]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm26/mm/init.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / arch / arm26 / mm / init.c
1 /*
2 * linux/arch/arm26/mm/init.c
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/config.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/smp.h>
22 #include <linux/init.h>
23 #include <linux/initrd.h>
24 #include <linux/bootmem.h>
25 #include <linux/blkdev.h>
26
27 #include <asm/segment.h>
28 #include <asm/mach-types.h>
29 #include <asm/dma.h>
30 #include <asm/hardware.h>
31 #include <asm/setup.h>
32 #include <asm/tlb.h>
33
34 #include <asm/map.h>
35
36
37 #define TABLE_SIZE PTRS_PER_PTE * sizeof(pte_t))
38
39 struct mmu_gather mmu_gathers[NR_CPUS];
40
41 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
42 extern char _stext, _text, _etext, _end, __init_begin, __init_end;
43 #ifdef CONFIG_XIP_KERNEL
44 extern char _endtext, _sdata;
45 #endif
46 extern unsigned long phys_initrd_start;
47 extern unsigned long phys_initrd_size;
48
49 /*
50 * The sole use of this is to pass memory configuration
51 * data from paging_init to mem_init.
52 */
53 static struct meminfo meminfo __initdata = { 0, };
54
55 /*
56 * empty_zero_page is a special page that is used for
57 * zero-initialized data and COW.
58 */
59 struct page *empty_zero_page;
60
61 void show_mem(void)
62 {
63 int free = 0, total = 0, reserved = 0;
64 int shared = 0, cached = 0, slab = 0;
65 struct page *page, *end;
66
67 printk("Mem-info:\n");
68 show_free_areas();
69 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
70
71
72 page = NODE_MEM_MAP(0);
73 end = page + NODE_DATA(0)->node_spanned_pages;
74
75 do {
76 total++;
77 if (PageReserved(page))
78 reserved++;
79 else if (PageSwapCache(page))
80 cached++;
81 else if (PageSlab(page))
82 slab++;
83 else if (!page_count(page))
84 free++;
85 else
86 shared += page_count(page) - 1;
87 page++;
88 } while (page < end);
89
90 printk("%d pages of RAM\n", total);
91 printk("%d free pages\n", free);
92 printk("%d reserved pages\n", reserved);
93 printk("%d slab pages\n", slab);
94 printk("%d pages shared\n", shared);
95 printk("%d pages swap cached\n", cached);
96 }
97
98 struct node_info {
99 unsigned int start;
100 unsigned int end;
101 int bootmap_pages;
102 };
103
104 #define PFN_DOWN(x) ((x) >> PAGE_SHIFT)
105 #define PFN_UP(x) (PAGE_ALIGN(x) >> PAGE_SHIFT)
106 #define PFN_SIZE(x) ((x) >> PAGE_SHIFT)
107 #define PFN_RANGE(s,e) PFN_SIZE(PAGE_ALIGN((unsigned long)(e)) - \
108 (((unsigned long)(s)) & PAGE_MASK))
109
110 /*
111 * FIXME: We really want to avoid allocating the bootmap bitmap
112 * over the top of the initrd. Hopefully, this is located towards
113 * the start of a bank, so if we allocate the bootmap bitmap at
114 * the end, we won't clash.
115 */
116 static unsigned int __init
117 find_bootmap_pfn(struct meminfo *mi, unsigned int bootmap_pages)
118 {
119 unsigned int start_pfn, bootmap_pfn;
120 unsigned int start, end;
121
122 start_pfn = PFN_UP((unsigned long)&_end);
123 bootmap_pfn = 0;
124
125 /* ARM26 machines only have one node */
126 if (mi->bank->node != 0)
127 BUG();
128
129 start = PFN_UP(mi->bank->start);
130 end = PFN_DOWN(mi->bank->size + mi->bank->start);
131
132 if (start < start_pfn)
133 start = start_pfn;
134
135 if (end <= start)
136 BUG();
137
138 if (end - start >= bootmap_pages)
139 bootmap_pfn = start;
140 else
141 BUG();
142
143 return bootmap_pfn;
144 }
145
146 /*
147 * Scan the memory info structure and pull out:
148 * - the end of memory
149 * - the number of nodes
150 * - the pfn range of each node
151 * - the number of bootmem bitmap pages
152 */
153 static void __init
154 find_memend_and_nodes(struct meminfo *mi, struct node_info *np)
155 {
156 unsigned int memend_pfn = 0;
157
158 nodes_clear(node_online_map);
159 node_set_online(0);
160
161 np->bootmap_pages = 0;
162
163 if (mi->bank->size == 0) {
164 BUG();
165 }
166
167 /*
168 * Get the start and end pfns for this bank
169 */
170 np->start = PFN_UP(mi->bank->start);
171 np->end = PFN_DOWN(mi->bank->start + mi->bank->size);
172
173 if (memend_pfn < np->end)
174 memend_pfn = np->end;
175
176 /*
177 * Calculate the number of pages we require to
178 * store the bootmem bitmaps.
