]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/arm64/include/asm/cpufeature.h
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / arch / arm64 / include / asm / cpufeature.h
1 /*
2 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #ifndef __ASM_CPUFEATURE_H
10 #define __ASM_CPUFEATURE_H
11
12 #include <asm/cpucaps.h>
13 #include <asm/cputype.h>
14 #include <asm/hwcap.h>
15 #include <asm/sysreg.h>
16
17 /*
18 * In the arm64 world (as in the ARM world), elf_hwcap is used both internally
19 * in the kernel and for user space to keep track of which optional features
20 * are supported by the current system. So let's map feature 'x' to HWCAP_x.
21 * Note that HWCAP_x constants are bit fields so we need to take the log.
22 */
23
24 #define MAX_CPU_FEATURES (8 * sizeof(elf_hwcap))
25 #define cpu_feature(x) ilog2(HWCAP_ ## x)
26
27 #ifndef __ASSEMBLY__
28
29 #include <linux/bug.h>
30 #include <linux/jump_label.h>
31 #include <linux/kernel.h>
32
33 /*
34 * CPU feature register tracking
35 *
36 * The safe value of a CPUID feature field is dependent on the implications
37 * of the values assigned to it by the architecture. Based on the relationship
38 * between the values, the features are classified into 3 types - LOWER_SAFE,
39 * HIGHER_SAFE and EXACT.
40 *
41 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
42 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
43 * a field when EXACT is specified, failing which, the safe value specified
44 * in the table is chosen.
45 */
46
47 enum ftr_type {
48 FTR_EXACT, /* Use a predefined safe value */
49 FTR_LOWER_SAFE, /* Smaller value is safe */
50 FTR_HIGHER_SAFE,/* Bigger value is safe */
51 };
52
53 #define FTR_STRICT true /* SANITY check strict matching required */
54 #define FTR_NONSTRICT false /* SANITY check ignored */
55
56 #define FTR_SIGNED true /* Value should be treated as signed */
57 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
58
59 #define FTR_VISIBLE true /* Feature visible to the user space */
60 #define FTR_HIDDEN false /* Feature is hidden from the user */
61
62 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
63 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
64
65 struct arm64_ftr_bits {
66 bool sign; /* Value is signed ? */
67 bool visible;
68 bool strict; /* CPU Sanity check: strict matching required ? */
69 enum ftr_type type;
70 u8 shift;
71 u8 width;
72 s64 safe_val; /* safe value for FTR_EXACT features */
73 };
74
75 /*
76 * @arm64_ftr_reg - Feature register
77 * @strict_mask Bits which should match across all CPUs for sanity.
78 * @sys_val Safe value across the CPUs (system view)
79 */
80 struct arm64_ftr_reg {
81 const char *name;
82 u64 strict_mask;
83 u64 user_mask;
84 u64 sys_val;
85 u64 user_val;
86 const struct arm64_ftr_bits *ftr_bits;
87 };
88
89 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
90
91 /*
92 * CPU capabilities:
93 *
94 * We use arm64_cpu_capabilities to represent system features, errata work
95 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
96 * ELF HWCAPs (which are exposed to user).
97 *
98 * To support systems with heterogeneous CPUs, we need to make sure that we
99 * detect the capabilities correctly on the system and take appropriate
100 * measures to ensure there are no incompatibilities.
101 *
102 * This comment tries to explain how we treat the capabilities.
103 * Each capability has the following list of attributes :
104 *
105 * 1) Scope of Detection : The system detects a given capability by
106 * performing some checks at runtime. This could be, e.g, checking the
107 * value of a field in CPU ID feature register or checking the cpu
108 * model. The capability provides a call back ( @matches() ) to
109 * perform the check. Scope defines how the checks should be performed.
