))
637 return pgprot_noncached(vma_prot);
638 else if (file->f_flags & O_SYNC)
639 return pgprot_writecombine(vma_prot);
640 return vma_prot;
641 }
642 EXPORT_SYMBOL(phys_mem_access_prot);
643 #endif
644
645 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
646
647 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
648 {
649 void *ptr = __va(memblock_alloc(sz, align));
650 memset(ptr, 0, sz);
651 return ptr;
652 }
653
654 static void __init *early_alloc(unsigned long sz)
655 {
656 return early_alloc_aligned(sz, sz);
657 }
658
659 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
660 {
661 if (pmd_none(*pmd)) {
662 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
663 __pmd_populate(pmd, __pa(pte), prot);
664 }
665 BUG_ON(pmd_bad(*pmd));
666 return pte_offset_kernel(pmd, addr);
667 }
668
669 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
670 unsigned long end, unsigned long pfn,
671 const struct mem_type *type)
672 {
673 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
674 do {
675 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
676 pfn++;
677 } while (pte++, addr += PAGE_SIZE, addr != end);
678 }
679
680 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
681 unsigned long end, phys_addr_t phys,
682 const struct mem_type *type)
683 {
684 pmd_t *p = pmd;
685
686 #ifndef CONFIG_ARM_LPAE
687 /*
688 * In classic MMU format, puds and pmds are folded in to
689 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
690 * group of L1 entries making up one logical pointer to
691 * an L2 table (2MB), where as PMDs refer to the individual
692 * L1 entries (1MB). Hence increment to get the correct
693 * offset for odd 1MB sections.
694 * (See arch/arm/include/asm/pgtable-2level.h)
695 */
696 if (addr & SECTION_SIZE)
697 pmd++;
698 #endif
699 do {
700 *pmd = __pmd(phys | type->prot_sect);
701 phys += SECTION_SIZE;
702 } while (pmd++, addr += SECTION_SIZE, addr != end);
703
704 flush_pmd_entry(p);
705 }
706
707 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
708 unsigned long end, phys_addr_t phys,
709 const struct mem_type *type)
710 {
711 pmd_t *pmd = pmd_offset(pud, addr);
712 unsigned long next;
713
714 do {
715 /*
716 * With LPAE, we must loop over to map
717 * all the pmds for the given range.
718 */
719 next = pmd_addr_end(addr, end);
720
721 /*
722 * Try a section mapping - addr, next and phys must all be
723 * aligned to a section boundary.
724 */
725 if (type->prot_sect &&
726 ((addr | next | phys) & ~SECTION_MASK) == 0) {
727 __map_init_section(pmd, addr, next, phys, type);
728 } else {
729 alloc_init_pte(pmd, addr, next,
730 __phys_to_pfn(phys), type);
731 }
732
733 phys += next - addr;
734
735 } while (pmd++, addr = next, addr != end);
736 }
737
738 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
739 unsigned long end, phys_addr_t phys,
740 const struct mem_type *type)
741 {
742 pud_t *pud = pud_offset(pgd, addr);
743 unsigned long next;
744
745 do {
746 next = pud_addr_end(addr, end);
747 alloc_init_pmd(pud, addr, next, phys, type);
748 phys += next - addr;
749 } while (pud++, addr = next, addr != end);
750 }
751
752 #ifndef CONFIG_ARM_LPAE
753 static void __init create_36bit_mapping(struct map_desc *md,
754 const struct mem_type *type)
755 {
756 unsigned long addr, length, end;
757 phys_addr_t phys;
758 pgd_t *pgd;
759
760 addr = md->virtual;
761 phys = __pfn_to_phys(md->pfn);
762 length = PAGE_ALIGN(md->length);
763
764 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
765 printk(KERN_ERR "MM: CPU does not support supersection "
766 "mapping for 0x%08llx at 0x%08lx\n",
767 (long long)__pfn_to_phys((u64)md->pfn), addr);
768 return;
769 }
770
771 /* N.B. ARMv6 supersections are only defined to work with domain 0.
772 * Since domain assignments can in fact be arbitrary, the
773 * 'domain == 0' check below is required to insure that ARMv6
774 * supersections are only allocated for domain 0 regardless
775 * of the actual domain assignments in use.
