]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm64/Kconfig
Merge tag 'block-5.13-2021-05-14' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / Kconfig
1 # SPDX-License-Identifier: GPL-2.0-only
2 config ARM64
3 def_bool y
4 select ACPI_CCA_REQUIRED if ACPI
5 select ACPI_GENERIC_GSI if ACPI
6 select ACPI_GTDT if ACPI
7 select ACPI_IORT if ACPI
8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9 select ACPI_MCFG if (ACPI && PCI)
10 select ACPI_SPCR_TABLE if ACPI
11 select ACPI_PPTT if ACPI
12 select ARCH_HAS_DEBUG_WX
13 select ARCH_BINFMT_ELF_STATE
14 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
15 select ARCH_ENABLE_MEMORY_HOTPLUG
16 select ARCH_ENABLE_MEMORY_HOTREMOVE
17 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
18 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
19 select ARCH_HAS_CACHE_LINE_SIZE
20 select ARCH_HAS_DEBUG_VIRTUAL
21 select ARCH_HAS_DEBUG_VM_PGTABLE
22 select ARCH_HAS_DMA_PREP_COHERENT
23 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
24 select ARCH_HAS_FAST_MULTIPLIER
25 select ARCH_HAS_FORTIFY_SOURCE
26 select ARCH_HAS_GCOV_PROFILE_ALL
27 select ARCH_HAS_GIGANTIC_PAGE
28 select ARCH_HAS_KCOV
29 select ARCH_HAS_KEEPINITRD
30 select ARCH_HAS_MEMBARRIER_SYNC_CORE
31 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
32 select ARCH_HAS_PTE_DEVMAP
33 select ARCH_HAS_PTE_SPECIAL
34 select ARCH_HAS_SETUP_DMA_OPS
35 select ARCH_HAS_SET_DIRECT_MAP
36 select ARCH_HAS_SET_MEMORY
37 select ARCH_STACKWALK
38 select ARCH_HAS_STRICT_KERNEL_RWX
39 select ARCH_HAS_STRICT_MODULE_RWX
40 select ARCH_HAS_SYNC_DMA_FOR_DEVICE
41 select ARCH_HAS_SYNC_DMA_FOR_CPU
42 select ARCH_HAS_SYSCALL_WRAPPER
43 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
44 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
45 select ARCH_HAVE_ELF_PROT
46 select ARCH_HAVE_NMI_SAFE_CMPXCHG
47 select ARCH_INLINE_READ_LOCK if !PREEMPTION
48 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
49 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
50 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
51 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
52 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
53 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
54 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
55 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
56 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
57 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
58 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
59 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
60 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
61 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
62 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
63 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
64 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
65 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
66 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
67 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
68 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
69 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
70 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
71 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
72 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
73 select ARCH_KEEP_MEMBLOCK
74 select ARCH_USE_CMPXCHG_LOCKREF
75 select ARCH_USE_GNU_PROPERTY
76 select ARCH_USE_MEMTEST
77 select ARCH_USE_QUEUED_RWLOCKS
78 select ARCH_USE_QUEUED_SPINLOCKS
79 select ARCH_USE_SYM_ANNOTATIONS
80 select ARCH_SUPPORTS_DEBUG_PAGEALLOC
81 select ARCH_SUPPORTS_HUGETLBFS
82 select ARCH_SUPPORTS_MEMORY_FAILURE
83 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
84 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
85 select ARCH_SUPPORTS_LTO_CLANG_THIN
86 select ARCH_SUPPORTS_CFI_CLANG
87 select ARCH_SUPPORTS_ATOMIC_RMW
88 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
89 select ARCH_SUPPORTS_NUMA_BALANCING
90 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
91 select ARCH_WANT_DEFAULT_BPF_JIT
92 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
93 select ARCH_WANT_FRAME_POINTERS
94 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
95 select ARCH_WANT_LD_ORPHAN_WARN
96 select ARCH_HAS_UBSAN_SANITIZE_ALL
97 select ARM_AMBA
98 select ARM_ARCH_TIMER
99 select ARM_GIC
100 select AUDIT_ARCH_COMPAT_GENERIC
101 select ARM_GIC_V2M if PCI
102 select ARM_GIC_V3
103 select ARM_GIC_V3_ITS if PCI
104 select ARM_PSCI_FW
105 select BUILDTIME_TABLE_SORT
106 select CLONE_BACKWARDS
107 select COMMON_CLK
108 select CPU_PM if (SUSPEND || CPU_IDLE)
109 select CRC32
110 select DCACHE_WORD_ACCESS
111 select DMA_DIRECT_REMAP
112 select EDAC_SUPPORT
113 select FRAME_POINTER
114 select GENERIC_ALLOCATOR
115 select GENERIC_ARCH_TOPOLOGY
116 select GENERIC_CLOCKEVENTS_BROADCAST
117 select GENERIC_CPU_AUTOPROBE
118 select GENERIC_CPU_VULNERABILITIES
119 select GENERIC_EARLY_IOREMAP
120 select GENERIC_FIND_FIRST_BIT
121 select GENERIC_IDLE_POLL_SETUP
122 select GENERIC_IRQ_IPI
123 select GENERIC_IRQ_PROBE
124 select GENERIC_IRQ_SHOW
125 select GENERIC_IRQ_SHOW_LEVEL
126 select GENERIC_LIB_DEVMEM_IS_ALLOWED
127 select GENERIC_PCI_IOMAP
128 select GENERIC_PTDUMP
129 select GENERIC_SCHED_CLOCK
130 select GENERIC_SMP_IDLE_THREAD
131 select GENERIC_STRNCPY_FROM_USER
132 select GENERIC_STRNLEN_USER
133 select GENERIC_TIME_VSYSCALL
134 select GENERIC_GETTIMEOFDAY
135 select GENERIC_VDSO_TIME_NS
136 select HANDLE_DOMAIN_IRQ
137 select HARDIRQS_SW_RESEND
138 select HAVE_MOVE_PMD
139 select HAVE_MOVE_PUD
140 select HAVE_PCI
141 select HAVE_ACPI_APEI if (ACPI && EFI)
142 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
143 select HAVE_ARCH_AUDITSYSCALL
144 select HAVE_ARCH_BITREVERSE
145 select HAVE_ARCH_COMPILER_H
146 select HAVE_ARCH_HUGE_VMAP
147 select HAVE_ARCH_JUMP_LABEL
148 select HAVE_ARCH_JUMP_LABEL_RELATIVE
149 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
150 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
151 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
152 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
153 select HAVE_ARCH_KFENCE
154 select HAVE_ARCH_KGDB
155 select HAVE_ARCH_MMAP_RND_BITS
156 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
157 select HAVE_ARCH_PFN_VALID
158 select HAVE_ARCH_PREL32_RELOCATIONS
159 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
160 select HAVE_ARCH_SECCOMP_FILTER
161 select HAVE_ARCH_STACKLEAK
162 select HAVE_ARCH_THREAD_STRUCT_WHITELIST
163 select HAVE_ARCH_TRACEHOOK
164 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
165 select HAVE_ARCH_VMAP_STACK
166 select HAVE_ARM_SMCCC
167 select HAVE_ASM_MODVERSIONS
168 select HAVE_EBPF_JIT
169 select HAVE_C_RECORDMCOUNT
170 select HAVE_CMPXCHG_DOUBLE
171 select HAVE_CMPXCHG_LOCAL
172 select HAVE_CONTEXT_TRACKING
173 select HAVE_DEBUG_KMEMLEAK
174 select HAVE_DMA_CONTIGUOUS
175 select HAVE_DYNAMIC_FTRACE
176 select HAVE_DYNAMIC_FTRACE_WITH_REGS \
177 if $(cc-option,-fpatchable-function-entry=2)
178 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
179 if DYNAMIC_FTRACE_WITH_REGS
180 select HAVE_EFFICIENT_UNALIGNED_ACCESS
181 select HAVE_FAST_GUP
182 select HAVE_FTRACE_MCOUNT_RECORD
183 select HAVE_FUNCTION_TRACER
184 select HAVE_FUNCTION_ERROR_INJECTION
185 select HAVE_FUNCTION_GRAPH_TRACER
186 select HAVE_GCC_PLUGINS
187 select HAVE_HW_BREAKPOINT if PERF_EVENTS
188 select HAVE_IRQ_TIME_ACCOUNTING
189 select HAVE_NMI
190 select HAVE_PATA_PLATFORM
191 select HAVE_PERF_EVENTS
192 select HAVE_PERF_REGS
193 select HAVE_PERF_USER_STACK_DUMP
194 select HAVE_REGS_AND_STACK_ACCESS_API
195 select HAVE_FUNCTION_ARG_ACCESS_API
196 select HAVE_FUTEX_CMPXCHG if FUTEX
197 select MMU_GATHER_RCU_TABLE_FREE
198 select HAVE_RSEQ
199 select HAVE_STACKPROTECTOR
200 select HAVE_SYSCALL_TRACEPOINTS
201 select HAVE_KPROBES
202 select HAVE_KRETPROBES
203 select HAVE_GENERIC_VDSO
204 select IOMMU_DMA if IOMMU_SUPPORT
205 select IRQ_DOMAIN
206 select IRQ_FORCED_THREADING
207 select KASAN_VMALLOC if KASAN_GENERIC
208 select MODULES_USE_ELF_RELA
209 select NEED_DMA_MAP_STATE
210 select NEED_SG_DMA_LENGTH
211 select OF
212 select OF_EARLY_FLATTREE
213 select PCI_DOMAINS_GENERIC if PCI
214 select PCI_ECAM if (ACPI && PCI)
