]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/include/asm/cpufeature.h
arm64: ssbd: Restore mitigation status on CPU resume
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / include / asm / cpufeature.h
1 /*
2 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #ifndef __ASM_CPUFEATURE_H
10 #define __ASM_CPUFEATURE_H
11
12 #include <asm/cpucaps.h>
13 #include <asm/fpsimd.h>
14 #include <asm/hwcap.h>
15 #include <asm/sigcontext.h>
16 #include <asm/sysreg.h>
17
18 /*
19 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
20 * in the kernel and for user space to keep track of which optional features
21 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
22 * Note that HWCAP_x constants are bit fields so we need to take the log.
23 */
24
25 #define MAX_CPU_FEATURES (8 * sizeof(elf_hwcap))
26 #define cpu_feature(x) ilog2(HWCAP_ ## x)
27
28 #ifndef __ASSEMBLY__
29
30 #include <linux/bug.h>
31 #include <linux/jump_label.h>
32 #include <linux/kernel.h>
33
34 /*
35 * CPU feature register tracking
36 *
37 * The safe value of a CPUID feature field is dependent on the implications
38 * of the values assigned to it by the architecture. Based on the relationship
39 * between the values, the features are classified into 3 types - LOWER_SAFE,
40 * HIGHER_SAFE and EXACT.
41 *
42 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
43 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
44 * a field when EXACT is specified, failing which, the safe value specified
45 * in the table is chosen.
46 */
47
48 enum ftr_type {
49 FTR_EXACT, /* Use a predefined safe value */
50 FTR_LOWER_SAFE, /* Smaller value is safe */
51 FTR_HIGHER_SAFE,/* Bigger value is safe */
52 };
53
54 #define FTR_STRICT true /* SANITY check strict matching required */
55 #define FTR_NONSTRICT false /* SANITY check ignored */
56
57 #define FTR_SIGNED true /* Value should be treated as signed */
58 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
59
60 #define FTR_VISIBLE true /* Feature visible to the user space */
61 #define FTR_HIDDEN false /* Feature is hidden from the user */
62
63 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
64 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
65
66 struct arm64_ftr_bits {
67 bool sign; /* Value is signed ? */
68 bool visible;
69 bool strict; /* CPU Sanity check: strict matching required ? */
70 enum ftr_type type;
71 u8 shift;
72 u8 width;
73 s64 safe_val; /* safe value for FTR_EXACT features */
74 };
75
76 /*
77 * @arm64_ftr_reg - Feature register
78 * @strict_mask Bits which should match across all CPUs for sanity.
79 * @sys_val Safe value across the CPUs (system view)
80 */
81 struct arm64_ftr_reg {
82 const char *name;
83 u64 strict_mask;
84 u64 user_mask;
85 u64 sys_val;
86 u64 user_val;
87 const struct arm64_ftr_bits *ftr_bits;
88 };
89
90 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
91
92 /* scope of capability check */
93 enum {
94 SCOPE_SYSTEM,
95 SCOPE_LOCAL_CPU,
96 };
97
98 struct arm64_cpu_capabilities {
99 const char *desc;
100 u16 capability;
101 int def_scope; /* default scope */
102 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
103 int (*enable)(void *); /* Called on all active CPUs */
104 union {
105 struct { /* To be used for erratum handling only */
106 u32 midr_model;
107 u32 midr_range_min, midr_range_max;
108 };
109
110 struct { /* Feature register checking */
111 u32 sys_reg;
112 u8 field_pos;
113 u8 min_field_value;
114 u8 hwcap_type;
115 bool sign;
116 unsigned long hwcap;
117 };
118 };
119 };
120
121 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
122 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
123 extern struct static_key_false arm64_const_caps_ready;
124
125 bool this_cpu_has_cap(unsigned int cap);
126
127 static inline bool cpu_have_feature(unsigned int num)
128 {
129 return elf_hwcap & (1UL << num);
130 }
131
132 /* System capability check for constant caps */
133 static inline bool __cpus_have_const_cap(int num)
134 {
135 if (num >= ARM64_NCAPS)
136 return false;
137 return static_branch_unlikely(&cpu_hwcap_keys[num]);
138 }
139
140 static inline bool cpus_have_cap(unsigned int num)
141 {
142 if (num >= ARM64_NCAPS)
143 return false;
144 return test_bit(num, cpu_hwcaps);
145 }
146
147 static inline bool cpus_have_const_cap(int num)
148 {
149 if (static_branch_likely(&arm64_const_caps_ready))
150 return __cpus_have_const_cap(num);
151 else
152 return cpus_have_cap(num);
153 }
154
155 static inline void cpus_set_cap(unsigned int num)
156 {
157 if (num >= ARM64_NCAPS) {
158 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
159 num, ARM64_NCAPS);
160 } else {
161 __set_bit(num, cpu_hwcaps);
162 }
163 }
164
165 static inline int __attribute_const__
166 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
167 {
168 return (s64)(features << (64 - width - field)) >> (64 - width);
169 }
170
171 static inline int __attribute_const__
172 cpuid_feature_extract_signed_field(u64 features, int field)
173 {
174 return cpuid_feature_extract_signed_field_width(features, field, 4);
175 }
176
177 static inline unsigned int __attribute_const__
178 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
179 {
180 return (u64)(features << (64 - width - field)) >> (64 - width);
181 }
182
183 static inline unsigned int __attribute_const__
184 cpuid_feature_extract_unsigned_field(u64 features, int field)
185 {
186 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
187 }
188
189 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
190 {
191 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
192 }
193
194 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
195 {
196 return (reg->user_val | (reg->sys_val & reg->user_mask));
197 }
198
199 static inline int __attribute_const__
200 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
201 {
202 return (sign) ?