776 */
777 if (type->domain) {
778 printk(KERN_ERR "MM: invalid domain in supersection "
779 "mapping for 0x%08llx at 0x%08lx\n",
780 (long long)__pfn_to_phys((u64)md->pfn), addr);
781 return;
782 }
783
784 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
785 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
786 " at 0x%08lx invalid alignment\n",
787 (long long)__pfn_to_phys((u64)md->pfn), addr);
788 return;
789 }
790
791 /*
792 * Shift bits [35:32] of address into bits [23:20] of PMD
793 * (See ARMv6 spec).
794 */
795 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
796
797 pgd = pgd_offset_k(addr);
798 end = addr + length;
799 do {
800 pud_t *pud = pud_offset(pgd, addr);
801 pmd_t *pmd = pmd_offset(pud, addr);
802 int i;
803
804 for (i = 0; i < 16; i++)
805 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
806
807 addr += SUPERSECTION_SIZE;
808 phys += SUPERSECTION_SIZE;
809 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
810 } while (addr != end);
811 }
812 #endif /* !CONFIG_ARM_LPAE */
813
814 /*
815 * Create the page directory entries and any necessary
816 * page tables for the mapping specified by `md'. We
817 * are able to cope here with varying sizes and address
818 * offsets, and we take full advantage of sections and
819 * supersections.
820 */
821 static void __init create_mapping(struct map_desc *md)
822 {
823 unsigned long addr, length, end;
824 phys_addr_t phys;
825 const struct mem_type *type;
826 pgd_t *pgd;
827
828 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
829 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
830 " at 0x%08lx in user region\n",
831 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
832 return;
833 }
834
835 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
836 md->virtual >= PAGE_OFFSET &&
837 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
838 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
839 " at 0x%08lx out of vmalloc space\n",
840 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
841 }
842
843 type = &mem_types[md->type];
844
845 #ifndef CONFIG_ARM_LPAE
846 /*
847 * Catch 36-bit addresses
848 */
849 if (md->pfn >= 0x100000) {
850 create_36bit_mapping(md, type);
851 return;
852 }
853 #endif
854
855 addr = md->virtual & PAGE_MASK;
856 phys = __pfn_to_phys(md->pfn);
857 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
858
859 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
860 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
861 "be mapped using pages, ignoring.\n",
862 (long long)__pfn_to_phys(md->pfn), addr);
863 return;
864 }
865
866 pgd = pgd_offset_k(addr);
867 end = addr + length;
868 do {
869 unsigned long next = pgd_addr_end(addr, end);
870
871 alloc_init_pud(pgd, addr, next, phys, type);
872
873 phys += next - addr;
874 addr = next;
875 } while (pgd++, addr != end);
876 }
877
878 /*
879 * Create the architecture specific mappings
880 */
881 void __init iotable_init(struct map_desc *io_desc, int nr)
882 {
883 struct map_desc *md;
884 struct vm_struct *vm;
885 struct static_vm *svm;
886
887 if (!nr)
888 return;
889
890 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
891
892 for (md = io_desc; nr; md++, nr--) {
893 create_mapping(md);
894
895 vm = &svm->vm;
896 vm->addr = (void *)(md->virtual & PAGE_MASK);
897 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
898 vm->phys_addr = __pfn_to_phys(md->pfn);
899 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
900 vm->flags |= VM_ARM_MTYPE(md->type);
901 vm->caller = iotable_init;
902 add_static_vm_early(svm++);
903 }
904 }
905
906 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
907 void *caller)
908 {
909 struct vm_struct *vm;
910 struct static_vm *svm;
911
912 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
913
914 vm = &svm->vm;
915 vm->addr = (void *)addr;
916 vm->size = size;
917 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
918 vm->caller = caller;
919 add_static_vm_early(svm);
920 }
921
922 #ifndef CONFIG_ARM_LPAE
923
924 /*
925 * The Linux PMD is made of two consecutive section entries covering 2MB
926 * (see definition in include/asm/pgtable-2level.h). However a call to
927 * create_mapping() may optimize static mappings by using individual
928 * 1MB section mappings. This leaves the actual PMD potentially half
929 * initialized if the top or bottom section entry isn't used, leaving it
930 * open to problems if a subsequent ioremap() or vmalloc() tries to use
931 * the virtual space left free by that unused section entry.
932 *
933 * Let's avoid the issue by inserting dummy vm entries covering the unused
934 * PMD halves once the static mappings are in place.
935 */
936
937 static void __init pmd_empty_section_gap(unsigned long addr)
938 {
939 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
940 }
941
942 static void __init fill_pmd_gaps(void)
943 {
944 struct static_vm *svm;
945 struct vm_struct *vm;
946 unsigned long addr, next = 0;
947 pmd_t *pmd;
948
949 list_for_each_entry(svm, &static_vmlist, list) {
950 vm = &svm->vm;
951 addr = (unsigned long)vm->addr;
952 if (addr < next)
953 continue;
954
955 /*
956 * Check if this vm starts on an odd section boundary.