215 select PCI_SYSCALL if PCI
216 select POWER_RESET
217 select POWER_SUPPLY
218 select SPARSE_IRQ
219 select SWIOTLB
220 select SYSCTL_EXCEPTION_TRACE
221 select THREAD_INFO_IN_TASK
222 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
223 help
224 ARM 64-bit (AArch64) Linux support.
225
226 config 64BIT
227 def_bool y
228
229 config MMU
230 def_bool y
231
232 config ARM64_PAGE_SHIFT
233 int
234 default 16 if ARM64_64K_PAGES
235 default 14 if ARM64_16K_PAGES
236 default 12
237
238 config ARM64_CONT_PTE_SHIFT
239 int
240 default 5 if ARM64_64K_PAGES
241 default 7 if ARM64_16K_PAGES
242 default 4
243
244 config ARM64_CONT_PMD_SHIFT
245 int
246 default 5 if ARM64_64K_PAGES
247 default 5 if ARM64_16K_PAGES
248 default 4
249
250 config ARCH_MMAP_RND_BITS_MIN
251 default 14 if ARM64_64K_PAGES
252 default 16 if ARM64_16K_PAGES
253 default 18
254
255 # max bits determined by the following formula:
256 # VA_BITS - PAGE_SHIFT - 3
257 config ARCH_MMAP_RND_BITS_MAX
258 default 19 if ARM64_VA_BITS=36
259 default 24 if ARM64_VA_BITS=39
260 default 27 if ARM64_VA_BITS=42
261 default 30 if ARM64_VA_BITS=47
262 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
263 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
264 default 33 if ARM64_VA_BITS=48
265 default 14 if ARM64_64K_PAGES
266 default 16 if ARM64_16K_PAGES
267 default 18
268
269 config ARCH_MMAP_RND_COMPAT_BITS_MIN
270 default 7 if ARM64_64K_PAGES
271 default 9 if ARM64_16K_PAGES
272 default 11
273
274 config ARCH_MMAP_RND_COMPAT_BITS_MAX
275 default 16
276
277 config NO_IOPORT_MAP
278 def_bool y if !PCI
279
280 config STACKTRACE_SUPPORT
281 def_bool y
282
283 config ILLEGAL_POINTER_VALUE
284 hex
285 default 0xdead000000000000
286
287 config LOCKDEP_SUPPORT
288 def_bool y
289
290 config TRACE_IRQFLAGS_SUPPORT
291 def_bool y
292
293 config GENERIC_BUG
294 def_bool y
295 depends on BUG
296
297 config GENERIC_BUG_RELATIVE_POINTERS
298 def_bool y
299 depends on GENERIC_BUG
300
301 config GENERIC_HWEIGHT
302 def_bool y
303
304 config GENERIC_CSUM
305 def_bool y
306
307 config GENERIC_CALIBRATE_DELAY
308 def_bool y
309
310 config ZONE_DMA
311 bool "Support DMA zone" if EXPERT
312 default y
313
314 config ZONE_DMA32
315 bool "Support DMA32 zone" if EXPERT
316 default y
317
318 config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
319 def_bool y
320
321 config SMP
322 def_bool y
323
324 config KERNEL_MODE_NEON
325 def_bool y
326
327 config FIX_EARLYCON_MEM
328 def_bool y
329
330 config PGTABLE_LEVELS
331 int
332 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
333 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
334 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
335 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
336 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
337 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
338
339 config ARCH_SUPPORTS_UPROBES
340 def_bool y
341
342 config ARCH_PROC_KCORE_TEXT
343 def_bool y
344
345 config BROKEN_GAS_INST
346 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
347
348 config KASAN_SHADOW_OFFSET
349 hex
350 depends on KASAN_GENERIC || KASAN_SW_TAGS
351 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
352 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
353 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
354 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
355 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
356 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
357 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
358 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
359 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
360 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
361 default 0xffffffffffffffff
362
363 source "arch/arm64/Kconfig.platforms"
364
365 menu "Kernel Features"
366
367 menu "ARM errata workarounds via the alternatives framework"
368
369 config ARM64_WORKAROUND_CLEAN_CACHE
370 bool
371
372 config ARM64_ERRATUM_826319
373 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
374 default y
375 select ARM64_WORKAROUND_CLEAN_CACHE
376 help
377 This option adds an alternative code sequence to work around ARM
378 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
379 AXI master interface and an L2 cache.
380
381 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
382 and is unable to accept a certain write via this interface, it will
383 not progress on read data presented on the read data channel and the
384 system can deadlock.
385
386 The workaround promotes data cache clean instructions to
387 data cache clean-and-invalidate.
388 Please note that this does not necessarily enable the workaround,
389 as it depends on the alternative framework, which will only patch
390 the kernel if an affected CPU is detected.
391
392 If unsure, say Y.
393
394 config ARM64_ERRATUM_827319
395 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
396 default y
397 select ARM64_WORKAROUND_CLEAN_CACHE
398 help
399 This option adds an alternative code sequence to work around ARM
400 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
401 master interface and an L2 cache.
402
403 Under certain conditions this erratum can cause a clean line eviction
404 to occur at the same time as another transaction to the same address
405 on the AMBA 5 CHI interface, which can cause data corruption if the
406 interconnect reorders the two transactions.
407
408 The workaround promotes data cache clean instructions to
409 data cache clean-and-invalidate.
410 Please note that this does not necessarily enable the workaround,
411 as it depends on the alternative framework, which will only patch
412 the kernel if an affected CPU is detected.
413
414 If unsure, say Y.
415
416 config ARM64_ERRATUM_824069
417 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
418 default y
419 select ARM64_WORKAROUND_CLEAN_CACHE
420 help
421 This option adds an alternative code sequence to work around ARM
422 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
423 to a coherent interconnect.
424
425 If a Cortex-A53 processor is executing a store or prefetch for
426 write instruction at the same time as a processor in another
427 cluster is executing a cache maintenance operation to the same
428 address, then this erratum might cause a clean cache line to be
429 incorrectly marked as dirty.
430
431 The workaround promotes data cache clean instructions to
432 data cache clean-and-invalidate.
433 Please note that this option does not necessarily enable the
434 workaround, as it depends on the alternative framework, which will
435 only patch the kernel if an affected CPU is detected.
436
437 If unsure, say Y.
438
439 config ARM64_ERRATUM_819472
440 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
441 default y
442 select ARM64_WORKAROUND_CLEAN_CACHE
443 help
444 This option adds an alternative code sequence to work around ARM
445 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
446 present when it is connected to a coherent interconnect.
447
448 If the processor is executing a load and store exclusive sequence at
449 the same time as a processor in another cluster is executing a cache
450 maintenance operation to the same address, then this erratum might
451 cause data corruption.
452
453 The workaround promotes data cache clean instructions to
454 data cache clean-and-invalidate.
455 Please note that this does not necessarily enable the workaround,
456 as it depends on the alternative framework, which will only patch
457 the kernel if an affected CPU is detected.
458
459 If unsure, say Y.
460
461 config ARM64_ERRATUM_832075
462 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
463 default y
464 help
465 This option adds an alternative code sequence to work around ARM
466 erratum 832075 on Cortex-A57 parts up to r1p2.
467
468 Affected Cortex-A57 parts might deadlock when exclusive load/store
469 instructions to Write-Back memory are mixed with Device loads.
470
471 The workaround is to promote device loads to use Load-Acquire
472 semantics.
473 Please note that this does not necessarily enable the workaround,
474 as it depends on the alternative framework, which will only patch
475 the kernel if an affected CPU is detected.