179 */
180 np->bootmap_pages = bootmem_bootmap_pages(np->end - np->start);
181
182 /*
183 * This doesn't seem to be used by the Linux memory
184 * manager any more. If we can get rid of it, we
185 * also get rid of some of the stuff above as well.
186 */
187 max_low_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
188 max_pfn = memend_pfn - PFN_DOWN(PHYS_OFFSET);
189 mi->end = memend_pfn << PAGE_SHIFT;
190
191 }
192
193 /*
194 * Initialise the bootmem allocator for all nodes. This is called
195 * early during the architecture specific initialisation.
196 */
197 void __init bootmem_init(struct meminfo *mi)
198 {
199 struct node_info node_info;
200 unsigned int bootmap_pfn;
201 pg_data_t *pgdat = NODE_DATA(0);
202
203 find_memend_and_nodes(mi, &node_info);
204
205 bootmap_pfn = find_bootmap_pfn(mi, node_info.bootmap_pages);
206
207 /*
208 * Note that node 0 must always have some pages.
209 */
210 if (node_info.end == 0)
211 BUG();
212
213 /*
214 * Initialise the bootmem allocator.
215 */
216 init_bootmem_node(pgdat, bootmap_pfn, node_info.start, node_info.end);
217
218 /*
219 * Register all available RAM in this node with the bootmem allocator.
220 */
221 free_bootmem_node(pgdat, mi->bank->start, mi->bank->size);
222
223 /*
224 * Register the kernel text and data with bootmem.
225 * Note: with XIP we dont register .text since
226 * its in ROM.
227 */
228 #ifdef CONFIG_XIP_KERNEL
229 reserve_bootmem_node(pgdat, __pa(&_sdata), &_end - &_sdata);
230 #else
231 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
232 #endif
233
234 /*
235 * And don't forget to reserve the allocator bitmap,
236 * which will be freed later.
237 */
238 reserve_bootmem_node(pgdat, bootmap_pfn << PAGE_SHIFT,
239 node_info.bootmap_pages << PAGE_SHIFT);
240
241 /*
242 * These should likewise go elsewhere. They pre-reserve
243 * the screen memory region at the start of main system
244 * memory. FIXME - screen RAM is not 512K!
245 */
246 reserve_bootmem_node(pgdat, 0x02000000, 0x00080000);
247
248 #ifdef CONFIG_BLK_DEV_INITRD
249 initrd_start = phys_initrd_start;
250 initrd_end = initrd_start + phys_initrd_size;
251
252 /* Achimedes machines only have one node, so initrd is in node 0 */
253 #ifdef CONFIG_XIP_KERNEL
254 /* Only reserve initrd space if it is in RAM */
255 if(initrd_start && initrd_start < 0x03000000){
256 #else
257 if(initrd_start){
258 #endif
259 reserve_bootmem_node(pgdat, __pa(initrd_start),
260 initrd_end - initrd_start);
261 }
262 #endif /* CONFIG_BLK_DEV_INITRD */
263
264
265 }
266
267 /*
268 * paging_init() sets up the page tables, initialises the zone memory
269 * maps, and sets up the zero page, bad page and bad page tables.
