]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm64/crypto/aes-neonbs-glue.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-hirsute-kernel.git] / arch / arm64 / crypto / aes-neonbs-glue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Bit sliced AES using NEON instructions
4 *
5 * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
7
8 #include <asm/neon.h>
9 #include <asm/simd.h>
10 #include <crypto/aes.h>
11 #include <crypto/internal/simd.h>
12 #include <crypto/internal/skcipher.h>
13 #include <crypto/xts.h>
14 #include <linux/module.h>
15
16 #include "aes-ctr-fallback.h"
17
18 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
19 MODULE_LICENSE("GPL v2");
20
21 MODULE_ALIAS_CRYPTO("ecb(aes)");
22 MODULE_ALIAS_CRYPTO("cbc(aes)");
23 MODULE_ALIAS_CRYPTO("ctr(aes)");
24 MODULE_ALIAS_CRYPTO("xts(aes)");
25
26 asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds);
27
28 asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
29 int rounds, int blocks);
30 asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
31 int rounds, int blocks);
32
33 asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
34 int rounds, int blocks, u8 iv[]);
35
36 asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
37 int rounds, int blocks, u8 iv[], u8 final[]);
38
39 asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[],
40 int rounds, int blocks, u8 iv[]);
41 asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[],
42 int rounds, int blocks, u8 iv[]);
43
44 /* borrowed from aes-neon-blk.ko */
45 asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
46 int rounds, int blocks);
47 asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
48 int rounds, int blocks, u8 iv[]);
49
50 struct aesbs_ctx {
51 u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32];
52 int rounds;
53 } __aligned(AES_BLOCK_SIZE);
54
55 struct aesbs_cbc_ctx {
56 struct aesbs_ctx key;
57 u32 enc[AES_MAX_KEYLENGTH_U32];
58 };
59
60 struct aesbs_ctr_ctx {
61 struct aesbs_ctx key; /* must be first member */
62 struct crypto_aes_ctx fallback;
63 };
64
65 struct aesbs_xts_ctx {
66 struct aesbs_ctx key;
67 u32 twkey[AES_MAX_KEYLENGTH_U32];
68 };
69
70 static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
71 unsigned int key_len)
72 {
73 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
74 struct crypto_aes_ctx rk;
75 int err;
76
77 err = crypto_aes_expand_key(&rk, in_key, key_len);
78 if (err)
79 return err;
80
81 ctx->rounds = 6 + key_len / 4;
82
83 kernel_neon_begin();
84 aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds);
85 kernel_neon_end();
86
87 return 0;
88 }
89
90 static int __ecb_crypt(struct skcipher_request *req,
91 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
92 int rounds, int blocks))
93 {
94 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
95 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
96 struct skcipher_walk walk;
97 int err;
98
99 err = skcipher_walk_virt(&walk, req, false);
100
101 while (walk.nbytes >= AES_BLOCK_SIZE) {
102 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
103
104 if (walk.nbytes < walk.total)
105 blocks = round_down(blocks,
106 walk.stride / AES_BLOCK_SIZE);
107
108 kernel_neon_begin();
109 fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk,
110 ctx->rounds, blocks);
111 kernel_neon_end();
112 err = skcipher_walk_done(&walk,
113 walk.nbytes - blocks * AES_BLOCK_SIZE);
114 }
115
116 return err;
117 }
118
119 static int ecb_encrypt(struct skcipher_request *req)
120 {
121 return __ecb_crypt(req, aesbs_ecb_encrypt);
122 }
123
124 static int ecb_decrypt(struct skcipher_request *req)
125 {
126 return __ecb_crypt(req, aesbs_ecb_decrypt);
127 }
128
129 static int aesbs_cbc_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
130 unsigned int key_len)
131 {
132 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
133 struct crypto_aes_ctx rk;
134 int err;
135
136 err = crypto_aes_expand_key(&rk, in_key, key_len);
137 if (err)
138 return err;
139
140 ctx->key.rounds = 6 + key_len / 4;
141
142 memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc));
143
144 kernel_neon_begin();
145 aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds);
146 kernel_neon_end();
147
148 return 0;
149 }
150
151 static int cbc_encrypt(struct skcipher_request *req)
152 {
153 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
154 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
155 struct skcipher_walk walk;
156 int err;
157