957 * If so and the first section entry for this PMD is free
958 * then we block the corresponding virtual address.
959 */
960 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
961 pmd = pmd_off_k(addr);
962 if (pmd_none(*pmd))
963 pmd_empty_section_gap(addr & PMD_MASK);
964 }
965
966 /*
967 * Then check if this vm ends on an odd section boundary.
968 * If so and the second section entry for this PMD is empty
969 * then we block the corresponding virtual address.
970 */
971 addr += vm->size;
972 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
973 pmd = pmd_off_k(addr) + 1;
974 if (pmd_none(*pmd))
975 pmd_empty_section_gap(addr);
976 }
977
978 /* no need to look at any vm entry until we hit the next PMD */
979 next = (addr + PMD_SIZE - 1) & PMD_MASK;
980 }
981 }
982
983 #else
984 #define fill_pmd_gaps() do { } while (0)
985 #endif
986
987 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
988 static void __init pci_reserve_io(void)
989 {
990 struct static_vm *svm;
991
992 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
993 if (svm)
994 return;
995
996 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
997 }
998 #else
999 #define pci_reserve_io() do { } while (0)
1000 #endif
1001
1002 #ifdef CONFIG_DEBUG_LL
1003 void __init debug_ll_io_init(void)
1004 {
1005 struct map_desc map;
1006
1007 debug_ll_addr(&map.pfn, &map.virtual);
1008 if (!map.pfn || !map.virtual)
1009 return;
1010 map.pfn = __phys_to_pfn(map.pfn);
1011 map.virtual &= PAGE_MASK;
1012 map.length = PAGE_SIZE;
1013 map.type = MT_DEVICE;
1014 iotable_init(&map, 1);
1015 }
1016 #endif
1017
1018 static void * __initdata vmalloc_min =
1019 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1020
1021 /*
1022 * vmalloc=size forces the vmalloc area to be exactly 'size'
1023 * bytes. This can be used to increase (or decrease) the vmalloc
1024 * area - the default is 240m.
1025 */
1026 static int __init early_vmalloc(char *arg)
1027 {
1028 unsigned long vmalloc_reserve = memparse(arg, NULL);
1029
1030 if (vmalloc_reserve < SZ_16M) {
1031 vmalloc_reserve = SZ_16M;
1032 printk(KERN_WARNING
1033 "vmalloc area too small, limiting to %luMB\n",
1034 vmalloc_reserve >> 20);
1035 }
1036
1037 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1038 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1039 printk(KERN_WARNING
1040 "vmalloc area is too big, limiting to %luMB\n",
1041 vmalloc_reserve >> 20);
1042 }
1043
1044 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1045 return 0;
1046 }
1047 early_param("vmalloc", early_vmalloc);
1048
1049 phys_addr_t arm_lowmem_limit __initdata = 0;
1050
1051 void __init sanity_check_meminfo(void)
1052 {
1053 phys_addr_t memblock_limit = 0;
1054 int i, j, highmem = 0;
1055 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1056
1057 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1058 struct membank *bank = &meminfo.bank[j];
1059 phys_addr_t size_limit;
1060
1061 *bank = meminfo.bank[i];
1062 size_limit = bank->size;
1063
1064 if (bank->start >= vmalloc_limit)
1065 highmem = 1;
1066 else
1067 size_limit = vmalloc_limit - bank->start;
1068
1069 bank->highmem = highmem;
1070
1071 #ifdef CONFIG_HIGHMEM
1072 /*
1073 * Split those memory banks which are partially overlapping
1074 * the vmalloc area greatly simplifying things later.
1075 */
1076 if (!highmem && bank->size > size_limit) {
1077 if (meminfo.nr_banks >= NR_BANKS) {
1078 printk(KERN_CRIT "NR_BANKS too low, "
1079 "ignoring high memory\n");
1080 } else {
1081 memmove(bank + 1, bank,
1082 (meminfo.nr_banks - i) * sizeof(*bank));
1083 meminfo.nr_banks++;
1084 i++;
1085 bank[1].size -= size_limit;
1086 bank[1].start = vmalloc_limit;
1087 bank[1].highmem = highmem = 1;
1088 j++;
1089 }
1090 bank->size = size_limit;
1091 }
1092 #else
1093 /*
1094 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1095 */
1096 if (highmem) {
1097 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1098 "(!CONFIG_HIGHMEM).\n",
1099 (unsigned long long)bank->start,
1100 (unsigned long long)bank->start + bank->size - 1);
1101 continue;
1102 }
1103
1104 /*
1105 * Check whether this memory bank would partially overlap
1106 * the vmalloc area.
