]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/arm64/include/asm/pgtable.h
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-hirsute-kernel.git] / arch / arm64 / include / asm / pgtable.h
1 /*
2 * Copyright (C) 2012 ARM Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program. If not, see <http://www.gnu.org/licenses/>.
15 */
16 #ifndef __ASM_PGTABLE_H
17 #define __ASM_PGTABLE_H
18
19 #include <asm/bug.h>
20 #include <asm/proc-fns.h>
21
22 #include <asm/memory.h>
23 #include <asm/pgtable-hwdef.h>
24 #include <asm/pgtable-prot.h>
25 #include <asm/tlbflush.h>
26
27 /*
28 * VMALLOC range.
29 *
30 * VMALLOC_START: beginning of the kernel vmalloc space
31 * VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space
32 * and fixed mappings
33 */
34 #define VMALLOC_START (MODULES_END)
35 #define VMALLOC_END (PAGE_OFFSET - PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
36
37 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
38
39 #define FIRST_USER_ADDRESS 0UL
40
41 #ifndef __ASSEMBLY__
42
43 #include <asm/cmpxchg.h>
44 #include <asm/fixmap.h>
45 #include <linux/mmdebug.h>
46 #include <linux/mm_types.h>
47 #include <linux/sched.h>
48
49 extern void __pte_error(const char *file, int line, unsigned long val);
50 extern void __pmd_error(const char *file, int line, unsigned long val);
51 extern void __pud_error(const char *file, int line, unsigned long val);
52 extern void __pgd_error(const char *file, int line, unsigned long val);
53
54 /*
55 * ZERO_PAGE is a global shared page that is always zero: used
56 * for zero-mapped memory areas etc..
57 */
58 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
59 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
60
61 #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
62
63 /*
64 * Macros to convert between a physical address and its placement in a
65 * page table entry, taking care of 52-bit addresses.
66 */
67 #ifdef CONFIG_ARM64_PA_BITS_52
68 #define __pte_to_phys(pte) \
69 ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36))
70 #define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK)
71 #else
72 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
73 #define __phys_to_pte_val(phys) (phys)
74 #endif
75
76 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
77 #define pfn_pte(pfn,prot) \
78 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
79
80 #define pte_none(pte) (!pte_val(pte))
81 #define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
82 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
83
84 /*
85 * The following only work if pte_present(). Undefined behaviour otherwise.
86 */
87 #define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
88 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
89 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
90 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
91 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
92 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
93
94 #define pte_cont_addr_end(addr, end) \
95 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
96 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
97 })
98
99 #define pmd_cont_addr_end(addr, end) \
100 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
101 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
102 })
103
104 #define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
105 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
106 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
107
108 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
109 /*
110 * Execute-only user mappings do not have the PTE_USER bit set. All valid
111 * kernel mappings have the PTE_UXN bit set.
112 */
113 #define pte_valid_not_user(pte) \
114 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
115 #define pte_valid_young(pte) \
116 ((pte_val(pte) & (PTE_VALID | PTE_AF)) == (PTE_VALID | PTE_AF))
117 #define pte_valid_user(pte) \
118 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
119
120 /*
121 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
122 * so that we don't erroneously return false for pages that have been
123 * remapped as PROT_NONE but are yet to be flushed from the TLB.
124 */
125 #define pte_accessible(mm, pte) \
126 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid_young(pte))
127
128 /*
129 * p??_access_permitted() is true for valid user mappings (subject to the
130 * write permission check) other than user execute-only which do not have the
131 * PTE_USER bit set. PROT_NONE mappings do not have the PTE_VALID bit set.
