]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm/probes/kprobes/core.c
arm: kprobes: Fix the return address of multiple kretprobes
[mirror_ubuntu-bionic-kernel.git] / arch / arm / probes / kprobes / core.c
1 /*
2 * arch/arm/kernel/kprobes.c
3 *
4 * Kprobes on ARM
5 *
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
8 *
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35
36 #include "../decode-arm.h"
37 #include "../decode-thumb.h"
38 #include "core.h"
39
40 #define MIN_STACK_SIZE(addr) \
41 min((unsigned long)MAX_STACK_SIZE, \
42 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
43
44 #define flush_insns(addr, size) \
45 flush_icache_range((unsigned long)(addr), \
46 (unsigned long)(addr) + \
47 (size))
48
49 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
50 #define JPROBE_MAGIC_ADDR 0xffffffff
51
52 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
53 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
54
55
56 int __kprobes arch_prepare_kprobe(struct kprobe *p)
57 {
58 kprobe_opcode_t insn;
59 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
60 unsigned long addr = (unsigned long)p->addr;
61 bool thumb;
62 kprobe_decode_insn_t *decode_insn;
63 const union decode_action *actions;
64 int is;
65 const struct decode_checker **checkers;
66
67 if (in_exception_text(addr))
68 return -EINVAL;
69
70 #ifdef CONFIG_THUMB2_KERNEL
71 thumb = true;
72 addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
73 insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
74 if (is_wide_instruction(insn)) {
75 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
76 insn = __opcode_thumb32_compose(insn, inst2);
77 decode_insn = thumb32_probes_decode_insn;
78 actions = kprobes_t32_actions;
79 checkers = kprobes_t32_checkers;
80 } else {
81 decode_insn = thumb16_probes_decode_insn;
82 actions = kprobes_t16_actions;
83 checkers = kprobes_t16_checkers;
84 }
85 #else /* !CONFIG_THUMB2_KERNEL */
86 thumb = false;
87 if (addr & 0x3)
88 return -EINVAL;
89 insn = __mem_to_opcode_arm(*p->addr);
90 decode_insn = arm_probes_decode_insn;
91 actions = kprobes_arm_actions;
92 checkers = kprobes_arm_checkers;
93 #endif
94
95 p->opcode = insn;
96 p->ainsn.insn = tmp_insn;
97
98 switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
99 case INSN_REJECTED: /* not supported */
100 return -EINVAL;
101
102 case INSN_GOOD: /* instruction uses slot */
103 p->ainsn.insn = get_insn_slot();
104 if (!p->ainsn.insn)
105 return -ENOMEM;
106 for (is = 0; is < MAX_INSN_SIZE; ++is)
107 p->ainsn.insn[is] = tmp_insn[is];
108 flush_insns(p->ainsn.insn,
109 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
110 p->ainsn.insn_fn = (probes_insn_fn_t *)
111 ((uintptr_t)p->ainsn.insn | thumb);
112 break;
113
114 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
115 p->ainsn.insn = NULL;
116 break;
117 }
118
119 /*
120 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
121 * 'str r0, [sp, #-68]' should also be prohibited.
122 * See __und_svc.
123 */
124 if ((p->ainsn.stack_space < 0) ||
125 (p->ainsn.stack_space > MAX_STACK_SIZE))
126 return -EINVAL;
127
128 return 0;
129 }
130
131 void __kprobes arch_arm_kprobe(struct kprobe *p)
132 {
133 unsigned int brkp;
134 void *addr;
135
136 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
137 /* Remove any Thumb flag */
138 addr = (void *)((uintptr_t)p->addr & ~1);
139
140 if (is_wide_instruction(p->opcode))
141 brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
142 else
143 brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
144 } else {
145 kprobe_opcode_t insn = p->opcode;
146
147 addr = p->addr;
148 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
149
150 if (insn >= 0xe0000000)
151 brkp |= 0xe0000000; /* Unconditional instruction */
152 else
153 brkp |= insn & 0xf0000000; /* Copy condition from insn */
154 }
155
156 patch_text(addr, brkp);
157 }
158
159 /*
160 * The actual disarming is done here on each CPU and synchronized using
161 * stop_machine. This synchronization is necessary on SMP to avoid removing
162 * a probe between the moment the 'Undefined Instruction' exception is raised
163 * and the moment the exception handler reads the faulting instruction from
164 * memory. It is also needed to atomically set the two half-words of a 32-bit
165 * Thumb breakpoint.