158 err = skcipher_walk_virt(&walk, req, false);
159
160 while (walk.nbytes >= AES_BLOCK_SIZE) {
161 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
162
163 /* fall back to the non-bitsliced NEON implementation */
164 kernel_neon_begin();
165 neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
166 ctx->enc, ctx->key.rounds, blocks,
167 walk.iv);
168 kernel_neon_end();
169 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
170 }
171 return err;
172 }
173
174 static int cbc_decrypt(struct skcipher_request *req)
175 {
176 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
177 struct aesbs_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
178 struct skcipher_walk walk;
179 int err;
180
181 err = skcipher_walk_virt(&walk, req, false);
182
183 while (walk.nbytes >= AES_BLOCK_SIZE) {
184 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
185
186 if (walk.nbytes < walk.total)
187 blocks = round_down(blocks,
188 walk.stride / AES_BLOCK_SIZE);
189
190 kernel_neon_begin();
191 aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
192 ctx->key.rk, ctx->key.rounds, blocks,
193 walk.iv);
194 kernel_neon_end();
195 err = skcipher_walk_done(&walk,
196 walk.nbytes - blocks * AES_BLOCK_SIZE);
197 }
198
199 return err;
200 }
201
202 static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
203 unsigned int key_len)
204 {
205 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
206 int err;
207
208 err = crypto_aes_expand_key(&ctx->fallback, in_key, key_len);
209 if (err)
210 return err;
211
212 ctx->key.rounds = 6 + key_len / 4;
213
214 kernel_neon_begin();
215 aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
216 kernel_neon_end();
217
218 return 0;
219 }
220
221 static int ctr_encrypt(struct skcipher_request *req)
222 {
223 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224 struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm);
225 struct skcipher_walk walk;
226 u8 buf[AES_BLOCK_SIZE];
227 int err;
228
229 err = skcipher_walk_virt(&walk, req, false);
230
231 while (walk.nbytes > 0) {
232 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
233 u8 *final = (walk.total % AES_BLOCK_SIZE) ? buf : NULL;
234
235 if (walk.nbytes < walk.total) {
236 blocks = round_down(blocks,
237 walk.stride / AES_BLOCK_SIZE);
238 final = NULL;
239 }
240
241 kernel_neon_begin();
242 aesbs_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
243 ctx->rk, ctx->rounds, blocks, walk.iv, final);
244 kernel_neon_end();
245
246 if (final) {
247 u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
248 u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
249
250 crypto_xor_cpy(dst, src, final,
251 walk.total % AES_BLOCK_SIZE);
252
253 err = skcipher_walk_done(&walk, 0);
254 break;
255 }
256 err = skcipher_walk_done(&walk,
257 walk.nbytes - blocks * AES_BLOCK_SIZE);
258 }
259 return err;
260 }
261
262 static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
263 unsigned int key_len)
264 {
265 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
266 struct crypto_aes_ctx rk;
267 int err;
268
269 err = xts_verify_key(tfm, in_key, key_len);
270 if (err)
271 return err;
272
273 key_len /= 2;
274 err = crypto_aes_expand_key(&rk, in_key + key_len, key_len);
275 if (err)
276 return err;
277
278 memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey));
279
280 return aesbs_setkey(tfm, in_key, key_len);
281 }
282
283 static int ctr_encrypt_sync(struct skcipher_request *req)
284 {
285 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
286 struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
287
288 if (!crypto_simd_usable())
289 return aes_ctr_encrypt_fallback(&ctx->fallback, req);
290
291 return ctr_encrypt(req);
292 }
293
294 static int __xts_crypt(struct skcipher_request *req,
295 void (*fn)(u8 out[], u8 const in[], u8 const rk[],
296 int rounds, int blocks, u8 iv[]))
297 {
298 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
299 struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
300 struct skcipher_walk walk;
301 int err;
302
303 err = skcipher_walk_virt(&walk, req, false);
304 if (err)
305 return err;
306
307 kernel_neon_begin();
308 neon_aes_ecb_encrypt(walk.iv, walk.iv, ctx->twkey, ctx->key.rounds, 1);
309 kernel_neon_end();
310
311 while (walk.nbytes >= AES_BLOCK_SIZE) {
312 unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE;
313
314 if (walk.nbytes < walk.total)
315 blocks = round_down(blocks,
316 walk.stride / AES_BLOCK_SIZE);
317