132 */
133 #define pte_access_permitted(pte, write) \
134 (pte_valid_user(pte) && (!(write) || pte_write(pte)))
135 #define pmd_access_permitted(pmd, write) \
136 (pte_access_permitted(pmd_pte(pmd), (write)))
137 #define pud_access_permitted(pud, write) \
138 (pte_access_permitted(pud_pte(pud), (write)))
139
140 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
141 {
142 pte_val(pte) &= ~pgprot_val(prot);
143 return pte;
144 }
145
146 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
147 {
148 pte_val(pte) |= pgprot_val(prot);
149 return pte;
150 }
151
152 static inline pte_t pte_wrprotect(pte_t pte)
153 {
154 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
155 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
156 return pte;
157 }
158
159 static inline pte_t pte_mkwrite(pte_t pte)
160 {
161 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
162 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
163 return pte;
164 }
165
166 static inline pte_t pte_mkclean(pte_t pte)
167 {
168 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
169 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
170
171 return pte;
172 }
173
174 static inline pte_t pte_mkdirty(pte_t pte)
175 {
176 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
177
178 if (pte_write(pte))
179 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
180
181 return pte;
182 }
183
184 static inline pte_t pte_mkold(pte_t pte)
185 {
186 return clear_pte_bit(pte, __pgprot(PTE_AF));
187 }
188
189 static inline pte_t pte_mkyoung(pte_t pte)
190 {
191 return set_pte_bit(pte, __pgprot(PTE_AF));
192 }
193
194 static inline pte_t pte_mkspecial(pte_t pte)
195 {
196 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
197 }
198
199 static inline pte_t pte_mkcont(pte_t pte)
200 {
201 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
202 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
203 }
204
205 static inline pte_t pte_mknoncont(pte_t pte)
206 {
207 return clear_pte_bit(pte, __pgprot(PTE_CONT));
208 }
209
210 static inline pte_t pte_mkpresent(pte_t pte)
211 {
212 return set_pte_bit(pte, __pgprot(PTE_VALID));
213 }
214
215 static inline pmd_t pmd_mkcont(pmd_t pmd)
216 {
217 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
218 }
219
220 static inline void set_pte(pte_t *ptep, pte_t pte)
221 {
222 WRITE_ONCE(*ptep, pte);
223
224 /*
225 * Only if the new pte is valid and kernel, otherwise TLB maintenance
226 * or update_mmu_cache() have the necessary barriers.
227 */
228 if (pte_valid_not_user(pte))
229 dsb(ishst);
230 }
231
232 extern void __sync_icache_dcache(pte_t pteval);
233
234 /*
235 * PTE bits configuration in the presence of hardware Dirty Bit Management
236 * (PTE_WRITE == PTE_DBM):
237 *
238 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
239 * 0 0 | 1 0 0
240 * 0 1 | 1 1 0
241 * 1 0 | 1 0 1
242 * 1 1 | 0 1 x
243 *
244 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
245 * the page fault mechanism. Checking the dirty status of a pte becomes:
246 *
247 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
248 */
249 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
250 pte_t *ptep, pte_t pte)
251 {
252 pte_t old_pte;
253
254 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
255 __sync_icache_dcache(pte);
256
257 /*
258 * If the existing pte is valid, check for potential race with
259 * hardware updates of the pte (ptep_set_access_flags safely changes
260 * valid ptes without going through an invalid entry).
261 */
262 old_pte = READ_ONCE(*ptep);
263 if (IS_ENABLED(CONFIG_DEBUG_VM) && pte_valid(old_pte) && pte_valid(pte) &&
264 (mm == current->active_mm || atomic_read(&mm->mm_users) > 1)) {
265 VM_WARN_ONCE(!pte_young(pte),
266 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
267 __func__, pte_val(old_pte), pte_val(pte));
268 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
269 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
270 __func__, pte_val(old_pte), pte_val(pte));
271 }
272
273 set_pte(ptep, pte);
274 }
275
276 #define __HAVE_ARCH_PTE_SAME
277 static inline int pte_same(pte_t pte_a, pte_t pte_b)
278 {
279 pteval_t lhs, rhs;
280
281 lhs = pte_val(pte_a);
282 rhs = pte_val(pte_b);
283
284 if (pte_present(pte_a))
285 lhs &= ~PTE_RDONLY;
286
287 if (pte_present(pte_b))
288 rhs &= ~PTE_RDONLY;
289
290 return (lhs == rhs);
291 }
292
293 /*
294 * Huge pte definitions.
