]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/include/asm/pgtable.h
Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / include / asm / pgtable.h
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16 #ifndef __ASM_PGTABLE_H
17 #define __ASM_PGTABLE_H
18
19 #include <asm/bug.h>
20 #include <asm/proc-fns.h>
21
22 #include <asm/memory.h>
23 #include <asm/pgtable-hwdef.h>
24
25 /*
26 * Software defined PTE bits definition.
27 */
28 #define PTE_VALID (_AT(pteval_t, 1) << 0)
29 #define PTE_WRITE (PTE_DBM) /* same as DBM (51) */
30 #define PTE_DIRTY (_AT(pteval_t, 1) << 55)
31 #define PTE_SPECIAL (_AT(pteval_t, 1) << 56)
32 #define PTE_PROT_NONE (_AT(pteval_t, 1) << 58) /* only when !PTE_VALID */
33
34 /*
35 * VMALLOC and SPARSEMEM_VMEMMAP ranges.
36 *
37 * VMEMAP_SIZE: allows the whole linear region to be covered by a struct page array
38 * (rounded up to PUD_SIZE).
39 * VMALLOC_START: beginning of the kernel VA space
40 * VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space,
41 * fixed mappings and modules
42 */
43 #define VMEMMAP_SIZE ALIGN((1UL << (VA_BITS - PAGE_SHIFT)) * sizeof(struct page), PUD_SIZE)
44
45 #ifndef CONFIG_KASAN
46 #define VMALLOC_START (VA_START)
47 #else
48 #include <asm/kasan.h>
49 #define VMALLOC_START (KASAN_SHADOW_END + SZ_64K)
50 #endif
51
52 #define VMALLOC_END (PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
53
54 #define VMEMMAP_START (VMALLOC_END + SZ_64K)
55 #define vmemmap ((struct page *)VMEMMAP_START - \
56 SECTION_ALIGN_DOWN(memstart_addr >> PAGE_SHIFT))
57
58 #define FIRST_USER_ADDRESS 0UL
59
60 #ifndef __ASSEMBLY__
61
62 #include <linux/mmdebug.h>
63
64 extern void __pte_error(const char *file, int line, unsigned long val);
65 extern void __pmd_error(const char *file, int line, unsigned long val);
66 extern void __pud_error(const char *file, int line, unsigned long val);
67 extern void __pgd_error(const char *file, int line, unsigned long val);
68
69 #define PROT_DEFAULT (PTE_TYPE_PAGE | PTE_AF | PTE_SHARED)
70 #define PROT_SECT_DEFAULT (PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S)
71
72 #define PROT_DEVICE_nGnRnE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_DEVICE_nGnRnE))
73 #define PROT_DEVICE_nGnRE (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_DEVICE_nGnRE))
74 #define PROT_NORMAL_NC (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_NORMAL_NC))
75 #define PROT_NORMAL_WT (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_NORMAL_WT))
76 #define PROT_NORMAL (PROT_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_ATTRINDX(MT_NORMAL))
77
78 #define PROT_SECT_DEVICE_nGnRE (PROT_SECT_DEFAULT | PMD_SECT_PXN | PMD_SECT_UXN | PMD_ATTRINDX(MT_DEVICE_nGnRE))
79 #define PROT_SECT_NORMAL (PROT_SECT_DEFAULT | PMD_SECT_PXN | PMD_SECT_UXN | PMD_ATTRINDX(MT_NORMAL))
80 #define PROT_SECT_NORMAL_EXEC (PROT_SECT_DEFAULT | PMD_SECT_UXN | PMD_ATTRINDX(MT_NORMAL))
81
82 #define _PAGE_DEFAULT (PROT_DEFAULT | PTE_ATTRINDX(MT_NORMAL))
83
84 #define PAGE_KERNEL __pgprot(_PAGE_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_WRITE)
85 #define PAGE_KERNEL_RO __pgprot(_PAGE_DEFAULT | PTE_PXN | PTE_UXN | PTE_DIRTY | PTE_RDONLY)
86 #define PAGE_KERNEL_ROX __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_RDONLY)
87 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE)
88 #define PAGE_KERNEL_EXEC_CONT __pgprot(_PAGE_DEFAULT | PTE_UXN | PTE_DIRTY | PTE_WRITE | PTE_CONT)
89
90 #define PAGE_HYP __pgprot(_PAGE_DEFAULT | PTE_HYP)
91 #define PAGE_HYP_DEVICE __pgprot(PROT_DEVICE_nGnRE | PTE_HYP)
92