1107 */
1108 if (bank->size > size_limit) {
1109 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1110 "to -%.8llx (vmalloc region overlap).\n",
1111 (unsigned long long)bank->start,
1112 (unsigned long long)bank->start + bank->size - 1,
1113 (unsigned long long)bank->start + size_limit - 1);
1114 bank->size = size_limit;
1115 }
1116 #endif
1117 if (!bank->highmem) {
1118 phys_addr_t bank_end = bank->start + bank->size;
1119
1120 if (bank_end > arm_lowmem_limit)
1121 arm_lowmem_limit = bank_end;
1122
1123 /*
1124 * Find the first non-section-aligned page, and point
1125 * memblock_limit at it. This relies on rounding the
1126 * limit down to be section-aligned, which happens at
1127 * the end of this function.
1128 *
1129 * With this algorithm, the start or end of almost any
1130 * bank can be non-section-aligned. The only exception
1131 * is that the start of the bank 0 must be section-
1132 * aligned, since otherwise memory would need to be
1133 * allocated when mapping the start of bank 0, which
1134 * occurs before any free memory is mapped.
1135 */
1136 if (!memblock_limit) {
1137 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1138 memblock_limit = bank->start;
1139 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1140 memblock_limit = bank_end;
1141 }
1142 }
1143 j++;
1144 }
1145 #ifdef CONFIG_HIGHMEM
1146 if (highmem) {
1147 const char *reason = NULL;
1148
1149 if (cache_is_vipt_aliasing()) {
1150 /*
1151 * Interactions between kmap and other mappings
1152 * make highmem support with aliasing VIPT caches
1153 * rather difficult.
1154 */
1155 reason = "with VIPT aliasing cache";
1156 }
1157 if (reason) {
1158 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1159 reason);
1160 while (j > 0 && meminfo.bank[j - 1].highmem)
1161 j--;
1162 }
1163 }
1164 #endif
1165 meminfo.nr_banks = j;
1166 high_memory = __va(arm_lowmem_limit - 1) + 1;
1167
1168 /*
1169 * Round the memblock limit down to a section size. This
1170 * helps to ensure that we will allocate memory from the
1171 * last full section, which should be mapped.
1172 */
1173 if (memblock_limit)
1174 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1175 if (!memblock_limit)
1176 memblock_limit = arm_lowmem_limit;
1177
1178 memblock_set_current_limit(memblock_limit);
1179 }
1180
1181 static inline void prepare_page_table(void)
1182 {
1183 unsigned long addr;
1184 phys_addr_t end;
1185
1186 /*
1187 * Clear out all the mappings below the kernel image.
1188 */
1189 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1190 pmd_clear(pmd_off_k(addr));
1191
1192 #ifdef CONFIG_XIP_KERNEL
1193 /* The XIP kernel is mapped in the module area -- skip over it */
1194 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1195 #endif
1196 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1197 pmd_clear(pmd_off_k(addr));
1198
1199 /*
1200 * Find the end of the first block of lowmem.
1201 */
1202 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1203 if (end >= arm_lowmem_limit)
1204 end = arm_lowmem_limit;
1205
1206 /*
1207 * Clear out all the kernel space mappings, except for the first
1208 * memory bank, up to the vmalloc region.
1209 */
1210 for (addr = __phys_to_virt(end);
1211 addr < VMALLOC_START; addr += PMD_SIZE)
1212 pmd_clear(pmd_off_k(addr));
1213 }
1214
1215 #ifdef CONFIG_ARM_LPAE
1216 /* the first page is reserved for pgd */
1217 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1218 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1219 #else
1220 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1221 #endif
1222
1223 /*
1224 * Reserve the special regions of memory
1225 */
1226 void __init arm_mm_memblock_reserve(void)
1227 {
1228 /*
1229 * Reserve the page tables. These are already in use,
1230 * and can only be in node 0.
1231 */
1232 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1233
1234 #ifdef CONFIG_SA1111
1235 /*
1236 * Because of the SA1111 DMA bug, we want to preserve our
1237 * precious DMA-able memory...