476
477 If unsure, say Y.
478
479 config ARM64_ERRATUM_834220
480 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
481 depends on KVM
482 default y
483 help
484 This option adds an alternative code sequence to work around ARM
485 erratum 834220 on Cortex-A57 parts up to r1p2.
486
487 Affected Cortex-A57 parts might report a Stage 2 translation
488 fault as the result of a Stage 1 fault for load crossing a
489 page boundary when there is a permission or device memory
490 alignment fault at Stage 1 and a translation fault at Stage 2.
491
492 The workaround is to verify that the Stage 1 translation
493 doesn't generate a fault before handling the Stage 2 fault.
494 Please note that this does not necessarily enable the workaround,
495 as it depends on the alternative framework, which will only patch
496 the kernel if an affected CPU is detected.
497
498 If unsure, say Y.
499
500 config ARM64_ERRATUM_845719
501 bool "Cortex-A53: 845719: a load might read incorrect data"
502 depends on COMPAT
503 default y
504 help
505 This option adds an alternative code sequence to work around ARM
506 erratum 845719 on Cortex-A53 parts up to r0p4.
507
508 When running a compat (AArch32) userspace on an affected Cortex-A53
509 part, a load at EL0 from a virtual address that matches the bottom 32
510 bits of the virtual address used by a recent load at (AArch64) EL1
511 might return incorrect data.
512
513 The workaround is to write the contextidr_el1 register on exception
514 return to a 32-bit task.
515 Please note that this does not necessarily enable the workaround,
516 as it depends on the alternative framework, which will only patch
517 the kernel if an affected CPU is detected.
518
519 If unsure, say Y.
520
521 config ARM64_ERRATUM_843419
522 bool "Cortex-A53: 843419: A load or store might access an incorrect address"
523 default y
524 select ARM64_MODULE_PLTS if MODULES
525 help
526 This option links the kernel with '--fix-cortex-a53-843419' and
527 enables PLT support to replace certain ADRP instructions, which can
528 cause subsequent memory accesses to use an incorrect address on
529 Cortex-A53 parts up to r0p4.
530
531 If unsure, say Y.
532
533 config ARM64_LD_HAS_FIX_ERRATUM_843419
534 def_bool $(ld-option,--fix-cortex-a53-843419)
535
536 config ARM64_ERRATUM_1024718
537 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
538 default y
539 help
540 This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
541
542 Affected Cortex-A55 cores (all revisions) could cause incorrect
543 update of the hardware dirty bit when the DBM/AP bits are updated
544 without a break-before-make. The workaround is to disable the usage
545 of hardware DBM locally on the affected cores. CPUs not affected by
546 this erratum will continue to use the feature.
547
548 If unsure, say Y.
549
550 config ARM64_ERRATUM_1418040
551 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
552 default y
553 depends on COMPAT
554 help
555 This option adds a workaround for ARM Cortex-A76/Neoverse-N1
556 errata 1188873 and 1418040.
557
558 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
559 cause register corruption when accessing the timer registers
560 from AArch32 userspace.
561
562 If unsure, say Y.
563
564 config ARM64_WORKAROUND_SPECULATIVE_AT
565 bool
566
567 config ARM64_ERRATUM_1165522
568 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
569 default y
570 select ARM64_WORKAROUND_SPECULATIVE_AT
571 help
572 This option adds a workaround for ARM Cortex-A76 erratum 1165522.
573
574 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
575 corrupted TLBs by speculating an AT instruction during a guest
576 context switch.
577
578 If unsure, say Y.
579
580 config ARM64_ERRATUM_1319367
581 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
582 default y
583 select ARM64_WORKAROUND_SPECULATIVE_AT
584 help
585 This option adds work arounds for ARM Cortex-A57 erratum 1319537
586 and A72 erratum 1319367
587
588 Cortex-A57 and A72 cores could end-up with corrupted TLBs by
589 speculating an AT instruction during a guest context switch.
590
591 If unsure, say Y.
592
593 config ARM64_ERRATUM_1530923
594 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
595 default y
596 select ARM64_WORKAROUND_SPECULATIVE_AT
597 help
598 This option adds a workaround for ARM Cortex-A55 erratum 1530923.
599
600 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
601 corrupted TLBs by speculating an AT instruction during a guest
602 context switch.
603
604 If unsure, say Y.
605
606 config ARM64_WORKAROUND_REPEAT_TLBI
607 bool
608
609 config ARM64_ERRATUM_1286807
610 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
611 default y
612 select ARM64_WORKAROUND_REPEAT_TLBI
613 help
614 This option adds a workaround for ARM Cortex-A76 erratum 1286807.
615
616 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
617 address for a cacheable mapping of a location is being
618 accessed by a core while another core is remapping the virtual
619 address to a new physical page using the recommended
620 break-before-make sequence, then under very rare circumstances
621 TLBI+DSB completes before a read using the translation being
622 invalidated has been observed by other observers. The
623 workaround repeats the TLBI+DSB operation.
624
625 config ARM64_ERRATUM_1463225
626 bool "Cortex-A76: Software Step might prevent interrupt recognition"
627 default y
628 help
629 This option adds a workaround for Arm Cortex-A76 erratum 1463225.
630
631 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
632 of a system call instruction (SVC) can prevent recognition of
633 subsequent interrupts when software stepping is disabled in the
634 exception handler of the system call and either kernel debugging
635 is enabled or VHE is in use.
636
637 Work around the erratum by triggering a dummy step exception
638 when handling a system call from a task that is being stepped
639 in a VHE configuration of the kernel.
640
641 If unsure, say Y.
642
643 config ARM64_ERRATUM_1542419
644 bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
645 default y
646 help
647 This option adds a workaround for ARM Neoverse-N1 erratum
648 1542419.
649
650 Affected Neoverse-N1 cores could execute a stale instruction when
651 modified by another CPU. The workaround depends on a firmware
652 counterpart.
653
654 Workaround the issue by hiding the DIC feature from EL0. This
655 forces user-space to perform cache maintenance.
656
657 If unsure, say Y.
658
659 config ARM64_ERRATUM_1508412
660 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
661 default y
662 help
663 This option adds a workaround for Arm Cortex-A77 erratum 1508412.
664
665 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
666 of a store-exclusive or read of PAR_EL1 and a load with device or
667 non-cacheable memory attributes. The workaround depends on a firmware
668 counterpart.
669
670 KVM guests must also have the workaround implemented or they can
671 deadlock the system.
672
673 Work around the issue by inserting DMB SY barriers around PAR_EL1
674 register reads and warning KVM users. The DMB barrier is sufficient
675 to prevent a speculative PAR_EL1 read.
676
677 If unsure, say Y.
678
679 config CAVIUM_ERRATUM_22375
680 bool "Cavium erratum 22375, 24313"
681 default y
682 help
683 Enable workaround for errata 22375 and 24313.
684
685 This implements two gicv3-its errata workarounds for ThunderX. Both
686 with a small impact affecting only ITS table allocation.
687
688 erratum 22375: only alloc 8MB table size
689 erratum 24313: ignore memory access type
690
691 The fixes are in ITS initialization and basically ignore memory access
692 type and table size provided by the TYPER and BASER registers.
693
694 If unsure, say Y.
695
696 config CAVIUM_ERRATUM_23144
697 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
698 depends on NUMA
699 default y
700 help
701 ITS SYNC command hang for cross node io and collections/cpu mapping.
702
703 If unsure, say Y.
704
705 config CAVIUM_ERRATUM_23154
706 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
707 default y
708 help
709 The gicv3 of ThunderX requires a modified version for
710 reading the IAR status to ensure data synchronization
711 (access to icc_iar1_el1 is not sync'ed before and after).
712
713 If unsure, say Y.
714
715 config CAVIUM_ERRATUM_27456
716 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
717 default y
718 help
719 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
720 instructions may cause the icache to become corrupted if it
721 contains data for a non-current ASID. The fix is to
722 invalidate the icache when changing the mm context.
723
724 If unsure, say Y.
725
726 config CAVIUM_ERRATUM_30115
727 bool "Cavium erratum 30115: Guest may disable interrupts in host"
728 default y
729 help
730 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
731 1.2, and T83 Pass 1.0, KVM guest execution may disable
732 interrupts in host. Trapping both GICv3 group-0 and group-1
733 accesses sidesteps the issue.
734
735 If unsure, say Y.
736
737 config CAVIUM_TX2_ERRATUM_219
738 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
739 default y
740 help
741 On Cavium ThunderX2, a load, store or prefetch instruction between a
742 TTBR update and the corresponding context synchronizing operation can
743 cause a spurious Data Abort to be delivered to any hardware thread in
744 the CPU core.