166 */
167 struct patch {
168 void *addr;
169 unsigned int insn;
170 };
171
172 static int __kprobes_remove_breakpoint(void *data)
173 {
174 struct patch *p = data;
175 __patch_text(p->addr, p->insn);
176 return 0;
177 }
178
179 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
180 {
181 struct patch p = {
182 .addr = addr,
183 .insn = insn,
184 };
185 stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask);
186 }
187
188 void __kprobes arch_disarm_kprobe(struct kprobe *p)
189 {
190 kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
191 p->opcode);
192 }
193
194 void __kprobes arch_remove_kprobe(struct kprobe *p)
195 {
196 if (p->ainsn.insn) {
197 free_insn_slot(p->ainsn.insn, 0);
198 p->ainsn.insn = NULL;
199 }
200 }
201
202 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
203 {
204 kcb->prev_kprobe.kp = kprobe_running();
205 kcb->prev_kprobe.status = kcb->kprobe_status;
206 }
207
208 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
209 {
210 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
211 kcb->kprobe_status = kcb->prev_kprobe.status;
212 }
213
214 static void __kprobes set_current_kprobe(struct kprobe *p)
215 {
216 __this_cpu_write(current_kprobe, p);
217 }
218
219 static void __kprobes
220 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
221 {
222 #ifdef CONFIG_THUMB2_KERNEL
223 regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
224 if (is_wide_instruction(p->opcode))
225 regs->ARM_pc += 4;
226 else
227 regs->ARM_pc += 2;
228 #else
229 regs->ARM_pc += 4;
230 #endif
231 }
232
233 static inline void __kprobes
234 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
235 {
236 p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
237 }
238
239 /*
240 * Called with IRQs disabled. IRQs must remain disabled from that point
241 * all the way until processing this kprobe is complete. The current
242 * kprobes implementation cannot process more than one nested level of
243 * kprobe, and that level is reserved for user kprobe handlers, so we can't
244 * risk encountering a new kprobe in an interrupt handler.
245 */
246 void __kprobes kprobe_handler(struct pt_regs *regs)
247 {
248 struct kprobe *p, *cur;
249 struct kprobe_ctlblk *kcb;
250
251 kcb = get_kprobe_ctlblk();
252 cur = kprobe_running();
253
254 #ifdef CONFIG_THUMB2_KERNEL
255 /*
256 * First look for a probe which was registered using an address with
257 * bit 0 set, this is the usual situation for pointers to Thumb code.
258 * If not found, fallback to looking for one with bit 0 clear.
259 */
260 p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
261 if (!p)
262 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
263
264 #else /* ! CONFIG_THUMB2_KERNEL */
265 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
266 #endif
267
268 if (p) {
269 if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
270 /*
271 * Probe hit but conditional execution check failed,
272 * so just skip the instruction and continue as if
273 * nothing had happened.
274 * In this case, we can skip recursing check too.
275 */
276 singlestep_skip(p, regs);
277 } else if (cur) {
278 /* Kprobe is pending, so we're recursing. */
279 switch (kcb->kprobe_status) {
280 case KPROBE_HIT_ACTIVE:
281 case KPROBE_HIT_SSDONE:
282 case KPROBE_HIT_SS:
283 /* A pre- or post-handler probe got us here. */
284 kprobes_inc_nmissed_count(p);
285 save_previous_kprobe(kcb);
286 set_current_kprobe(p);
287 kcb->kprobe_status = KPROBE_REENTER;
288 singlestep(p, regs, kcb);
289 restore_previous_kprobe(kcb);
290 break;
291 case KPROBE_REENTER:
292 /* A nested probe was hit in FIQ, it is a BUG */
293 pr_warn("Unrecoverable kprobe detected at %p.\n",
294 p->addr);
295 /* fall through */
296 default:
297 /* impossible cases */
298 BUG();
299 }
300 } else {
301 /* Probe hit and conditional execution check ok. */
302 set_current_kprobe(p);
303 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
304
305 /*
306 * If we have no pre-handler or it returned 0, we
307 * continue with normal processing. If we have a
308 * pre-handler and it returned non-zero, it prepped
309 * for calling the break_handler below on re-entry,
310 * so get out doing nothing more here.