318 kernel_neon_begin();
319 fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk,
320 ctx->key.rounds, blocks, walk.iv);
321 kernel_neon_end();
322 err = skcipher_walk_done(&walk,
323 walk.nbytes - blocks * AES_BLOCK_SIZE);
324 }
325 return err;
326 }
327
328 static int xts_encrypt(struct skcipher_request *req)
329 {
330 return __xts_crypt(req, aesbs_xts_encrypt);
331 }
332
333 static int xts_decrypt(struct skcipher_request *req)
334 {
335 return __xts_crypt(req, aesbs_xts_decrypt);
336 }
337
338 static struct skcipher_alg aes_algs[] = { {
339 .base.cra_name = "__ecb(aes)",
340 .base.cra_driver_name = "__ecb-aes-neonbs",
341 .base.cra_priority = 250,
342 .base.cra_blocksize = AES_BLOCK_SIZE,
343 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
344 .base.cra_module = THIS_MODULE,
345 .base.cra_flags = CRYPTO_ALG_INTERNAL,
346
347 .min_keysize = AES_MIN_KEY_SIZE,
348 .max_keysize = AES_MAX_KEY_SIZE,
349 .walksize = 8 * AES_BLOCK_SIZE,
350 .setkey = aesbs_setkey,
351 .encrypt = ecb_encrypt,
352 .decrypt = ecb_decrypt,
353 }, {
354 .base.cra_name = "__cbc(aes)",
355 .base.cra_driver_name = "__cbc-aes-neonbs",
356 .base.cra_priority = 250,
357 .base.cra_blocksize = AES_BLOCK_SIZE,
358 .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctx),
359 .base.cra_module = THIS_MODULE,
360 .base.cra_flags = CRYPTO_ALG_INTERNAL,
361
362 .min_keysize = AES_MIN_KEY_SIZE,
363 .max_keysize = AES_MAX_KEY_SIZE,
364 .walksize = 8 * AES_BLOCK_SIZE,
365 .ivsize = AES_BLOCK_SIZE,
366 .setkey = aesbs_cbc_setkey,
367 .encrypt = cbc_encrypt,
368 .decrypt = cbc_decrypt,
369 }, {
370 .base.cra_name = "__ctr(aes)",
371 .base.cra_driver_name = "__ctr-aes-neonbs",
372 .base.cra_priority = 250,
373 .base.cra_blocksize = 1,
374 .base.cra_ctxsize = sizeof(struct aesbs_ctx),
375 .base.cra_module = THIS_MODULE,
376 .base.cra_flags = CRYPTO_ALG_INTERNAL,
377
378 .min_keysize = AES_MIN_KEY_SIZE,
379 .max_keysize = AES_MAX_KEY_SIZE,
380 .chunksize = AES_BLOCK_SIZE,
381 .walksize = 8 * AES_BLOCK_SIZE,
382 .ivsize = AES_BLOCK_SIZE,
383 .setkey = aesbs_setkey,
384 .encrypt = ctr_encrypt,
385 .decrypt = ctr_encrypt,
386 }, {
387 .base.cra_name = "ctr(aes)",
388 .base.cra_driver_name = "ctr-aes-neonbs",
389 .base.cra_priority = 250 - 1,
390 .base.cra_blocksize = 1,
391 .base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx),
392 .base.cra_module = THIS_MODULE,
393
394 .min_keysize = AES_MIN_KEY_SIZE,
395 .max_keysize = AES_MAX_KEY_SIZE,
396 .chunksize = AES_BLOCK_SIZE,
397 .walksize = 8 * AES_BLOCK_SIZE,
398 .ivsize = AES_BLOCK_SIZE,
399 .setkey = aesbs_ctr_setkey_sync,
400 .encrypt = ctr_encrypt_sync,
401 .decrypt = ctr_encrypt_sync,
402 }, {
403 .base.cra_name = "__xts(aes)",
404 .base.cra_driver_name = "__xts-aes-neonbs",
405 .base.cra_priority = 250,
406 .base.cra_blocksize = AES_BLOCK_SIZE,
407 .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx),
408 .base.cra_module = THIS_MODULE,
409 .base.cra_flags = CRYPTO_ALG_INTERNAL,
410
411 .min_keysize = 2 * AES_MIN_KEY_SIZE,
412 .max_keysize = 2 * AES_MAX_KEY_SIZE,
413 .walksize = 8 * AES_BLOCK_SIZE,
414 .ivsize = AES_BLOCK_SIZE,
415 .setkey = aesbs_xts_setkey,
416 .encrypt = xts_encrypt,
417 .decrypt = xts_decrypt,
418 } };
419
420 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
421
422 static void aes_exit(void)
423 {
424 int i;
425
426 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
427 if (aes_simd_algs[i])
428 simd_skcipher_free(aes_simd_algs[i]);
429
430 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
431 }
432
433 static int __init aes_init(void)
434 {
435 struct simd_skcipher_alg *simd;
436 const char *basename;
437 const char *algname;
438 const char *drvname;
439 int err;
440 int i;
441
442 if (!cpu_have_named_feature(ASIMD))
443 return -ENODEV;
444
445 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
446 if (err)
447 return err;
448
449 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
450 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
451 continue;
452
453 algname = aes_algs[i].base.cra_name + 2;
454 drvname = aes_algs[i].base.cra_driver_name + 2;
455 basename = aes_algs[i].base.cra_driver_name;
456 simd = simd_skcipher_create_compat(algname, drvname, basename);
457 err = PTR_ERR(simd);
458 if (IS_ERR(simd))
459 goto unregister_simds;
460
461 aes_simd_algs[i] = simd;
462 }
463 return 0;
464
465 unregister_simds:
466 aes_exit();
467 return err;
468 }
469
470 module_init(aes_init);
471 module_exit(aes_exit);