745
746 Work around the issue by avoiding the problematic code sequence and
747 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
748 trap handler performs the corresponding register access, skips the
749 instruction and ensures context synchronization by virtue of the
750 exception return.
751
752 If unsure, say Y.
753
754 config FUJITSU_ERRATUM_010001
755 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
756 default y
757 help
758 This option adds a workaround for Fujitsu-A64FX erratum E#010001.
759 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
760 accesses may cause undefined fault (Data abort, DFSC=0b111111).
761 This fault occurs under a specific hardware condition when a
762 load/store instruction performs an address translation using:
763 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1.
764 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1.
765 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1.
766 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1.
767
768 The workaround is to ensure these bits are clear in TCR_ELx.
769 The workaround only affects the Fujitsu-A64FX.
770
771 If unsure, say Y.
772
773 config HISILICON_ERRATUM_161600802
774 bool "Hip07 161600802: Erroneous redistributor VLPI base"
775 default y
776 help
777 The HiSilicon Hip07 SoC uses the wrong redistributor base
778 when issued ITS commands such as VMOVP and VMAPP, and requires
779 a 128kB offset to be applied to the target address in this commands.
780
781 If unsure, say Y.
782
783 config QCOM_FALKOR_ERRATUM_1003
784 bool "Falkor E1003: Incorrect translation due to ASID change"
785 default y
786 help
787 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
788 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
789 in TTBR1_EL1, this situation only occurs in the entry trampoline and
790 then only for entries in the walk cache, since the leaf translation
791 is unchanged. Work around the erratum by invalidating the walk cache
792 entries for the trampoline before entering the kernel proper.
793
794 config QCOM_FALKOR_ERRATUM_1009
795 bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
796 default y
797 select ARM64_WORKAROUND_REPEAT_TLBI
798 help
799 On Falkor v1, the CPU may prematurely complete a DSB following a
800 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
801 one more time to fix the issue.
802
803 If unsure, say Y.
804
805 config QCOM_QDF2400_ERRATUM_0065
806 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
807 default y
808 help
809 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
810 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
811 been indicated as 16Bytes (0xf), not 8Bytes (0x7).
812
813 If unsure, say Y.
814
815 config QCOM_FALKOR_ERRATUM_E1041
816 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
817 default y
818 help
819 Falkor CPU may speculatively fetch instructions from an improper
820 memory location when MMU translation is changed from SCTLR_ELn[M]=1
821 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
822
823 If unsure, say Y.
824
825 config NVIDIA_CARMEL_CNP_ERRATUM
826 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
827 default y
828 help
829 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
830 invalidate shared TLB entries installed by a different core, as it would
831 on standard ARM cores.
832
833 If unsure, say Y.
834
835 config SOCIONEXT_SYNQUACER_PREITS
836 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
837 default y
838 help
839 Socionext Synquacer SoCs implement a separate h/w block to generate
840 MSI doorbell writes with non-zero values for the device ID.
841
842 If unsure, say Y.
843
844 endmenu
845
846
847 choice
848 prompt "Page size"
849 default ARM64_4K_PAGES
850 help
851 Page size (translation granule) configuration.
852
853 config ARM64_4K_PAGES
854 bool "4KB"
855 help
856 This feature enables 4KB pages support.
857
858 config ARM64_16K_PAGES
859 bool "16KB"
860 help
861 The system will use 16KB pages support. AArch32 emulation
862 requires applications compiled with 16K (or a multiple of 16K)
863 aligned segments.
864
865 config ARM64_64K_PAGES
866 bool "64KB"
867 help
868 This feature enables 64KB pages support (4KB by default)
869 allowing only two levels of page tables and faster TLB
870 look-up. AArch32 emulation requires applications compiled
871 with 64K aligned segments.
872
873 endchoice
874
875 choice
876 prompt "Virtual address space size"
877 default ARM64_VA_BITS_39 if ARM64_4K_PAGES
878 default ARM64_VA_BITS_47 if ARM64_16K_PAGES
879 default ARM64_VA_BITS_42 if ARM64_64K_PAGES
880 help
881 Allows choosing one of multiple possible virtual address
882 space sizes. The level of translation table is determined by
883 a combination of page size and virtual address space size.
884
885 config ARM64_VA_BITS_36
886 bool "36-bit" if EXPERT
887 depends on ARM64_16K_PAGES
888
889 config ARM64_VA_BITS_39
890 bool "39-bit"
891 depends on ARM64_4K_PAGES
892
893 config ARM64_VA_BITS_42
894 bool "42-bit"
895 depends on ARM64_64K_PAGES
896
897 config ARM64_VA_BITS_47
898 bool "47-bit"
899 depends on ARM64_16K_PAGES
900
901 config ARM64_VA_BITS_48
902 bool "48-bit"
903
904 config ARM64_VA_BITS_52
905 bool "52-bit"
906 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
907 help
908 Enable 52-bit virtual addressing for userspace when explicitly
909 requested via a hint to mmap(). The kernel will also use 52-bit
910 virtual addresses for its own mappings (provided HW support for
911 this feature is available, otherwise it reverts to 48-bit).
912
913 NOTE: Enabling 52-bit virtual addressing in conjunction with
914 ARMv8.3 Pointer Authentication will result in the PAC being
915 reduced from 7 bits to 3 bits, which may have a significant
916 impact on its susceptibility to brute-force attacks.
917
918 If unsure, select 48-bit virtual addressing instead.
919
920 endchoice
921
922 config ARM64_FORCE_52BIT
923 bool "Force 52-bit virtual addresses for userspace"
924 depends on ARM64_VA_BITS_52 && EXPERT
925 help
926 For systems with 52-bit userspace VAs enabled, the kernel will attempt
927 to maintain compatibility with older software by providing 48-bit VAs
928 unless a hint is supplied to mmap.
929
930 This configuration option disables the 48-bit compatibility logic, and
931 forces all userspace addresses to be 52-bit on HW that supports it. One
932 should only enable this configuration option for stress testing userspace
933 memory management code. If unsure say N here.
934
935 config ARM64_VA_BITS
936 int
937 default 36 if ARM64_VA_BITS_36
938 default 39 if ARM64_VA_BITS_39
939 default 42 if ARM64_VA_BITS_42
940 default 47 if ARM64_VA_BITS_47
941 default 48 if ARM64_VA_BITS_48
942 default 52 if ARM64_VA_BITS_52
943
944 choice
945 prompt "Physical address space size"
946 default ARM64_PA_BITS_48
947 help
948 Choose the maximum physical address range that the kernel will
949 support.
950
951 config ARM64_PA_BITS_48
952 bool "48-bit"
953
954 config ARM64_PA_BITS_52
955 bool "52-bit (ARMv8.2)"
956 depends on ARM64_64K_PAGES
957 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
958 help
959 Enable support for a 52-bit physical address space, introduced as
960 part of the ARMv8.2-LPA extension.
961
962 With this enabled, the kernel will also continue to work on CPUs that
963 do not support ARMv8.2-LPA, but with some added memory overhead (and
964 minor performance overhead).
965
966 endchoice
967
968 config ARM64_PA_BITS
969 int
970 default 48 if ARM64_PA_BITS_48
971 default 52 if ARM64_PA_BITS_52
972
973 choice
974 prompt "Endianness"
975 default CPU_LITTLE_ENDIAN
976 help
977 Select the endianness of data accesses performed by the CPU. Userspace
978 applications will need to be compiled and linked for the endianness
979 that is selected here.
980
981 config CPU_BIG_ENDIAN
982 bool "Build big-endian kernel"
983 depends on !LD_IS_LLD || LLD_VERSION >= 130000
984 help
985 Say Y if you plan on running a kernel with a big-endian userspace.
986
987 config CPU_LITTLE_ENDIAN
988 bool "Build little-endian kernel"
989 help
990 Say Y if you plan on running a kernel with a little-endian userspace.
991 This is usually the case for distributions targeting arm64.
992
993 endchoice
994
995 config SCHED_MC
996 bool "Multi-core scheduler support"
997 help
998 Multi-core scheduler support improves the CPU scheduler's decision
999 making when dealing with multi-core CPU chips at a cost of slightly
1000 increased overhead in some places. If unsure say N here.
1001
1002 config SCHED_SMT
1003 bool "SMT scheduler support"
1004 help
1005 Improves the CPU scheduler's decision making when dealing with
1006 MultiThreading at a cost of slightly increased overhead in some
1007 places. If unsure say N here.