110 * There are three cases:
111 *
112 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
113 * matches. This implies, we have to run the check on all the
114 * booting CPUs, until the system decides that state of the
115 * capability is finalised. (See section 2 below)
116 * Or
117 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
118 * matches. This implies, we run the check only once, when the
119 * system decides to finalise the state of the capability. If the
120 * capability relies on a field in one of the CPU ID feature
121 * registers, we use the sanitised value of the register from the
122 * CPU feature infrastructure to make the decision.
123 * Or
124 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
125 * feature. This category is for features that are "finalised"
126 * (or used) by the kernel very early even before the SMP cpus
127 * are brought up.
128 *
129 * The process of detection is usually denoted by "update" capability
130 * state in the code.
131 *
132 * 2) Finalise the state : The kernel should finalise the state of a
133 * capability at some point during its execution and take necessary
134 * actions if any. Usually, this is done, after all the boot-time
135 * enabled CPUs are brought up by the kernel, so that it can make
136 * better decision based on the available set of CPUs. However, there
137 * are some special cases, where the action is taken during the early
138 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
139 * Virtualisation Host Extensions). The kernel usually disallows any
140 * changes to the state of a capability once it finalises the capability
141 * and takes any action, as it may be impossible to execute the actions
142 * safely. A CPU brought up after a capability is "finalised" is
143 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
144 * CPUs are treated "late CPUs" for capabilities determined by the boot
145 * CPU.
146 *
147 * At the moment there are two passes of finalising the capabilities.
148 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
149 * setup_boot_cpu_capabilities().
150 * b) Everything except (a) - Run via setup_system_capabilities().
151 *
152 * 3) Verification: When a CPU is brought online (e.g, by user or by the
153 * kernel), the kernel should make sure that it is safe to use the CPU,
154 * by verifying that the CPU is compliant with the state of the
155 * capabilities finalised already. This happens via :
156 *
157 * secondary_start_kernel()-> check_local_cpu_capabilities()
158 *
159 * As explained in (2) above, capabilities could be finalised at
160 * different points in the execution. Each newly booted CPU is verified
161 * against the capabilities that have been finalised by the time it
162 * boots.
163 *
164 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
165 * except for the primary boot CPU.
166 *
167 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
168 * user after the kernel boot are verified against the capability.
169 *
170 * If there is a conflict, the kernel takes an action, based on the
171 * severity (e.g, a CPU could be prevented from booting or cause a
172 * kernel panic). The CPU is allowed to "affect" the state of the
173 * capability, if it has not been finalised already. See section 5
174 * for more details on conflicts.
175 *
176 * 4) Action: As mentioned in (2), the kernel can take an action for each
177 * detected capability, on all CPUs on the system. Appropriate actions
178 * include, turning on an architectural feature, modifying the control
179 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
180 * alternatives. The kernel patching is batched and performed at later
181 * point. The actions are always initiated only after the capability
182 * is finalised. This is usally denoted by "enabling" the capability.
183 * The actions are initiated as follows :
184 * a) Action is triggered on all online CPUs, after the capability is
185 * finalised, invoked within the stop_machine() context from
186 * enable_cpu_capabilitie().
187 *
188 * b) Any late CPU, brought up after (1), the action is triggered via:
189 *
190 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
191 *
192 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
193 * the system state, we could have the following combinations :
194 *
195 * x-----------------------------x
196 * | Type | System | Late CPU |
197 * |-----------------------------|
198 * | a | y | n |
199 * |-----------------------------|
200 * | b | n | y |
201 * x-----------------------------x
202 *
203 * Two separate flag bits are defined to indicate whether each kind of
204 * conflict can be allowed:
205 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
206 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
207 *
208 * Case (a) is not permitted for a capability that the system requires
209 * all CPUs to have in order for the capability to be enabled. This is
210 * typical for capabilities that represent enhanced functionality.
211 *
212 * Case (b) is not permitted for a capability that must be enabled
213 * during boot if any CPU in the system requires it in order to run
214 * safely. This is typical for erratum work arounds that cannot be
215 * enabled after the corresponding capability is finalised.