93 #define PAGE_S2 __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_NORMAL) | PTE_S2_RDONLY)
94 #define PAGE_S2_DEVICE __pgprot(PROT_DEFAULT | PTE_S2_MEMATTR(MT_S2_DEVICE_nGnRE) | PTE_S2_RDONLY | PTE_UXN)
95
96 #define PAGE_NONE __pgprot(((_PAGE_DEFAULT) & ~PTE_VALID) | PTE_PROT_NONE | PTE_PXN | PTE_UXN)
97 #define PAGE_SHARED __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN | PTE_WRITE)
98 #define PAGE_SHARED_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_WRITE)
99 #define PAGE_COPY __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN)
100 #define PAGE_COPY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN)
101 #define PAGE_READONLY __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN | PTE_UXN)
102 #define PAGE_READONLY_EXEC __pgprot(_PAGE_DEFAULT | PTE_USER | PTE_NG | PTE_PXN)
103
104 #define __P000 PAGE_NONE
105 #define __P001 PAGE_READONLY
106 #define __P010 PAGE_COPY
107 #define __P011 PAGE_COPY
108 #define __P100 PAGE_READONLY_EXEC
109 #define __P101 PAGE_READONLY_EXEC
110 #define __P110 PAGE_COPY_EXEC
111 #define __P111 PAGE_COPY_EXEC
112
113 #define __S000 PAGE_NONE
114 #define __S001 PAGE_READONLY
115 #define __S010 PAGE_SHARED
116 #define __S011 PAGE_SHARED
117 #define __S100 PAGE_READONLY_EXEC
118 #define __S101 PAGE_READONLY_EXEC
119 #define __S110 PAGE_SHARED_EXEC
120 #define __S111 PAGE_SHARED_EXEC
121
122 /*
123 * ZERO_PAGE is a global shared page that is always zero: used
124 * for zero-mapped memory areas etc..
125 */
126 extern struct page *empty_zero_page;
127 #define ZERO_PAGE(vaddr) (empty_zero_page)
128
129 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
130
131 #define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
132
133 #define pfn_pte(pfn,prot) (__pte(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
134
135 #define pte_none(pte) (!pte_val(pte))
136 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
137 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
138
139 /* Find an entry in the third-level page table. */
140 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
141
142 #define pte_offset_kernel(dir,addr) (pmd_page_vaddr(*(dir)) + pte_index(addr))
143
144 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
145 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
146 #define pte_unmap(pte) do { } while (0)
147 #define pte_unmap_nested(pte) do { } while (0)
148
149 /*
150 * The following only work if pte_present(). Undefined behaviour otherwise.
151 */
152 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
153 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
154 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
155 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
156 #define pte_exec(pte) (!(pte_val(pte) & PTE_UXN))
157 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
158 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
159
160 #ifdef CONFIG_ARM64_HW_AFDBM
161 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
162 #else
163 #define pte_hw_dirty(pte) (0)
164 #endif
165 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
166 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
167
168 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
169 #define pte_valid_not_user(pte) \
170 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
171 #define pte_valid_young(pte) \
172 ((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
173
174 /*
175 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
176 * so that we don't erroneously return false for pages that have been
177 * remapped as PROT_NONE but are yet to be flushed from the TLB.