270 */
271 void __init paging_init(struct meminfo *mi)
272 {
273 void *zero_page;
274 unsigned long zone_size[MAX_NR_ZONES];
275 unsigned long zhole_size[MAX_NR_ZONES];
276 struct bootmem_data *bdata;
277 pg_data_t *pgdat;
278 int i;
279
280 memcpy(&meminfo, mi, sizeof(meminfo));
281
282 /*
283 * allocate the zero page. Note that we count on this going ok.
284 */
285 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
286
287 /*
288 * initialise the page tables.
289 */
290 memtable_init(mi);
291 flush_tlb_all();
292
293 /*
294 * initialise the zones in node 0 (archimedes have only 1 node)
295 */
296
297 for (i = 0; i < MAX_NR_ZONES; i++) {
298 zone_size[i] = 0;
299 zhole_size[i] = 0;
300 }
301
302 pgdat = NODE_DATA(0);
303 bdata = pgdat->bdata;
304 zone_size[0] = bdata->node_low_pfn -
305 (bdata->node_boot_start >> PAGE_SHIFT);
306 if (!zone_size[0])
307 BUG();
308 pgdat->node_mem_map = NULL;
309 free_area_init_node(0, pgdat, zone_size,
310 bdata->node_boot_start >> PAGE_SHIFT, zhole_size);
311
312 /*
313 * finish off the bad pages once
314 * the mem_map is initialised
315 */
316 memzero(zero_page, PAGE_SIZE);
317 empty_zero_page = virt_to_page(zero_page);
318 }
319
320 static inline void free_area(unsigned long addr, unsigned long end, char *s)
321 {
322 unsigned int size = (end - addr) >> 10;
323
324 for (; addr < end; addr += PAGE_SIZE) {
325 struct page *page = virt_to_page(addr);
326 ClearPageReserved(page);
327 set_page_count(page, 1);
328 free_page(addr);
329 totalram_pages++;
330 }
331
332 if (size && s)
333 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
334 }
335
336 /*
337 * mem_init() marks the free areas in the mem_map and tells us how much
338 * memory is free. This is done after various parts of the system have
339 * claimed their memory after the kernel image.
340 */
341 void __init mem_init(void)
342 {
343 unsigned int codepages, datapages, initpages;
344 pg_data_t *pgdat = NODE_DATA(0);
345 extern int sysctl_overcommit_memory;
346
347
348 /* Note: data pages includes BSS */
349 #ifdef CONFIG_XIP_KERNEL
350 codepages = &_endtext - &_text;
351 datapages = &_end - &_sdata;
352 #else
353 codepages = &_etext - &_text;
354 datapages = &_end - &_etext;
355 #endif
356 initpages = &__init_end - &__init_begin;
357
358 high_memory = (void *)__va(meminfo.end);
359 max_mapnr = virt_to_page(high_memory) - mem_map;
360
361 /* this will put all unused low memory onto the freelists */
362 if (pgdat->node_spanned_pages != 0)
363 totalram_pages += free_all_bootmem_node(pgdat);
364
365 num_physpages = meminfo.bank[0].size >> PAGE_SHIFT;
366
367 printk(KERN_INFO "Memory: %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
368 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
369 "%dK data, %dK init)\n",
370 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
371 codepages >> 10, datapages >> 10, initpages >> 10);
372
373 /*
374 * Turn on overcommit on tiny machines
375 */
376 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
377 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
378 printk("Turning on overcommit\n");
379 }
380 }
381
382 void free_initmem(void){
383 #ifndef CONFIG_XIP_KERNEL
384 free_area((unsigned long)(&__init_begin),
385 (unsigned long)(&__init_end),
386 "init");
387 #endif
388 }
389
390 #ifdef CONFIG_BLK_DEV_INITRD
391
392 static int keep_initrd;
393
394 void free_initrd_mem(unsigned long start, unsigned long end)
395 {
396 #ifdef CONFIG_XIP_KERNEL
397 /* Only bin initrd if it is in RAM... */
398 if(!keep_initrd && start < 0x03000000)
399 #else
400 if (!keep_initrd)
401 #endif
402 free_area(start, end, "initrd");
403 }
404
405 static int __init keepinitrd_setup(char *__unused)
406 {
407 keep_initrd = 1;
408 return 1;
409 }
410
411 __setup("keepinitrd", keepinitrd_setup);
412 #endif