311 */
312 if (!p->pre_handler || !p->pre_handler(p, regs)) {
313 kcb->kprobe_status = KPROBE_HIT_SS;
314 singlestep(p, regs, kcb);
315 if (p->post_handler) {
316 kcb->kprobe_status = KPROBE_HIT_SSDONE;
317 p->post_handler(p, regs, 0);
318 }
319 reset_current_kprobe();
320 }
321 }
322 } else if (cur) {
323 /* We probably hit a jprobe. Call its break handler. */
324 if (cur->break_handler && cur->break_handler(cur, regs)) {
325 kcb->kprobe_status = KPROBE_HIT_SS;
326 singlestep(cur, regs, kcb);
327 if (cur->post_handler) {
328 kcb->kprobe_status = KPROBE_HIT_SSDONE;
329 cur->post_handler(cur, regs, 0);
330 }
331 }
332 reset_current_kprobe();
333 } else {
334 /*
335 * The probe was removed and a race is in progress.
336 * There is nothing we can do about it. Let's restart
337 * the instruction. By the time we can restart, the
338 * real instruction will be there.
339 */
340 }
341 }
342
343 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
344 {
345 unsigned long flags;
346 local_irq_save(flags);
347 kprobe_handler(regs);
348 local_irq_restore(flags);
349 return 0;
350 }
351
352 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
353 {
354 struct kprobe *cur = kprobe_running();
355 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
356
357 switch (kcb->kprobe_status) {
358 case KPROBE_HIT_SS:
359 case KPROBE_REENTER:
360 /*
361 * We are here because the instruction being single
362 * stepped caused a page fault. We reset the current
363 * kprobe and the PC to point back to the probe address
364 * and allow the page fault handler to continue as a
365 * normal page fault.
366 */
367 regs->ARM_pc = (long)cur->addr;
368 if (kcb->kprobe_status == KPROBE_REENTER) {
369 restore_previous_kprobe(kcb);
370 } else {
371 reset_current_kprobe();
372 }
373 break;
374
375 case KPROBE_HIT_ACTIVE:
376 case KPROBE_HIT_SSDONE:
377 /*
378 * We increment the nmissed count for accounting,
379 * we can also use npre/npostfault count for accounting
380 * these specific fault cases.
381 */
382 kprobes_inc_nmissed_count(cur);
383
384 /*
385 * We come here because instructions in the pre/post
386 * handler caused the page_fault, this could happen
387 * if handler tries to access user space by
388 * copy_from_user(), get_user() etc. Let the
389 * user-specified handler try to fix it.
390 */
391 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
392 return 1;
393 break;
394
395 default:
396 break;
397 }
398
399 return 0;
400 }
401
402 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
403 unsigned long val, void *data)
404 {
405 /*
406 * notify_die() is currently never called on ARM,
407 * so this callback is currently empty.
408 */
409 return NOTIFY_DONE;
410 }
411
412 /*
413 * When a retprobed function returns, trampoline_handler() is called,
414 * calling the kretprobe's handler. We construct a struct pt_regs to
415 * give a view of registers r0-r11 to the user return-handler. This is
416 * not a complete pt_regs structure, but that should be plenty sufficient
417 * for kretprobe handlers which should normally be interested in r0 only
418 * anyway.