295 */
296 #define pte_huge(pte) (!(pte_val(pte) & PTE_TABLE_BIT))
297 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
298
299 /*
300 * Hugetlb definitions.
301 */
302 #define HUGE_MAX_HSTATE 4
303 #define HPAGE_SHIFT PMD_SHIFT
304 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
305 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
306 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
307
308 static inline pte_t pgd_pte(pgd_t pgd)
309 {
310 return __pte(pgd_val(pgd));
311 }
312
313 static inline pte_t pud_pte(pud_t pud)
314 {
315 return __pte(pud_val(pud));
316 }
317
318 static inline pud_t pte_pud(pte_t pte)
319 {
320 return __pud(pte_val(pte));
321 }
322
323 static inline pmd_t pud_pmd(pud_t pud)
324 {
325 return __pmd(pud_val(pud));
326 }
327
328 static inline pte_t pmd_pte(pmd_t pmd)
329 {
330 return __pte(pmd_val(pmd));
331 }
332
333 static inline pmd_t pte_pmd(pte_t pte)
334 {
335 return __pmd(pte_val(pte));
336 }
337
338 static inline pgprot_t mk_sect_prot(pgprot_t prot)
339 {
340 return __pgprot(pgprot_val(prot) & ~PTE_TABLE_BIT);
341 }
342
343 #ifdef CONFIG_NUMA_BALANCING
344 /*
345 * See the comment in include/asm-generic/pgtable.h
346 */
347 static inline int pte_protnone(pte_t pte)
348 {
349 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
350 }
351
352 static inline int pmd_protnone(pmd_t pmd)
353 {
354 return pte_protnone(pmd_pte(pmd));
355 }
356 #endif
357
358 /*
359 * THP definitions.
360 */
361
362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
363 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
364 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
365
366 #define pmd_present(pmd) pte_present(pmd_pte(pmd))
367 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
368 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
369 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
370 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
371 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
372 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
373 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
374 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
375 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
376 #define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_SECT_VALID))
377
378 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
379
380 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
381
382 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
383
384 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
385 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
386 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
387 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
388 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
389
390 #define pud_young(pud) pte_young(pud_pte(pud))
391 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
392 #define pud_write(pud) pte_write(pud_pte(pud))
393
394 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
395
396 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
397 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
398 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
399 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
400
401 #define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
402
403 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
404 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
405
406 #define __pgprot_modify(prot,mask,bits) \
407 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
408
409 /*
410 * Mark the prot value as uncacheable and unbufferable.
411 */
412 #define pgprot_noncached(prot) \
413 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
414 #define pgprot_writecombine(prot) \
415 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
416 #define pgprot_device(prot) \
417 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
418 #define __HAVE_PHYS_MEM_ACCESS_PROT
419 struct file;
420 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
421 unsigned long size, pgprot_t vma_prot);
422
423 #define pmd_none(pmd) (!pmd_val(pmd))
424
425 #define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT))
426
427 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
428 PMD_TYPE_TABLE)
429 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
430 PMD_TYPE_SECT)
431
432 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
433 #define pud_sect(pud) (0)
434 #define pud_table(pud) (1)
435 #else
436 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
437 PUD_TYPE_SECT)
438 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
439 PUD_TYPE_TABLE)
440 #endif
441
442 extern pgd_t init_pg_dir[PTRS_PER_PGD];
443 extern pgd_t init_pg_end[];
444 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
445 extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
446 extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
447
448 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
449
450 static inline bool in_swapper_pgdir(void *addr)
451 {
452 return ((unsigned long)addr & PAGE_MASK) ==
453 ((unsigned long)swapper_pg_dir & PAGE_MASK);
454 }
455
456 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
457 {
458 #ifdef __PAGETABLE_PMD_FOLDED
459 if (in_swapper_pgdir(pmdp)) {
460 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
461 return;
462 }
463 #endif /* __PAGETABLE_PMD_FOLDED */
464
465 WRITE_ONCE(*pmdp, pmd);
466
467 if (pmd_valid(pmd))
468 dsb(ishst);
469 }
470
471 static inline void pmd_clear(pmd_t *pmdp)
472 {
473 set_pmd(pmdp, __pmd(0));
474 }
475
476 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
477 {
478 return __pmd_to_phys(pmd);
479 }
480
481 /* Find an entry in the third-level page table. */
482 #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
483
484 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
485 #define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr))))
486
487 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
488 #define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
489 #define pte_unmap(pte) do { } while (0)
490 #define pte_unmap_nested(pte) do { } while (0)
491
492 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
493 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
494 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
495
496 #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd)))
497
498 /* use ONLY for statically allocated translation tables */
499 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
500
501 /*
502 * Conversion functions: convert a page and protection to a page entry,
503 * and a page entry and page directory to the page they refer to.