216 *
217 * In some non-typical cases either both (a) and (b), or neither,
218 * should be permitted. This can be described by including neither
219 * or both flags in the capability's type field.
220 */
221
222
223 /*
224 * Decide how the capability is detected.
225 * On any local CPU vs System wide vs the primary boot CPU
226 */
227 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
228 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
229 /*
230 * The capabilitiy is detected on the Boot CPU and is used by kernel
231 * during early boot. i.e, the capability should be "detected" and
232 * "enabled" as early as possibly on all booting CPUs.
233 */
234 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
235 #define ARM64_CPUCAP_SCOPE_MASK \
236 (ARM64_CPUCAP_SCOPE_SYSTEM | \
237 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
238 ARM64_CPUCAP_SCOPE_BOOT_CPU)
239
240 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
241 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
242 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
243 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
244
245 /*
246 * Is it permitted for a late CPU to have this capability when system
247 * hasn't already enabled it ?
248 */
249 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
250 /* Is it safe for a late CPU to miss this capability when system has it */
251 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
252
253 /*
254 * CPU errata workarounds that need to be enabled at boot time if one or
255 * more CPUs in the system requires it. When one of these capabilities
256 * has been enabled, it is safe to allow any CPU to boot that doesn't
257 * require the workaround. However, it is not safe if a "late" CPU
258 * requires a workaround and the system hasn't enabled it already.
259 */
260 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
261 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
262 /*
263 * CPU feature detected at boot time based on system-wide value of a
264 * feature. It is safe for a late CPU to have this feature even though
265 * the system hasn't enabled it, although the feature will not be used
266 * by Linux in this case. If the system has enabled this feature already,
267 * then every late CPU must have it.
268 */
269 #define ARM64_CPUCAP_SYSTEM_FEATURE \
270 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
271 /*
272 * CPU feature detected at boot time based on feature of one or more CPUs.
273 * All possible conflicts for a late CPU are ignored.
274 */
275 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
276 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
277 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
278 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
279
280 /*
281 * CPU feature detected at boot time, on one or more CPUs. A late CPU
282 * is not allowed to have the capability when the system doesn't have it.
283 * It is Ok for a late CPU to miss the feature.
284 */
285 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
286 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
287 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
288
289 /*
290 * CPU feature used early in the boot based on the boot CPU. All secondary
291 * CPUs must match the state of the capability as detected by the boot CPU.
292 */
293 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
294
295 struct arm64_cpu_capabilities {
296 const char *desc;
297 u16 capability;
298 u16 type;
299 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
300 /*
301 * Take the appropriate actions to enable this capability for this CPU.
302 * For each successfully booted CPU, this method is called for each
303 * globally detected capability.
304 */
305 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
306 union {
307 struct { /* To be used for erratum handling only */
308 struct midr_range midr_range;
309 const struct arm64_midr_revidr {
310 u32 midr_rv; /* revision/variant */
311 u32 revidr_mask;
312 } * const fixed_revs;
313 };
314
315 const struct midr_range *midr_range_list;
316 struct { /* Feature register checking */
317 u32 sys_reg;
318 u8 field_pos;
319 u8 min_field_value;
320 u8 hwcap_type;
321 bool sign;
322 unsigned long hwcap;
323 };
324 };
325
326 /*
327 * An optional list of "matches/cpu_enable" pair for the same
328 * "capability" of the same "type" as described by the parent.
329 * Only matches(), cpu_enable() and fields relevant to these
330 * methods are significant in the list. The cpu_enable is
331 * invoked only if the corresponding entry "matches()".
332 * However, if a cpu_enable() method is associated
333 * with multiple matches(), care should be taken that either
334 * the match criteria are mutually exclusive, or that the
335 * method is robust against being called multiple times.
336 */
337 const struct arm64_cpu_capabilities *match_list;
338 };
339
340 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
341 {
342 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
343 }
344
345 static inline bool
346 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
347 {
348 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
349 }
350
351 static inline bool
352 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
353 {
354 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
355 }
356
357 /*
358 * Generic helper for handling capabilties with multiple (match,enable) pairs
359 * of call backs, sharing the same capability bit.