1008
1009 config NR_CPUS
1010 int "Maximum number of CPUs (2-4096)"
1011 range 2 4096
1012 default "256"
1013
1014 config HOTPLUG_CPU
1015 bool "Support for hot-pluggable CPUs"
1016 select GENERIC_IRQ_MIGRATION
1017 help
1018 Say Y here to experiment with turning CPUs off and on. CPUs
1019 can be controlled through /sys/devices/system/cpu.
1020
1021 # Common NUMA Features
1022 config NUMA
1023 bool "NUMA Memory Allocation and Scheduler Support"
1024 select GENERIC_ARCH_NUMA
1025 select ACPI_NUMA if ACPI
1026 select OF_NUMA
1027 help
1028 Enable NUMA (Non-Uniform Memory Access) support.
1029
1030 The kernel will try to allocate memory used by a CPU on the
1031 local memory of the CPU and add some more
1032 NUMA awareness to the kernel.
1033
1034 config NODES_SHIFT
1035 int "Maximum NUMA Nodes (as a power of 2)"
1036 range 1 10
1037 default "4"
1038 depends on NEED_MULTIPLE_NODES
1039 help
1040 Specify the maximum number of NUMA Nodes available on the target
1041 system. Increases memory reserved to accommodate various tables.
1042
1043 config USE_PERCPU_NUMA_NODE_ID
1044 def_bool y
1045 depends on NUMA
1046
1047 config HAVE_SETUP_PER_CPU_AREA
1048 def_bool y
1049 depends on NUMA
1050
1051 config NEED_PER_CPU_EMBED_FIRST_CHUNK
1052 def_bool y
1053 depends on NUMA
1054
1055 config HOLES_IN_ZONE
1056 def_bool y
1057
1058 source "kernel/Kconfig.hz"
1059
1060 config ARCH_SPARSEMEM_ENABLE
1061 def_bool y
1062 select SPARSEMEM_VMEMMAP_ENABLE
1063 select SPARSEMEM_VMEMMAP
1064
1065 config HW_PERF_EVENTS
1066 def_bool y
1067 depends on ARM_PMU
1068
1069 config ARCH_HAS_FILTER_PGPROT
1070 def_bool y
1071
1072 # Supported by clang >= 7.0
1073 config CC_HAVE_SHADOW_CALL_STACK
1074 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1075
1076 config PARAVIRT
1077 bool "Enable paravirtualization code"
1078 help
1079 This changes the kernel so it can modify itself when it is run
1080 under a hypervisor, potentially improving performance significantly
1081 over full virtualization.
1082
1083 config PARAVIRT_TIME_ACCOUNTING
1084 bool "Paravirtual steal time accounting"
1085 select PARAVIRT
1086 help
1087 Select this option to enable fine granularity task steal time
1088 accounting. Time spent executing other tasks in parallel with
1089 the current vCPU is discounted from the vCPU power. To account for
1090 that, there can be a small performance impact.
1091
1092 If in doubt, say N here.
1093
1094 config KEXEC
1095 depends on PM_SLEEP_SMP
1096 select KEXEC_CORE
1097 bool "kexec system call"
1098 help
1099 kexec is a system call that implements the ability to shutdown your
1100 current kernel, and to start another kernel. It is like a reboot
1101 but it is independent of the system firmware. And like a reboot
1102 you can start any kernel with it, not just Linux.
1103
1104 config KEXEC_FILE
1105 bool "kexec file based system call"
1106 select KEXEC_CORE
1107 select HAVE_IMA_KEXEC if IMA
1108 help
1109 This is new version of kexec system call. This system call is
1110 file based and takes file descriptors as system call argument
1111 for kernel and initramfs as opposed to list of segments as
1112 accepted by previous system call.
1113
1114 config KEXEC_SIG
1115 bool "Verify kernel signature during kexec_file_load() syscall"
1116 depends on KEXEC_FILE
1117 help
1118 Select this option to verify a signature with loaded kernel
1119 image. If configured, any attempt of loading a image without
1120 valid signature will fail.
1121
1122 In addition to that option, you need to enable signature
1123 verification for the corresponding kernel image type being
1124 loaded in order for this to work.
1125
1126 config KEXEC_IMAGE_VERIFY_SIG
1127 bool "Enable Image signature verification support"
1128 default y
1129 depends on KEXEC_SIG
1130 depends on EFI && SIGNED_PE_FILE_VERIFICATION
1131 help
1132 Enable Image signature verification support.
1133
1134 comment "Support for PE file signature verification disabled"
1135 depends on KEXEC_SIG
1136 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1137
1138 config CRASH_DUMP
1139 bool "Build kdump crash kernel"
1140 help
1141 Generate crash dump after being started by kexec. This should
1142 be normally only set in special crash dump kernels which are
1143 loaded in the main kernel with kexec-tools into a specially
1144 reserved region and then later executed after a crash by
1145 kdump/kexec.
1146
1147 For more details see Documentation/admin-guide/kdump/kdump.rst
1148
1149 config TRANS_TABLE
1150 def_bool y
1151 depends on HIBERNATION
1152
1153 config XEN_DOM0
1154 def_bool y
1155 depends on XEN
1156
1157 config XEN
1158 bool "Xen guest support on ARM64"
1159 depends on ARM64 && OF
1160 select SWIOTLB_XEN
1161 select PARAVIRT
1162 help
1163 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1164
1165 config FORCE_MAX_ZONEORDER
1166 int
1167 default "14" if ARM64_64K_PAGES
1168 default "12" if ARM64_16K_PAGES
1169 default "11"
1170 help
1171 The kernel memory allocator divides physically contiguous memory
1172 blocks into "zones", where each zone is a power of two number of
1173 pages. This option selects the largest power of two that the kernel
1174 keeps in the memory allocator. If you need to allocate very large
1175 blocks of physically contiguous memory, then you may need to
1176 increase this value.
1177
1178 This config option is actually maximum order plus one. For example,
1179 a value of 11 means that the largest free memory block is 2^10 pages.
1180
1181 We make sure that we can allocate upto a HugePage size for each configuration.
1182 Hence we have :
1183 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1184
1185 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1186 4M allocations matching the default size used by generic code.
1187
1188 config UNMAP_KERNEL_AT_EL0
1189 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1190 default y
1191 help
1192 Speculation attacks against some high-performance processors can
1193 be used to bypass MMU permission checks and leak kernel data to
1194 userspace. This can be defended against by unmapping the kernel
1195 when running in userspace, mapping it back in on exception entry
1196 via a trampoline page in the vector table.
1197
1198 If unsure, say Y.
1199
1200 config RODATA_FULL_DEFAULT_ENABLED
1201 bool "Apply r/o permissions of VM areas also to their linear aliases"
1202 default y
1203 help
1204 Apply read-only attributes of VM areas to the linear alias of
1205 the backing pages as well. This prevents code or read-only data
1206 from being modified (inadvertently or intentionally) via another
1207 mapping of the same memory page. This additional enhancement can
1208 be turned off at runtime by passing rodata=[off|on] (and turned on
1209 with rodata=full if this option is set to 'n')
1210
1211 This requires the linear region to be mapped down to pages,
1212 which may adversely affect performance in some cases.
1213
1214 config ARM64_SW_TTBR0_PAN
1215 bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1216 help
1217 Enabling this option prevents the kernel from accessing
1218 user-space memory directly by pointing TTBR0_EL1 to a reserved
1219 zeroed area and reserved ASID. The user access routines
1220 restore the valid TTBR0_EL1 temporarily.
1221
1222 config ARM64_TAGGED_ADDR_ABI
1223 bool "Enable the tagged user addresses syscall ABI"
1224 default y
1225 help
1226 When this option is enabled, user applications can opt in to a
1227 relaxed ABI via prctl() allowing tagged addresses to be passed
1228 to system calls as pointer arguments. For details, see
1229 Documentation/arm64/tagged-address-abi.rst.
1230
1231 menuconfig COMPAT
1232 bool "Kernel support for 32-bit EL0"
1233 depends on ARM64_4K_PAGES || EXPERT
1234 select HAVE_UID16
1235 select OLD_SIGSUSPEND3
1236 select COMPAT_OLD_SIGACTION
1237 help
1238 This option enables support for a 32-bit EL0 running under a 64-bit
1239 kernel at EL1. AArch32-specific components such as system calls,
1240 the user helper functions, VFP support and the ptrace interface are
1241 handled appropriately by the kernel.
1242
1243 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1244 that you will only be able to execute AArch32 binaries that were compiled
1245 with page size aligned segments.