1238 */
1239 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1240 #endif
1241 }
1242
1243 /*
1244 * Set up the device mappings. Since we clear out the page tables for all
1245 * mappings above VMALLOC_START, we will remove any debug device mappings.
1246 * This means you have to be careful how you debug this function, or any
1247 * called function. This means you can't use any function or debugging
1248 * method which may touch any device, otherwise the kernel _will_ crash.
1249 */
1250 static void __init devicemaps_init(const struct machine_desc *mdesc)
1251 {
1252 struct map_desc map;
1253 unsigned long addr;
1254 void *vectors;
1255
1256 /*
1257 * Allocate the vector page early.
1258 */
1259 vectors = early_alloc(PAGE_SIZE * 2);
1260
1261 early_trap_init(vectors);
1262
1263 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1264 pmd_clear(pmd_off_k(addr));
1265
1266 /*
1267 * Map the kernel if it is XIP.
1268 * It is always first in the modulearea.
1269 */
1270 #ifdef CONFIG_XIP_KERNEL
1271 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1272 map.virtual = MODULES_VADDR;
1273 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1274 map.type = MT_ROM;
1275 create_mapping(&map);
1276 #endif
1277
1278 /*
1279 * Map the cache flushing regions.
1280 */
1281 #ifdef FLUSH_BASE
1282 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1283 map.virtual = FLUSH_BASE;
1284 map.length = SZ_1M;
1285 map.type = MT_CACHECLEAN;
1286 create_mapping(&map);
1287 #endif
1288 #ifdef FLUSH_BASE_MINICACHE
1289 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1290 map.virtual = FLUSH_BASE_MINICACHE;
1291 map.length = SZ_1M;
1292 map.type = MT_MINICLEAN;
1293 create_mapping(&map);
1294 #endif
1295
1296 /*
1297 * Create a mapping for the machine vectors at the high-vectors
1298 * location (0xffff0000). If we aren't using high-vectors, also
1299 * create a mapping at the low-vectors virtual address.
1300 */
1301 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1302 map.virtual = 0xffff0000;
1303 map.length = PAGE_SIZE;
1304 #ifdef CONFIG_KUSER_HELPERS
1305 map.type = MT_HIGH_VECTORS;
1306 #else
1307 map.type = MT_LOW_VECTORS;
1308 #endif
1309 create_mapping(&map);
1310
1311 if (!vectors_high()) {
1312 map.virtual = 0;
1313 map.length = PAGE_SIZE * 2;
1314 map.type = MT_LOW_VECTORS;
1315 create_mapping(&map);
1316 }
1317
1318 /* Now create a kernel read-only mapping */
1319 map.pfn += 1;
1320 map.virtual = 0xffff0000 + PAGE_SIZE;
1321 map.length = PAGE_SIZE;
1322 map.type = MT_LOW_VECTORS;
1323 create_mapping(&map);
1324
1325 /*
1326 * Ask the machine support to map in the statically mapped devices.
1327 */
1328 if (mdesc->map_io)
1329 mdesc->map_io();
1330 else
1331 debug_ll_io_init();
1332 fill_pmd_gaps();
1333
1334 /* Reserve fixed i/o space in VMALLOC region */
1335 pci_reserve_io();
1336
1337 /*
1338 * Finally flush the caches and tlb to ensure that we're in a
1339 * consistent state wrt the writebuffer. This also ensures that
1340 * any write-allocated cache lines in the vector page are written
1341 * back. After this point, we can start to touch devices again.