178 */
179 #define pte_accessible(mm, pte) \
180 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte))
181
182 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
183 {
184 pte_val(pte) &= ~pgprot_val(prot);
185 return pte;
186 }
187
188 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
189 {
190 pte_val(pte) |= pgprot_val(prot);
191 return pte;
192 }
193
194 static inline pte_t pte_wrprotect(pte_t pte)
195 {
196 return clear_pte_bit(pte, __pgprot(PTE_WRITE));
197 }
198
199 static inline pte_t pte_mkwrite(pte_t pte)
200 {
201 return set_pte_bit(pte, __pgprot(PTE_WRITE));
202 }
203
204 static inline pte_t pte_mkclean(pte_t pte)
205 {
206 return clear_pte_bit(pte, __pgprot(PTE_DIRTY));
207 }
208
209 static inline pte_t pte_mkdirty(pte_t pte)
210 {
211 return set_pte_bit(pte, __pgprot(PTE_DIRTY));
212 }
213
214 static inline pte_t pte_mkold(pte_t pte)
215 {
216 return clear_pte_bit(pte, __pgprot(PTE_AF));
217 }
218
219 static inline pte_t pte_mkyoung(pte_t pte)
220 {
221 return set_pte_bit(pte, __pgprot(PTE_AF));
222 }
223
224 static inline pte_t pte_mkspecial(pte_t pte)
225 {
226 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
227 }
228
229 static inline pte_t pte_mkcont(pte_t pte)
230 {
231 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
232 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
233 }
234
235 static inline pte_t pte_mknoncont(pte_t pte)
236 {
237 return clear_pte_bit(pte, __pgprot(PTE_CONT));
238 }
239
240 static inline pmd_t pmd_mkcont(pmd_t pmd)
241 {
242 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
243 }
244
245 static inline void set_pte(pte_t *ptep, pte_t pte)
246 {
247 *ptep = pte;
248
249 /*
250 * Only if the new pte is valid and kernel, otherwise TLB maintenance
251 * or update_mmu_cache() have the necessary barriers.
252 */
253 if (pte_valid_not_user(pte)) {
254 dsb(ishst);
255 isb();
256 }
257 }
258
259 struct mm_struct;
260 struct vm_area_struct;
261
262 extern void __sync_icache_dcache(pte_t pteval, unsigned long addr);
263
264 /*
265 * PTE bits configuration in the presence of hardware Dirty Bit Management
266 * (PTE_WRITE == PTE_DBM):
267 *
268 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
269 * 0 0 | 1 0 0
270 * 0 1 | 1 1 0
271 * 1 0 | 1 0 1
272 * 1 1 | 0 1 x
273 *
274 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
275 * the page fault mechanism. Checking the dirty status of a pte becomes:
276 *
277 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
278 */
279 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
280 pte_t *ptep, pte_t pte)
281 {
282 if (pte_valid(pte)) {
283 if (pte_sw_dirty(pte) && pte_write(pte))
284 pte_val(pte) &= ~PTE_RDONLY;
285 else
286 pte_val(pte) |= PTE_RDONLY;
287 if (pte_user(pte) && pte_exec(pte) && !pte_special(pte))
288 __sync_icache_dcache(pte, addr);
289 }
290
291 /*
292 * If the existing pte is valid, check for potential race with
293 * hardware updates of the pte (ptep_set_access_flags safely changes
294 * valid ptes without going through an invalid entry).
295 */
296 if (IS_ENABLED(CONFIG_ARM64_HW_AFDBM) &&
297 pte_valid(*ptep) && pte_valid(pte)) {
298 VM_WARN_ONCE(!pte_young(pte),
299 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
300 __func__, pte_val(*ptep), pte_val(pte));
301 VM_WARN_ONCE(pte_write(*ptep) && !pte_dirty(pte),
302 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
303 __func__, pte_val(*ptep), pte_val(pte));
304 }
305
306 set_pte(ptep, pte);
307 }
308
309 /*
310 * Huge pte definitions.
311 */
312 #define pte_huge(pte) (!(pte_val(pte) & PTE_TABLE_BIT))
313 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
314
315 /*
316 * Hugetlb definitions.
317 */
318 #define HUGE_MAX_HSTATE 4
319 #define HPAGE_SHIFT PMD_SHIFT
320 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
321 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
322 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
323
324 #define __HAVE_ARCH_PTE_SPECIAL
325
326 static inline pte_t pud_pte(pud_t pud)
327 {
328 return __pte(pud_val(pud));
329 }
330
331 static inline pmd_t pud_pmd(pud_t pud)
332 {
333 return __pmd(pud_val(pud));
334 }
335
336 static inline pte_t pmd_pte(pmd_t pmd)
337 {
338 return __pte(pmd_val(pmd));
339 }
340
341 static inline pmd_t pte_pmd(pte_t pte)
342 {
343 return __pmd(pte_val(pte));
344 }
345
346 static inline pgprot_t mk_sect_prot(pgprot_t prot)
347 {
348 return __pgprot(pgprot_val(prot) & ~PTE_TABLE_BIT);
349 }
350
351 /*
352 * THP definitions.