419 */
420 void __naked __kprobes kretprobe_trampoline(void)
421 {
422 __asm__ __volatile__ (
423 "stmdb sp!, {r0 - r11} \n\t"
424 "mov r0, sp \n\t"
425 "bl trampoline_handler \n\t"
426 "mov lr, r0 \n\t"
427 "ldmia sp!, {r0 - r11} \n\t"
428 #ifdef CONFIG_THUMB2_KERNEL
429 "bx lr \n\t"
430 #else
431 "mov pc, lr \n\t"
432 #endif
433 : : : "memory");
434 }
435
436 /* Called from kretprobe_trampoline */
437 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
438 {
439 struct kretprobe_instance *ri = NULL;
440 struct hlist_head *head, empty_rp;
441 struct hlist_node *tmp;
442 unsigned long flags, orig_ret_address = 0;
443 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
444 kprobe_opcode_t *correct_ret_addr = NULL;
445
446 INIT_HLIST_HEAD(&empty_rp);
447 kretprobe_hash_lock(current, &head, &flags);
448
449 /*
450 * It is possible to have multiple instances associated with a given
451 * task either because multiple functions in the call path have
452 * a return probe installed on them, and/or more than one return
453 * probe was registered for a target function.
454 *
455 * We can handle this because:
456 * - instances are always inserted at the head of the list
457 * - when multiple return probes are registered for the same
458 * function, the first instance's ret_addr will point to the
459 * real return address, and all the rest will point to
460 * kretprobe_trampoline
461 */
462 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
463 if (ri->task != current)
464 /* another task is sharing our hash bucket */
465 continue;
466
467 orig_ret_address = (unsigned long)ri->ret_addr;
468
469 if (orig_ret_address != trampoline_address)
470 /*
471 * This is the real return address. Any other
472 * instances associated with this task are for
473 * other calls deeper on the call stack
474 */
475 break;
476 }
477
478 kretprobe_assert(ri, orig_ret_address, trampoline_address);
479
480 correct_ret_addr = ri->ret_addr;
481 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
482 if (ri->task != current)
483 /* another task is sharing our hash bucket */
484 continue;
485
486 orig_ret_address = (unsigned long)ri->ret_addr;
487 if (ri->rp && ri->rp->handler) {
488 __this_cpu_write(current_kprobe, &ri->rp->kp);
489 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
490 ri->ret_addr = correct_ret_addr;
491 ri->rp->handler(ri, regs);
492 __this_cpu_write(current_kprobe, NULL);
493 }
494
495 recycle_rp_inst(ri, &empty_rp);
496
497 if (orig_ret_address != trampoline_address)
498 /*
499 * This is the real return address. Any other
500 * instances associated with this task are for
501 * other calls deeper on the call stack
502 */
503 break;
504 }
505
506 kretprobe_hash_unlock(current, &flags);
507
508 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
509 hlist_del(&ri->hlist);
510 kfree(ri);
511 }
512
513 return (void *)orig_ret_address;
514 }
515
516 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
517 struct pt_regs *regs)
518 {
519 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
520
521 /* Replace the return addr with trampoline addr. */
522 regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
523 }
524
525 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
526 {
527 struct jprobe *jp = container_of(p, struct jprobe, kp);
528 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
529 long sp_addr = regs->ARM_sp;
530 long cpsr;
531
532 kcb->jprobe_saved_regs = *regs;
533 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
534 regs->ARM_pc = (long)jp->entry;
535
536 cpsr = regs->ARM_cpsr | PSR_I_BIT;
537 #ifdef CONFIG_THUMB2_KERNEL
538 /* Set correct Thumb state in cpsr */
539 if (regs->ARM_pc & 1)
540 cpsr |= PSR_T_BIT;
541 else
542 cpsr &= ~PSR_T_BIT;
543 #endif
544 regs->ARM_cpsr = cpsr;
545
546 preempt_disable();
547 return 1;
548 }
549
550 void __kprobes jprobe_return(void)
551 {
552 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
553
554 __asm__ __volatile__ (
555 /*
556 * Setup an empty pt_regs. Fill SP and PC fields as
557 * they're needed by longjmp_break_handler.
558 *
559 * We allocate some slack between the original SP and start of
560 * our fabricated regs. To be precise we want to have worst case
561 * covered which is STMFD with all 16 regs so we allocate 2 *
562 * sizeof(struct_pt_regs)).