360 * Iterate over each entry to see if at least one matches.
361 */
362 static inline bool
363 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
364 int scope)
365 {
366 const struct arm64_cpu_capabilities *caps;
367
368 for (caps = entry->match_list; caps->matches; caps++)
369 if (caps->matches(caps, scope))
370 return true;
371
372 return false;
373 }
374
375 /*
376 * Take appropriate action for all matching entries in the shared capability
377 * entry.
378 */
379 static inline void
380 cpucap_multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry)
381 {
382 const struct arm64_cpu_capabilities *caps;
383
384 for (caps = entry->match_list; caps->matches; caps++)
385 if (caps->matches(caps, SCOPE_LOCAL_CPU) &&
386 caps->cpu_enable)
387 caps->cpu_enable(caps);
388 }
389
390 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
391 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
392 extern struct static_key_false arm64_const_caps_ready;
393
394 #define for_each_available_cap(cap) \
395 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
396
397 bool this_cpu_has_cap(unsigned int cap);
398
399 static inline bool cpu_have_feature(unsigned int num)
400 {
401 return elf_hwcap & (1UL << num);
402 }
403
404 /* System capability check for constant caps */
405 static inline bool __cpus_have_const_cap(int num)
406 {
407 if (num >= ARM64_NCAPS)
408 return false;
409 return static_branch_unlikely(&cpu_hwcap_keys[num]);
410 }
411
412 static inline bool cpus_have_cap(unsigned int num)
413 {
414 if (num >= ARM64_NCAPS)
415 return false;
416 return test_bit(num, cpu_hwcaps);
417 }
418
419 static inline bool cpus_have_const_cap(int num)
420 {
421 if (static_branch_likely(&arm64_const_caps_ready))
422 return __cpus_have_const_cap(num);
423 else
424 return cpus_have_cap(num);
425 }
426
427 static inline void cpus_set_cap(unsigned int num)
428 {
429 if (num >= ARM64_NCAPS) {
430 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
431 num, ARM64_NCAPS);
432 } else {
433 __set_bit(num, cpu_hwcaps);
434 }
435 }
436
437 static inline int __attribute_const__
438 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
439 {
440 return (s64)(features << (64 - width - field)) >> (64 - width);
441 }
442
443 static inline int __attribute_const__
444 cpuid_feature_extract_signed_field(u64 features, int field)
445 {
446 return cpuid_feature_extract_signed_field_width(features, field, 4);
447 }
448
449 static inline unsigned int __attribute_const__
450 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
451 {
452 return (u64)(features << (64 - width - field)) >> (64 - width);
453 }
454
455 static inline unsigned int __attribute_const__
456 cpuid_feature_extract_unsigned_field(u64 features, int field)
457 {
458 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
459 }
460
461 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
462 {
463 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
464 }
465
466 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
467 {
468 return (reg->user_val | (reg->sys_val & reg->user_mask));
469 }
470
471 static inline int __attribute_const__
472 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
473 {
474 return (sign) ?