1246
1247 If you want to execute 32-bit userspace applications, say Y.
1248
1249 if COMPAT
1250
1251 config KUSER_HELPERS
1252 bool "Enable kuser helpers page for 32-bit applications"
1253 default y
1254 help
1255 Warning: disabling this option may break 32-bit user programs.
1256
1257 Provide kuser helpers to compat tasks. The kernel provides
1258 helper code to userspace in read only form at a fixed location
1259 to allow userspace to be independent of the CPU type fitted to
1260 the system. This permits binaries to be run on ARMv4 through
1261 to ARMv8 without modification.
1262
1263 See Documentation/arm/kernel_user_helpers.rst for details.
1264
1265 However, the fixed address nature of these helpers can be used
1266 by ROP (return orientated programming) authors when creating
1267 exploits.
1268
1269 If all of the binaries and libraries which run on your platform
1270 are built specifically for your platform, and make no use of
1271 these helpers, then you can turn this option off to hinder
1272 such exploits. However, in that case, if a binary or library
1273 relying on those helpers is run, it will not function correctly.
1274
1275 Say N here only if you are absolutely certain that you do not
1276 need these helpers; otherwise, the safe option is to say Y.
1277
1278 config COMPAT_VDSO
1279 bool "Enable vDSO for 32-bit applications"
1280 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1281 select GENERIC_COMPAT_VDSO
1282 default y
1283 help
1284 Place in the process address space of 32-bit applications an
1285 ELF shared object providing fast implementations of gettimeofday
1286 and clock_gettime.
1287
1288 You must have a 32-bit build of glibc 2.22 or later for programs
1289 to seamlessly take advantage of this.
1290
1291 config THUMB2_COMPAT_VDSO
1292 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1293 depends on COMPAT_VDSO
1294 default y
1295 help
1296 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1297 otherwise with '-marm'.
1298
1299 menuconfig ARMV8_DEPRECATED
1300 bool "Emulate deprecated/obsolete ARMv8 instructions"
1301 depends on SYSCTL
1302 help
1303 Legacy software support may require certain instructions
1304 that have been deprecated or obsoleted in the architecture.
1305
1306 Enable this config to enable selective emulation of these
1307 features.
1308
1309 If unsure, say Y
1310
1311 if ARMV8_DEPRECATED
1312
1313 config SWP_EMULATION
1314 bool "Emulate SWP/SWPB instructions"
1315 help
1316 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1317 they are always undefined. Say Y here to enable software
1318 emulation of these instructions for userspace using LDXR/STXR.
1319 This feature can be controlled at runtime with the abi.swp
1320 sysctl which is disabled by default.
1321
1322 In some older versions of glibc [<=2.8] SWP is used during futex
1323 trylock() operations with the assumption that the code will not
1324 be preempted. This invalid assumption may be more likely to fail
1325 with SWP emulation enabled, leading to deadlock of the user
1326 application.
1327
1328 NOTE: when accessing uncached shared regions, LDXR/STXR rely
1329 on an external transaction monitoring block called a global
1330 monitor to maintain update atomicity. If your system does not
1331 implement a global monitor, this option can cause programs that
1332 perform SWP operations to uncached memory to deadlock.
1333
1334 If unsure, say Y
1335
1336 config CP15_BARRIER_EMULATION
1337 bool "Emulate CP15 Barrier instructions"
1338 help
1339 The CP15 barrier instructions - CP15ISB, CP15DSB, and
1340 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1341 strongly recommended to use the ISB, DSB, and DMB
1342 instructions instead.
1343
1344 Say Y here to enable software emulation of these
1345 instructions for AArch32 userspace code. When this option is
1346 enabled, CP15 barrier usage is traced which can help
1347 identify software that needs updating. This feature can be
1348 controlled at runtime with the abi.cp15_barrier sysctl.
1349
1350 If unsure, say Y
1351
1352 config SETEND_EMULATION
1353 bool "Emulate SETEND instruction"
1354 help
1355 The SETEND instruction alters the data-endianness of the
1356 AArch32 EL0, and is deprecated in ARMv8.
1357
1358 Say Y here to enable software emulation of the instruction
1359 for AArch32 userspace code. This feature can be controlled
1360 at runtime with the abi.setend sysctl.
1361
1362 Note: All the cpus on the system must have mixed endian support at EL0
1363 for this feature to be enabled. If a new CPU - which doesn't support mixed
1364 endian - is hotplugged in after this feature has been enabled, there could
1365 be unexpected results in the applications.
1366
1367 If unsure, say Y
1368 endif
1369
1370 endif
1371
1372 menu "ARMv8.1 architectural features"
1373
1374 config ARM64_HW_AFDBM
1375 bool "Support for hardware updates of the Access and Dirty page flags"
1376 default y
1377 help
1378 The ARMv8.1 architecture extensions introduce support for
1379 hardware updates of the access and dirty information in page
1380 table entries. When enabled in TCR_EL1 (HA and HD bits) on
1381 capable processors, accesses to pages with PTE_AF cleared will
1382 set this bit instead of raising an access flag fault.
1383 Similarly, writes to read-only pages with the DBM bit set will
1384 clear the read-only bit (AP[2]) instead of raising a
1385 permission fault.
1386
1387 Kernels built with this configuration option enabled continue
1388 to work on pre-ARMv8.1 hardware and the performance impact is
1389 minimal. If unsure, say Y.
1390
1391 config ARM64_PAN
1392 bool "Enable support for Privileged Access Never (PAN)"
1393 default y
1394 help
1395 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1396 prevents the kernel or hypervisor from accessing user-space (EL0)
1397 memory directly.
1398
1399 Choosing this option will cause any unprotected (not using
1400 copy_to_user et al) memory access to fail with a permission fault.
1401
1402 The feature is detected at runtime, and will remain as a 'nop'
1403 instruction if the cpu does not implement the feature.
1404
1405 config AS_HAS_LDAPR
1406 def_bool $(as-instr,.arch_extension rcpc)
1407
1408 config AS_HAS_LSE_ATOMICS
1409 def_bool $(as-instr,.arch_extension lse)
1410
1411 config ARM64_LSE_ATOMICS
1412 bool
1413 default ARM64_USE_LSE_ATOMICS
1414 depends on AS_HAS_LSE_ATOMICS
1415
1416 config ARM64_USE_LSE_ATOMICS
1417 bool "Atomic instructions"
1418 depends on JUMP_LABEL
1419 default y
1420 help
1421 As part of the Large System Extensions, ARMv8.1 introduces new
1422 atomic instructions that are designed specifically to scale in
1423 very large systems.
1424
1425 Say Y here to make use of these instructions for the in-kernel
1426 atomic routines. This incurs a small overhead on CPUs that do
1427 not support these instructions and requires the kernel to be
1428 built with binutils >= 2.25 in order for the new instructions
1429 to be used.
1430
1431 endmenu
1432
1433 menu "ARMv8.2 architectural features"
1434
1435 config ARM64_PMEM
1436 bool "Enable support for persistent memory"
1437 select ARCH_HAS_PMEM_API
1438 select ARCH_HAS_UACCESS_FLUSHCACHE
1439 help
1440 Say Y to enable support for the persistent memory API based on the
1441 ARMv8.2 DCPoP feature.
1442
1443 The feature is detected at runtime, and the kernel will use DC CVAC
1444 operations if DC CVAP is not supported (following the behaviour of
1445 DC CVAP itself if the system does not define a point of persistence).
1446
1447 config ARM64_RAS_EXTN
1448 bool "Enable support for RAS CPU Extensions"
1449 default y
1450 help
1451 CPUs that support the Reliability, Availability and Serviceability
1452 (RAS) Extensions, part of ARMv8.2 are able to track faults and
1453 errors, classify them and report them to software.
1454
1455 On CPUs with these extensions system software can use additional
1456 barriers to determine if faults are pending and read the
1457 classification from a new set of registers.
1458
1459 Selecting this feature will allow the kernel to use these barriers
1460 and access the new registers if the system supports the extension.
1461 Platform RAS features may additionally depend on firmware support.
1462
1463 config ARM64_CNP
1464 bool "Enable support for Common Not Private (CNP) translations"
1465 default y
1466 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1467 help
1468 Common Not Private (CNP) allows translation table entries to
1469 be shared between different PEs in the same inner shareable
1470 domain, so the hardware can use this fact to optimise the
1471 caching of such entries in the TLB.
1472
1473 Selecting this option allows the CNP feature to be detected
1474 at runtime, and does not affect PEs that do not implement
1475 this feature.