1342 */
1343 local_flush_tlb_all();
1344 flush_cache_all();
1345 }
1346
1347 static void __init kmap_init(void)
1348 {
1349 #ifdef CONFIG_HIGHMEM
1350 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1351 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1352 #endif
1353 }
1354
1355 static void __init map_lowmem(void)
1356 {
1357 struct memblock_region *reg;
1358 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1359 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1360
1361 /* Map all the lowmem memory banks. */
1362 for_each_memblock(memory, reg) {
1363 phys_addr_t start = reg->base;
1364 phys_addr_t end = start + reg->size;
1365 struct map_desc map;
1366
1367 if (end > arm_lowmem_limit)
1368 end = arm_lowmem_limit;
1369 if (start >= end)
1370 break;
1371
1372 if (end < kernel_x_start || start >= kernel_x_end) {
1373 map.pfn = __phys_to_pfn(start);
1374 map.virtual = __phys_to_virt(start);
1375 map.length = end - start;
1376 map.type = MT_MEMORY_RWX;
1377
1378 create_mapping(&map);
1379 } else {
1380 /* This better cover the entire kernel */
1381 if (start < kernel_x_start) {
1382 map.pfn = __phys_to_pfn(start);
1383 map.virtual = __phys_to_virt(start);
1384 map.length = kernel_x_start - start;
1385 map.type = MT_MEMORY_RW;
1386
1387 create_mapping(&map);
1388 }
1389
1390 map.pfn = __phys_to_pfn(kernel_x_start);
1391 map.virtual = __phys_to_virt(kernel_x_start);
1392 map.length = kernel_x_end - kernel_x_start;
1393 map.type = MT_MEMORY_RWX;
1394
1395 create_mapping(&map);
1396
1397 if (kernel_x_end < end) {
1398 map.pfn = __phys_to_pfn(kernel_x_end);
1399 map.virtual = __phys_to_virt(kernel_x_end);
1400 map.length = end - kernel_x_end;
1401 map.type = MT_MEMORY_RW;
1402
1403 create_mapping(&map);
1404 }
1405 }
1406 }
1407 }
1408
1409 #ifdef CONFIG_ARM_LPAE
1410 /*
1411 * early_paging_init() recreates boot time page table setup, allowing machines
1412 * to switch over to a high (>4G) address space on LPAE systems
1413 */
1414 void __init early_paging_init(const struct machine_desc *mdesc,
1415 struct proc_info_list *procinfo)
1416 {
1417 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1418 unsigned long map_start, map_end;
1419 pgd_t *pgd0, *pgdk;
1420 pud_t *pud0, *pudk, *pud_start;
1421 pmd_t *pmd0, *pmdk;
1422 phys_addr_t phys;
1423 int i;
1424
1425 if (!(mdesc->init_meminfo))
1426 return;
1427
1428 /* remap kernel code and data */
1429 map_start = init_mm.start_code;
1430 map_end = init_mm.brk;
1431
1432 /* get a handle on things... */
1433 pgd0 = pgd_offset_k(0);
1434 pud_start = pud0 = pud_offset(pgd0, 0);
1435 pmd0 = pmd_offset(pud0, 0);
1436
1437 pgdk = pgd_offset_k(map_start);
1438 pudk = pud_offset(pgdk, map_start);
1439 pmdk = pmd_offset(pudk, map_start);
1440
1441 mdesc->init_meminfo();
1442
1443 /* Run the patch stub to update the constants */
1444 fixup_pv_table(&__pv_table_begin,
1445 (&__pv_table_end - &__pv_table_begin) << 2);
1446
1447 /*
1448 * Cache cleaning operations for self-modifying code
1449 * We should clean the entries by MVA but running a
1450 * for loop over every pv_table entry pointer would
1451 * just complicate the code.
1452 */
1453 flush_cache_louis();
1454 dsb();
1455 isb();
1456
1457 /* remap level 1 table */
1458 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1459 set_pud(pud0,
1460 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1461 pmd0 += PTRS_PER_PMD;
1462 }
1463
1464 /* remap pmds for kernel mapping */
1465 phys = __pa(map_start) & PMD_MASK;
1466 do {
1467 *pmdk++ = __pmd(phys | pmdprot);
1468 phys += PMD_SIZE;
1469 } while (phys < map_end);
1470
1471 flush_cache_all();
1472 cpu_switch_mm(pgd0, &init_mm);
1473 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1474 local_flush_bp_all();
1475 local_flush_tlb_all();
1476 }
1477
1478 #else
1479
1480 void __init early_paging_init(const struct machine_desc *mdesc,
1481 struct proc_info_list *procinfo)
1482 {
1483 if (mdesc->init_meminfo)
1484 mdesc->init_meminfo();
1485 }
1486
1487 #endif
1488
1489 /*
1490 * paging_init() sets up the page tables, initialises the zone memory
1491 * maps, and sets up the zero page, bad page and bad page tables.
1492 */
1493 void __init paging_init(const struct machine_desc *mdesc)
1494 {
1495 void *zero_page;
1496
1497 build_mem_type_table();
1498 prepare_page_table();
1499 map_lowmem();
1500 dma_contiguous_remap();
1501 devicemaps_init(mdesc);
1502 kmap_init();
1503 tcm_init();
1504
1505 top_pmd = pmd_off_k(0xffff0000);
1506
1507 /* allocate the zero page. */
1508 zero_page = early_alloc(PAGE_SIZE);
1509
1510 bootmem_init();
1511
1512 empty_zero_page = virt_to_page(zero_page);
1513 __flush_dcache_page(NULL, empty_zero_page);
1514 }