563 *
564 * This is to prevent any simulated instruction from writing
565 * over the regs when they are accessing the stack.
566 */
567 #ifdef CONFIG_THUMB2_KERNEL
568 "sub r0, %0, %1 \n\t"
569 "mov sp, r0 \n\t"
570 #else
571 "sub sp, %0, %1 \n\t"
572 #endif
573 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
574 "str %0, [sp, %2] \n\t"
575 "str r0, [sp, %3] \n\t"
576 "mov r0, sp \n\t"
577 "bl kprobe_handler \n\t"
578
579 /*
580 * Return to the context saved by setjmp_pre_handler
581 * and restored by longjmp_break_handler.
582 */
583 #ifdef CONFIG_THUMB2_KERNEL
584 "ldr lr, [sp, %2] \n\t" /* lr = saved sp */
585 "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */
586 "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */
587 "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */
588 /* rfe context */
589 "ldmia sp, {r0 - r12} \n\t"
590 "mov sp, lr \n\t"
591 "ldr lr, [sp], #4 \n\t"
592 "rfeia sp! \n\t"
593 #else
594 "ldr r0, [sp, %4] \n\t"
595 "msr cpsr_cxsf, r0 \n\t"
596 "ldmia sp, {r0 - pc} \n\t"
597 #endif
598 :
599 : "r" (kcb->jprobe_saved_regs.ARM_sp),
600 "I" (sizeof(struct pt_regs) * 2),
601 "J" (offsetof(struct pt_regs, ARM_sp)),
602 "J" (offsetof(struct pt_regs, ARM_pc)),
603 "J" (offsetof(struct pt_regs, ARM_cpsr)),
604 "J" (offsetof(struct pt_regs, ARM_lr))
605 : "memory", "cc");
606 }
607
608 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
609 {
610 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
611 long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
612 long orig_sp = regs->ARM_sp;
613 struct jprobe *jp = container_of(p, struct jprobe, kp);
614
615 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
616 if (orig_sp != stack_addr) {
617 struct pt_regs *saved_regs =
618 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
619 printk("current sp %lx does not match saved sp %lx\n",
620 orig_sp, stack_addr);
621 printk("Saved registers for jprobe %p\n", jp);
622 show_regs(saved_regs);
623 printk("Current registers\n");
624 show_regs(regs);
625 BUG();
626 }
627 *regs = kcb->jprobe_saved_regs;
628 memcpy((void *)stack_addr, kcb->jprobes_stack,
629 MIN_STACK_SIZE(stack_addr));
630 preempt_enable_no_resched();
631 return 1;
632 }
633 return 0;
634 }
635
636 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
637 {
638 return 0;
639 }
640
641 #ifdef CONFIG_THUMB2_KERNEL
642
643 static struct undef_hook kprobes_thumb16_break_hook = {
644 .instr_mask = 0xffff,
645 .instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
646 .cpsr_mask = MODE_MASK,
647 .cpsr_val = SVC_MODE,
648 .fn = kprobe_trap_handler,
649 };
650
651 static struct undef_hook kprobes_thumb32_break_hook = {
652 .instr_mask = 0xffffffff,
653 .instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
654 .cpsr_mask = MODE_MASK,
655 .cpsr_val = SVC_MODE,
656 .fn = kprobe_trap_handler,
657 };
658
659 #else /* !CONFIG_THUMB2_KERNEL */
660
661 static struct undef_hook kprobes_arm_break_hook = {
662 .instr_mask = 0x0fffffff,
663 .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
664 .cpsr_mask = MODE_MASK,
665 .cpsr_val = SVC_MODE,
666 .fn = kprobe_trap_handler,
667 };
668
669 #endif /* !CONFIG_THUMB2_KERNEL */
670
671 int __init arch_init_kprobes()
672 {
673 arm_probes_decode_init();
674 #ifdef CONFIG_THUMB2_KERNEL
675 register_undef_hook(&kprobes_thumb16_break_hook);
676 register_undef_hook(&kprobes_thumb32_break_hook);
677 #else
678 register_undef_hook(&kprobes_arm_break_hook);
679 #endif
680 return 0;
681 }