1476
1477 endmenu
1478
1479 menu "ARMv8.3 architectural features"
1480
1481 config ARM64_PTR_AUTH
1482 bool "Enable support for pointer authentication"
1483 default y
1484 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1485 # Modern compilers insert a .note.gnu.property section note for PAC
1486 # which is only understood by binutils starting with version 2.33.1.
1487 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1488 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1489 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1490 help
1491 Pointer authentication (part of the ARMv8.3 Extensions) provides
1492 instructions for signing and authenticating pointers against secret
1493 keys, which can be used to mitigate Return Oriented Programming (ROP)
1494 and other attacks.
1495
1496 This option enables these instructions at EL0 (i.e. for userspace).
1497 Choosing this option will cause the kernel to initialise secret keys
1498 for each process at exec() time, with these keys being
1499 context-switched along with the process.
1500
1501 If the compiler supports the -mbranch-protection or
1502 -msign-return-address flag (e.g. GCC 7 or later), then this option
1503 will also cause the kernel itself to be compiled with return address
1504 protection. In this case, and if the target hardware is known to
1505 support pointer authentication, then CONFIG_STACKPROTECTOR can be
1506 disabled with minimal loss of protection.
1507
1508 The feature is detected at runtime. If the feature is not present in
1509 hardware it will not be advertised to userspace/KVM guest nor will it
1510 be enabled.
1511
1512 If the feature is present on the boot CPU but not on a late CPU, then
1513 the late CPU will be parked. Also, if the boot CPU does not have
1514 address auth and the late CPU has then the late CPU will still boot
1515 but with the feature disabled. On such a system, this option should
1516 not be selected.
1517
1518 This feature works with FUNCTION_GRAPH_TRACER option only if
1519 DYNAMIC_FTRACE_WITH_REGS is enabled.
1520
1521 config CC_HAS_BRANCH_PROT_PAC_RET
1522 # GCC 9 or later, clang 8 or later
1523 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1524
1525 config CC_HAS_SIGN_RETURN_ADDRESS
1526 # GCC 7, 8
1527 def_bool $(cc-option,-msign-return-address=all)
1528
1529 config AS_HAS_PAC
1530 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1531
1532 config AS_HAS_CFI_NEGATE_RA_STATE
1533 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1534
1535 endmenu
1536
1537 menu "ARMv8.4 architectural features"
1538
1539 config ARM64_AMU_EXTN
1540 bool "Enable support for the Activity Monitors Unit CPU extension"
1541 default y
1542 help
1543 The activity monitors extension is an optional extension introduced
1544 by the ARMv8.4 CPU architecture. This enables support for version 1
1545 of the activity monitors architecture, AMUv1.
1546
1547 To enable the use of this extension on CPUs that implement it, say Y.
1548
1549 Note that for architectural reasons, firmware _must_ implement AMU
1550 support when running on CPUs that present the activity monitors
1551 extension. The required support is present in:
1552 * Version 1.5 and later of the ARM Trusted Firmware
1553
1554 For kernels that have this configuration enabled but boot with broken
1555 firmware, you may need to say N here until the firmware is fixed.
1556 Otherwise you may experience firmware panics or lockups when
1557 accessing the counter registers. Even if you are not observing these
1558 symptoms, the values returned by the register reads might not
1559 correctly reflect reality. Most commonly, the value read will be 0,
1560 indicating that the counter is not enabled.
1561
1562 config AS_HAS_ARMV8_4
1563 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1564
1565 config ARM64_TLB_RANGE
1566 bool "Enable support for tlbi range feature"
1567 default y
1568 depends on AS_HAS_ARMV8_4
1569 help
1570 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1571 range of input addresses.
1572
1573 The feature introduces new assembly instructions, and they were
1574 support when binutils >= 2.30.
1575
1576 endmenu
1577
1578 menu "ARMv8.5 architectural features"
1579
1580 config AS_HAS_ARMV8_5
1581 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1582
1583 config ARM64_BTI
1584 bool "Branch Target Identification support"
1585 default y
1586 help
1587 Branch Target Identification (part of the ARMv8.5 Extensions)
1588 provides a mechanism to limit the set of locations to which computed
1589 branch instructions such as BR or BLR can jump.
1590
1591 To make use of BTI on CPUs that support it, say Y.
1592
1593 BTI is intended to provide complementary protection to other control
1594 flow integrity protection mechanisms, such as the Pointer
1595 authentication mechanism provided as part of the ARMv8.3 Extensions.
1596 For this reason, it does not make sense to enable this option without
1597 also enabling support for pointer authentication. Thus, when
1598 enabling this option you should also select ARM64_PTR_AUTH=y.
1599
1600 Userspace binaries must also be specifically compiled to make use of
1601 this mechanism. If you say N here or the hardware does not support
1602 BTI, such binaries can still run, but you get no additional
1603 enforcement of branch destinations.
1604
1605 config ARM64_BTI_KERNEL
1606 bool "Use Branch Target Identification for kernel"
1607 default y
1608 depends on ARM64_BTI
1609 depends on ARM64_PTR_AUTH
1610 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1611 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1612 depends on !CC_IS_GCC || GCC_VERSION >= 100100
1613 depends on !(CC_IS_CLANG && GCOV_KERNEL)
1614 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1615 help
1616 Build the kernel with Branch Target Identification annotations
1617 and enable enforcement of this for kernel code. When this option
1618 is enabled and the system supports BTI all kernel code including
1619 modular code must have BTI enabled.
1620
1621 config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1622 # GCC 9 or later, clang 8 or later
1623 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1624
1625 config ARM64_E0PD
1626 bool "Enable support for E0PD"
1627 default y
1628 help
1629 E0PD (part of the ARMv8.5 extensions) allows us to ensure
1630 that EL0 accesses made via TTBR1 always fault in constant time,
1631 providing similar benefits to KASLR as those provided by KPTI, but
1632 with lower overhead and without disrupting legitimate access to
1633 kernel memory such as SPE.
1634
1635 This option enables E0PD for TTBR1 where available.
1636
1637 config ARCH_RANDOM
1638 bool "Enable support for random number generation"
1639 default y
1640 help
1641 Random number generation (part of the ARMv8.5 Extensions)
1642 provides a high bandwidth, cryptographically secure
1643 hardware random number generator.
1644
1645 config ARM64_AS_HAS_MTE
1646 # Initial support for MTE went in binutils 2.32.0, checked with
1647 # ".arch armv8.5-a+memtag" below. However, this was incomplete
1648 # as a late addition to the final architecture spec (LDGM/STGM)
1649 # is only supported in the newer 2.32.x and 2.33 binutils
1650 # versions, hence the extra "stgm" instruction check below.
1651 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1652
1653 config ARM64_MTE
1654 bool "Memory Tagging Extension support"
1655 default y
1656 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1657 depends on AS_HAS_ARMV8_5
1658 depends on AS_HAS_LSE_ATOMICS
1659 # Required for tag checking in the uaccess routines
1660 depends on ARM64_PAN
1661 select ARCH_USES_HIGH_VMA_FLAGS
1662 help
1663 Memory Tagging (part of the ARMv8.5 Extensions) provides
1664 architectural support for run-time, always-on detection of
1665 various classes of memory error to aid with software debugging
1666 to eliminate vulnerabilities arising from memory-unsafe
1667 languages.
1668
1669 This option enables the support for the Memory Tagging
1670 Extension at EL0 (i.e. for userspace).
1671
1672 Selecting this option allows the feature to be detected at
1673 runtime. Any secondary CPU not implementing this feature will
1674 not be allowed a late bring-up.
1675
1676 Userspace binaries that want to use this feature must
1677 explicitly opt in. The mechanism for the userspace is
1678 described in:
1679
1680 Documentation/arm64/memory-tagging-extension.rst.
1681
1682 endmenu
1683
1684 menu "ARMv8.7 architectural features"
1685
1686 config ARM64_EPAN
1687 bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1688 default y
1689 depends on ARM64_PAN
1690 help
1691 Enhanced Privileged Access Never (EPAN) allows Privileged
1692 Access Never to be used with Execute-only mappings.
1693
1694 The feature is detected at runtime, and will remain disabled
1695 if the cpu does not implement the feature.
1696 endmenu
1697
1698 config ARM64_SVE
1699 bool "ARM Scalable Vector Extension support"
1700 default y
1701 help
1702 The Scalable Vector Extension (SVE) is an extension to the AArch64
1703 execution state which complements and extends the SIMD functionality
1704 of the base architecture to support much larger vectors and to enable
1705 additional vectorisation opportunities.
1706
1707 To enable use of this extension on CPUs that implement it, say Y.
1708
1709 On CPUs that support the SVE2 extensions, this option will enable
1710 those too.