475 cpuid_feature_extract_signed_field_width(features, field, width) :
476 cpuid_feature_extract_unsigned_field_width(features, field, width);
477 }
478
479 static inline int __attribute_const__
480 cpuid_feature_extract_field(u64 features, int field, bool sign)
481 {
482 return cpuid_feature_extract_field_width(features, field, 4, sign);
483 }
484
485 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
486 {
487 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
488 }
489
490 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
491 {
492 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
493 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
494 }
495
496 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
497 {
498 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
499
500 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
501 }
502
503 static inline bool id_aa64pfr0_sve(u64 pfr0)
504 {
505 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
506
507 return val > 0;
508 }
509
510 void __init setup_cpu_features(void);
511 void check_local_cpu_capabilities(void);
512
513 u64 read_sanitised_ftr_reg(u32 id);
514
515 static inline bool cpu_supports_mixed_endian_el0(void)
516 {
517 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
518 }
519
520 static inline bool system_supports_32bit_el0(void)
521 {
522 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
523 }
524
525 static inline bool system_supports_4kb_granule(void)
526 {
527 u64 mmfr0;
528 u32 val;
529
530 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
531 val = cpuid_feature_extract_unsigned_field(mmfr0,
532 ID_AA64MMFR0_TGRAN4_SHIFT);
533
534 return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
535 }
536
537 static inline bool system_supports_64kb_granule(void)
538 {
539 u64 mmfr0;
540 u32 val;
541
542 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
543 val = cpuid_feature_extract_unsigned_field(mmfr0,
544 ID_AA64MMFR0_TGRAN64_SHIFT);
545
546 return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
547 }
548
549 static inline bool system_supports_16kb_granule(void)
550 {
551 u64 mmfr0;
552 u32 val;
553
554 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
555 val = cpuid_feature_extract_unsigned_field(mmfr0,
556 ID_AA64MMFR0_TGRAN16_SHIFT);
557
558 return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
559 }
560
561 static inline bool system_supports_mixed_endian_el0(void)
562 {
563 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
564 }
565
566 static inline bool system_supports_mixed_endian(void)
567 {
568 u64 mmfr0;
569 u32 val;
570
571 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
572 val = cpuid_feature_extract_unsigned_field(mmfr0,
573 ID_AA64MMFR0_BIGENDEL_SHIFT);
574
575 return val == 0x1;
576 }
577
578 static inline bool system_supports_fpsimd(void)
579 {
580 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
581 }
582
583 static inline bool system_uses_ttbr0_pan(void)
584 {
585 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
586 !cpus_have_const_cap(ARM64_HAS_PAN);
587 }
588
589 static inline bool system_supports_sve(void)
590 {
591 return IS_ENABLED(CONFIG_ARM64_SVE) &&
592 cpus_have_const_cap(ARM64_SVE);
593 }
594
595 static inline bool system_supports_cnp(void)
596 {
597 return IS_ENABLED(CONFIG_ARM64_CNP) &&
598 cpus_have_const_cap(ARM64_HAS_CNP);
599 }
600
601 static inline bool system_supports_address_auth(void)
602 {
603 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
604 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
605 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
606 }
607
608 static inline bool system_supports_generic_auth(void)
609 {
610 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
611 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
612 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
613 }
614
615 #define ARM64_SSBD_UNKNOWN -1
616 #define ARM64_SSBD_FORCE_DISABLE 0
617 #define ARM64_SSBD_KERNEL 1
618 #define ARM64_SSBD_FORCE_ENABLE 2
619 #define ARM64_SSBD_MITIGATED 3
620
621 static inline int arm64_get_ssbd_state(void)
622 {
623 #ifdef CONFIG_ARM64_SSBD
624 extern int ssbd_state;
625 return ssbd_state;
626 #else
627 return ARM64_SSBD_UNKNOWN;
628 #endif
629 }
630
631 #ifdef CONFIG_ARM64_SSBD
632 void arm64_set_ssbd_mitigation(bool state);
633 #else
634 static inline void arm64_set_ssbd_mitigation(bool state) {}
635 #endif
636
637 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
638
639 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
640 {
641 switch (parange) {
642 case 0: return 32;
643 case 1: return 36;
644 case 2: return 40;
645 case 3: return 42;
646 case 4: return 44;
647 case 5: return 48;
648 case 6: return 52;
649 /*
650 * A future PE could use a value unknown to the kernel.
651 * However, by the "D10.1.4 Principles of the ID scheme
652 * for fields in ID registers", ARM DDI 0487C.a, any new
653 * value is guaranteed to be higher than what we know already.
654 * As a safe limit, we return the limit supported by the kernel.
655 */
656 default: return CONFIG_ARM64_PA_BITS;
657 }
658 }
659 #endif /* __ASSEMBLY__ */
660
661 #endif