353 */
354
355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
356 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
357 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
358
359 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
360 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
361 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
362 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
363 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
364 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
365 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
366 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
367 #define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_TYPE_MASK))
368
369 #define __HAVE_ARCH_PMD_WRITE
370 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
371
372 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
373
374 #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
375 #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
376 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
377
378 #define pud_write(pud) pte_write(pud_pte(pud))
379 #define pud_pfn(pud) (((pud_val(pud) & PUD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
380
381 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
382
383 static inline int has_transparent_hugepage(void)
384 {
385 return 1;
386 }
387
388 #define __pgprot_modify(prot,mask,bits) \
389 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
390
391 /*
392 * Mark the prot value as uncacheable and unbufferable.
393 */
394 #define pgprot_noncached(prot) \
395 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
396 #define pgprot_writecombine(prot) \
397 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
398 #define pgprot_device(prot) \
399 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
400 #define __HAVE_PHYS_MEM_ACCESS_PROT
401 struct file;
402 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
403 unsigned long size, pgprot_t vma_prot);
404
405 #define pmd_none(pmd) (!pmd_val(pmd))
406 #define pmd_present(pmd) (pmd_val(pmd))
407
408 #define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
409
410 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
411 PMD_TYPE_TABLE)
412 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
413 PMD_TYPE_SECT)
414
415 #ifdef CONFIG_ARM64_64K_PAGES
416 #define pud_sect(pud) (0)
417 #define pud_table(pud) (1)
418 #else
419 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
420 PUD_TYPE_SECT)
421 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
422 PUD_TYPE_TABLE)
423 #endif
424
425 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
426 {
427 *pmdp = pmd;
428 dsb(ishst);
429 isb();
430 }
431
432 static inline void pmd_clear(pmd_t *pmdp)
433 {
434 set_pmd(pmdp, __pmd(0));
435 }
436
437 static inline pte_t *pmd_page_vaddr(pmd_t pmd)
438 {
439 return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
440 }
441
442 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
443
444 /*
445 * Conversion functions: convert a page and protection to a page entry,
446 * and a page entry and page directory to the page they refer to.
447 */
448 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
449
450 #if CONFIG_PGTABLE_LEVELS > 2
451
452 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
453
454 #define pud_none(pud) (!pud_val(pud))
455 #define pud_bad(pud) (!(pud_val(pud) & 2))
456 #define pud_present(pud) (pud_val(pud))
457
458 static inline void set_pud(pud_t *pudp, pud_t pud)
459 {
460 *pudp = pud;
461 dsb(ishst);
462 isb();
463 }
464
465 static inline void pud_clear(pud_t *pudp)
466 {
467 set_pud(pudp, __pud(0));
468 }
469
470 static inline pmd_t *pud_page_vaddr(pud_t pud)
471 {
472 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
473 }
474
475 /* Find an entry in the second-level page table. */
476 #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
477
478 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
479 {
480 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
481 }
482
483 #define pud_page(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
484
485 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
486
487 #if CONFIG_PGTABLE_LEVELS > 3
488
489 #define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud))
490
491 #define pgd_none(pgd) (!pgd_val(pgd))
492 #define pgd_bad(pgd) (!(pgd_val(pgd) & 2))
493 #define pgd_present(pgd) (pgd_val(pgd))
494
495 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
496 {
497 *pgdp = pgd;
498 dsb(ishst);
499 }
500
501 static inline void pgd_clear(pgd_t *pgdp)
502 {
503 set_pgd(pgdp, __pgd(0));
504 }
505
506 static inline pud_t *pgd_page_vaddr(pgd_t pgd)
507 {
508 return __va(pgd_val(pgd) & PHYS_MASK & (s32)PAGE_MASK);
509 }
510
511 /* Find an entry in the frst-level page table. */
512 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
513
514 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long addr)
515 {
516 return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(addr);
517 }
518
519 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(pgd_val(pgd) & PHYS_MASK))
520
521 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
522
523 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
524
525 /* to find an entry in a page-table-directory */
526 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
527
528 #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
529
530 /* to find an entry in a kernel page-table-directory */
531 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
532
533 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
534 {
535 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
536 PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
537 /* preserve the hardware dirty information */
538 if (pte_hw_dirty(pte))
539 pte = pte_mkdirty(pte);
540 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
541 return pte;
542 }
543
544 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
545 {
546 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
547 }
548
549 #ifdef CONFIG_ARM64_HW_AFDBM
550 /*
551 * Atomic pte/pmd modifications.