1711
1712 Note that for architectural reasons, firmware _must_ implement SVE
1713 support when running on SVE capable hardware. The required support
1714 is present in:
1715
1716 * version 1.5 and later of the ARM Trusted Firmware
1717 * the AArch64 boot wrapper since commit 5e1261e08abf
1718 ("bootwrapper: SVE: Enable SVE for EL2 and below").
1719
1720 For other firmware implementations, consult the firmware documentation
1721 or vendor.
1722
1723 If you need the kernel to boot on SVE-capable hardware with broken
1724 firmware, you may need to say N here until you get your firmware
1725 fixed. Otherwise, you may experience firmware panics or lockups when
1726 booting the kernel. If unsure and you are not observing these
1727 symptoms, you should assume that it is safe to say Y.
1728
1729 config ARM64_MODULE_PLTS
1730 bool "Use PLTs to allow module memory to spill over into vmalloc area"
1731 depends on MODULES
1732 select HAVE_MOD_ARCH_SPECIFIC
1733 help
1734 Allocate PLTs when loading modules so that jumps and calls whose
1735 targets are too far away for their relative offsets to be encoded
1736 in the instructions themselves can be bounced via veneers in the
1737 module's PLT. This allows modules to be allocated in the generic
1738 vmalloc area after the dedicated module memory area has been
1739 exhausted.
1740
1741 When running with address space randomization (KASLR), the module
1742 region itself may be too far away for ordinary relative jumps and
1743 calls, and so in that case, module PLTs are required and cannot be
1744 disabled.
1745
1746 Specific errata workaround(s) might also force module PLTs to be
1747 enabled (ARM64_ERRATUM_843419).
1748
1749 config ARM64_PSEUDO_NMI
1750 bool "Support for NMI-like interrupts"
1751 select ARM_GIC_V3
1752 help
1753 Adds support for mimicking Non-Maskable Interrupts through the use of
1754 GIC interrupt priority. This support requires version 3 or later of
1755 ARM GIC.
1756
1757 This high priority configuration for interrupts needs to be
1758 explicitly enabled by setting the kernel parameter
1759 "irqchip.gicv3_pseudo_nmi" to 1.
1760
1761 If unsure, say N
1762
1763 if ARM64_PSEUDO_NMI
1764 config ARM64_DEBUG_PRIORITY_MASKING
1765 bool "Debug interrupt priority masking"
1766 help
1767 This adds runtime checks to functions enabling/disabling
1768 interrupts when using priority masking. The additional checks verify
1769 the validity of ICC_PMR_EL1 when calling concerned functions.
1770
1771 If unsure, say N
1772 endif
1773
1774 config RELOCATABLE
1775 bool "Build a relocatable kernel image" if EXPERT
1776 select ARCH_HAS_RELR
1777 default y
1778 help
1779 This builds the kernel as a Position Independent Executable (PIE),
1780 which retains all relocation metadata required to relocate the
1781 kernel binary at runtime to a different virtual address than the
1782 address it was linked at.
1783 Since AArch64 uses the RELA relocation format, this requires a
1784 relocation pass at runtime even if the kernel is loaded at the
1785 same address it was linked at.
1786
1787 config RANDOMIZE_BASE
1788 bool "Randomize the address of the kernel image"
1789 select ARM64_MODULE_PLTS if MODULES
1790 select RELOCATABLE
1791 help
1792 Randomizes the virtual address at which the kernel image is
1793 loaded, as a security feature that deters exploit attempts
1794 relying on knowledge of the location of kernel internals.
1795
1796 It is the bootloader's job to provide entropy, by passing a
1797 random u64 value in /chosen/kaslr-seed at kernel entry.
1798
1799 When booting via the UEFI stub, it will invoke the firmware's
1800 EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1801 to the kernel proper. In addition, it will randomise the physical
1802 location of the kernel Image as well.
1803
1804 If unsure, say N.
1805
1806 config RANDOMIZE_MODULE_REGION_FULL
1807 bool "Randomize the module region over a 4 GB range"
1808 depends on RANDOMIZE_BASE
1809 default y
1810 help
1811 Randomizes the location of the module region inside a 4 GB window
1812 covering the core kernel. This way, it is less likely for modules
1813 to leak information about the location of core kernel data structures
1814 but it does imply that function calls between modules and the core
1815 kernel will need to be resolved via veneers in the module PLT.
1816
1817 When this option is not set, the module region will be randomized over
1818 a limited range that contains the [_stext, _etext] interval of the
1819 core kernel, so branch relocations are always in range.
1820
1821 config CC_HAVE_STACKPROTECTOR_SYSREG
1822 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1823
1824 config STACKPROTECTOR_PER_TASK
1825 def_bool y
1826 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1827
1828 endmenu
1829
1830 menu "Boot options"
1831
1832 config ARM64_ACPI_PARKING_PROTOCOL
1833 bool "Enable support for the ARM64 ACPI parking protocol"
1834 depends on ACPI
1835 help
1836 Enable support for the ARM64 ACPI parking protocol. If disabled
1837 the kernel will not allow booting through the ARM64 ACPI parking
1838 protocol even if the corresponding data is present in the ACPI
1839 MADT table.
1840
1841 config CMDLINE
1842 string "Default kernel command string"
1843 default ""
1844 help
1845 Provide a set of default command-line options at build time by
1846 entering them here. As a minimum, you should specify the the
1847 root device (e.g. root=/dev/nfs).
1848
1849 choice
1850 prompt "Kernel command line type" if CMDLINE != ""
1851 default CMDLINE_FROM_BOOTLOADER
1852 help
1853 Choose how the kernel will handle the provided default kernel
1854 command line string.
1855
1856 config CMDLINE_FROM_BOOTLOADER
1857 bool "Use bootloader kernel arguments if available"
1858 help
1859 Uses the command-line options passed by the boot loader. If
1860 the boot loader doesn't provide any, the default kernel command
1861 string provided in CMDLINE will be used.
1862
1863 config CMDLINE_FORCE
1864 bool "Always use the default kernel command string"
1865 help
1866 Always use the default kernel command string, even if the boot
1867 loader passes other arguments to the kernel.
1868 This is useful if you cannot or don't want to change the
1869 command-line options your boot loader passes to the kernel.
1870
1871 endchoice
1872
1873 config EFI_STUB
1874 bool
1875
1876 config EFI
1877 bool "UEFI runtime support"
1878 depends on OF && !CPU_BIG_ENDIAN
1879 depends on KERNEL_MODE_NEON
1880 select ARCH_SUPPORTS_ACPI
1881 select LIBFDT
1882 select UCS2_STRING
1883 select EFI_PARAMS_FROM_FDT
1884 select EFI_RUNTIME_WRAPPERS
1885 select EFI_STUB
1886 select EFI_GENERIC_STUB
1887 imply IMA_SECURE_AND_OR_TRUSTED_BOOT
1888 default y
1889 help
1890 This option provides support for runtime services provided
1891 by UEFI firmware (such as non-volatile variables, realtime
1892 clock, and platform reset). A UEFI stub is also provided to
1893 allow the kernel to be booted as an EFI application. This
1894 is only useful on systems that have UEFI firmware.
1895
1896 config DMI
1897 bool "Enable support for SMBIOS (DMI) tables"
1898 depends on EFI
1899 default y
1900 help
1901 This enables SMBIOS/DMI feature for systems.
1902
1903 This option is only useful on systems that have UEFI firmware.
1904 However, even with this option, the resultant kernel should
1905 continue to boot on existing non-UEFI platforms.
1906
1907 endmenu
1908
1909 config SYSVIPC_COMPAT
1910 def_bool y
1911 depends on COMPAT && SYSVIPC
1912
1913 menu "Power management options"
1914
1915 source "kernel/power/Kconfig"
1916
1917 config ARCH_HIBERNATION_POSSIBLE
1918 def_bool y
1919 depends on CPU_PM
1920
1921 config ARCH_HIBERNATION_HEADER
1922 def_bool y
1923 depends on HIBERNATION
1924
1925 config ARCH_SUSPEND_POSSIBLE
1926 def_bool y
1927
1928 endmenu
1929
1930 menu "CPU Power Management"
1931
1932 source "drivers/cpuidle/Kconfig"
1933
1934 source "drivers/cpufreq/Kconfig"
1935
1936 endmenu
1937
1938 source "drivers/firmware/Kconfig"
1939
1940 source "drivers/acpi/Kconfig"
1941
1942 source "arch/arm64/kvm/Kconfig"
1943
1944 if CRYPTO
1945 source "arch/arm64/crypto/Kconfig"
1946 endif