203 cpuid_feature_extract_signed_field_width(features, field, width) :
204 cpuid_feature_extract_unsigned_field_width(features, field, width);
205 }
206
207 static inline int __attribute_const__
208 cpuid_feature_extract_field(u64 features, int field, bool sign)
209 {
210 return cpuid_feature_extract_field_width(features, field, 4, sign);
211 }
212
213 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
214 {
215 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
216 }
217
218 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
219 {
220 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
221 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
222 }
223
224 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
225 {
226 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
227
228 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
229 }
230
231 static inline bool id_aa64pfr0_sve(u64 pfr0)
232 {
233 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
234
235 return val > 0;
236 }
237
238 void __init setup_cpu_features(void);
239
240 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
241 const char *info);
242 void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps);
243 void check_local_cpu_capabilities(void);
244
245 void update_cpu_errata_workarounds(void);
246 void __init enable_errata_workarounds(void);
247 void verify_local_cpu_errata_workarounds(void);
248
249 u64 read_sanitised_ftr_reg(u32 id);
250
251 static inline bool cpu_supports_mixed_endian_el0(void)
252 {
253 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
254 }
255
256 static inline bool system_supports_32bit_el0(void)
257 {
258 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
259 }
260
261 static inline bool system_supports_mixed_endian_el0(void)
262 {
263 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
264 }
265
266 static inline bool system_supports_fpsimd(void)
267 {
268 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
269 }
270
271 static inline bool system_uses_ttbr0_pan(void)
272 {
273 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
274 !cpus_have_const_cap(ARM64_HAS_PAN);
275 }
276
277 static inline bool system_supports_sve(void)
278 {
279 return IS_ENABLED(CONFIG_ARM64_SVE) &&
280 cpus_have_const_cap(ARM64_SVE);
281 }
282
283 /*
284 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
285 * vector length.
286 *
287 * Use only if SVE is present.
288 * This function clobbers the SVE vector length.
289 */
290 static inline u64 read_zcr_features(void)
291 {
292 u64 zcr;
293 unsigned int vq_max;
294
295 /*
296 * Set the maximum possible VL, and write zeroes to all other
297 * bits to see if they stick.
298 */
299 sve_kernel_enable(NULL);
300 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
301
302 zcr = read_sysreg_s(SYS_ZCR_EL1);
303 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
304 vq_max = sve_vq_from_vl(sve_get_vl());
305 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
306
307 return zcr;
308 }
309
310 #define ARM64_SSBD_UNKNOWN -1
311 #define ARM64_SSBD_FORCE_DISABLE 0
312 #define ARM64_SSBD_KERNEL 1
313 #define ARM64_SSBD_FORCE_ENABLE 2
314 #define ARM64_SSBD_MITIGATED 3
315
316 static inline int arm64_get_ssbd_state(void)
317 {
318 #ifdef CONFIG_ARM64_SSBD
319 extern int ssbd_state;
320 return ssbd_state;
321 #else
322 return ARM64_SSBD_UNKNOWN;
323 #endif
324 }
325
326 #ifdef CONFIG_ARM64_SSBD
327 void arm64_set_ssbd_mitigation(bool state);
328 #else
329 static inline void arm64_set_ssbd_mitigation(bool state) {}
330 #endif
331
332 #endif /* __ASSEMBLY__ */
333
334 #endif