552 */
553 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
554 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
555 unsigned long address,
556 pte_t *ptep)
557 {
558 pteval_t pteval;
559 unsigned int tmp, res;
560
561 asm volatile("// ptep_test_and_clear_young\n"
562 " prfm pstl1strm, %2\n"
563 "1: ldxr %0, %2\n"
564 " ubfx %w3, %w0, %5, #1 // extract PTE_AF (young)\n"
565 " and %0, %0, %4 // clear PTE_AF\n"
566 " stxr %w1, %0, %2\n"
567 " cbnz %w1, 1b\n"
568 : "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)), "=&r" (res)
569 : "L" (~PTE_AF), "I" (ilog2(PTE_AF)));
570
571 return res;
572 }
573
574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
575 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
576 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
577 unsigned long address,
578 pmd_t *pmdp)
579 {
580 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
581 }
582 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
583
584 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
585 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
586 unsigned long address, pte_t *ptep)
587 {
588 pteval_t old_pteval;
589 unsigned int tmp;
590
591 asm volatile("// ptep_get_and_clear\n"
592 " prfm pstl1strm, %2\n"
593 "1: ldxr %0, %2\n"
594 " stxr %w1, xzr, %2\n"
595 " cbnz %w1, 1b\n"
596 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)));
597
598 return __pte(old_pteval);
599 }
600
601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
602 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
603 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
604 unsigned long address, pmd_t *pmdp)
605 {
606 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
607 }
608 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
609
610 /*
611 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
612 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
613 */
614 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
615 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
616 {
617 pteval_t pteval;
618 unsigned long tmp;
619
620 asm volatile("// ptep_set_wrprotect\n"
621 " prfm pstl1strm, %2\n"
622 "1: ldxr %0, %2\n"
623 " tst %0, %4 // check for hw dirty (!PTE_RDONLY)\n"
624 " csel %1, %3, xzr, eq // set PTE_DIRTY|PTE_RDONLY if dirty\n"
625 " orr %0, %0, %1 // if !dirty, PTE_RDONLY is already set\n"
626 " and %0, %0, %5 // clear PTE_WRITE/PTE_DBM\n"
627 " stxr %w1, %0, %2\n"
628 " cbnz %w1, 1b\n"
629 : "=&r" (pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
630 : "r" (PTE_DIRTY|PTE_RDONLY), "L" (PTE_RDONLY), "L" (~PTE_WRITE)
631 : "cc");
632 }
633
634 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
635 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
636 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
637 unsigned long address, pmd_t *pmdp)
638 {
639 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
640 }
641 #endif
642 #endif /* CONFIG_ARM64_HW_AFDBM */
643
644 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
645 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
646
647 /*
648 * Encode and decode a swap entry:
649 * bits 0-1: present (must be zero)
650 * bits 2-7: swap type
651 * bits 8-57: swap offset
652 */
653 #define __SWP_TYPE_SHIFT 2
654 #define __SWP_TYPE_BITS 6
655 #define __SWP_OFFSET_BITS 50
656 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
657 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
658 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
659
660 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
661 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
662 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
663
664 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
665 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
666
667 /*
668 * Ensure that there are not more swap files than can be encoded in the kernel
669 * PTEs.
670 */
671 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
672
673 extern int kern_addr_valid(unsigned long addr);
674
675 #include <asm-generic/pgtable.h>
676
677 void pgd_cache_init(void);
678 #define pgtable_cache_init pgd_cache_init
679
680 /*
681 * On AArch64, the cache coherency is handled via the set_pte_at() function.
682 */
683 static inline void update_mmu_cache(struct vm_area_struct *vma,
684 unsigned long addr, pte_t *ptep)
685 {
686 /*
687 * We don't do anything here, so there's a very small chance of
688 * us retaking a user fault which we just fixed up. The alternative
689 * is doing a dsb(ishst), but that penalises the fastpath.
690 */
691 }
692
693 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
694
695 #define kc_vaddr_to_offset(v) ((v) & ~VA_START)
696 #define kc_offset_to_vaddr(o) ((o) | VA_START)
697
698 #endif /* !__ASSEMBLY__ */
699
700 #endif /* __ASM_PGTABLE_H */