504 */
505 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
506
507 #if CONFIG_PGTABLE_LEVELS > 2
508
509 #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
510
511 #define pud_none(pud) (!pud_val(pud))
512 #define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT))
513 #define pud_present(pud) pte_present(pud_pte(pud))
514 #define pud_valid(pud) pte_valid(pud_pte(pud))
515
516 static inline void set_pud(pud_t *pudp, pud_t pud)
517 {
518 #ifdef __PAGETABLE_PUD_FOLDED
519 if (in_swapper_pgdir(pudp)) {
520 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
521 return;
522 }
523 #endif /* __PAGETABLE_PUD_FOLDED */
524
525 WRITE_ONCE(*pudp, pud);
526
527 if (pud_valid(pud))
528 dsb(ishst);
529 }
530
531 static inline void pud_clear(pud_t *pudp)
532 {
533 set_pud(pudp, __pud(0));
534 }
535
536 static inline phys_addr_t pud_page_paddr(pud_t pud)
537 {
538 return __pud_to_phys(pud);
539 }
540
541 /* Find an entry in the second-level page table. */
542 #define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
543
544 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
545 #define pmd_offset(dir, addr) ((pmd_t *)__va(pmd_offset_phys((dir), (addr))))
546
547 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
548 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
549 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
550
551 #define pud_page(pud) pfn_to_page(__phys_to_pfn(__pud_to_phys(pud)))
552
553 /* use ONLY for statically allocated translation tables */
554 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
555
556 #else
557
558 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
559
560 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
561 #define pmd_set_fixmap(addr) NULL
562 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
563 #define pmd_clear_fixmap()
564
565 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
566
567 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
568
569 #if CONFIG_PGTABLE_LEVELS > 3
570
571 #define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud))
572
573 #define pgd_none(pgd) (!pgd_val(pgd))
574 #define pgd_bad(pgd) (!(pgd_val(pgd) & 2))
575 #define pgd_present(pgd) (pgd_val(pgd))
576
577 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
578 {
579 if (in_swapper_pgdir(pgdp)) {
580 set_swapper_pgd(pgdp, pgd);
581 return;
582 }
583
584 WRITE_ONCE(*pgdp, pgd);
585 dsb(ishst);
586 }
587
588 static inline void pgd_clear(pgd_t *pgdp)
589 {
590 set_pgd(pgdp, __pgd(0));
591 }
592
593 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
594 {
595 return __pgd_to_phys(pgd);
596 }
597
598 /* Find an entry in the frst-level page table. */
599 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
600
601 #define pud_offset_phys(dir, addr) (pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
602 #define pud_offset(dir, addr) ((pud_t *)__va(pud_offset_phys((dir), (addr))))
603
604 #define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
605 #define pud_set_fixmap_offset(pgd, addr) pud_set_fixmap(pud_offset_phys(pgd, addr))
606 #define pud_clear_fixmap() clear_fixmap(FIX_PUD)
607
608 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
609
610 /* use ONLY for statically allocated translation tables */
611 #define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
612
613 #else
614
615 #define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
616
617 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
618 #define pud_set_fixmap(addr) NULL
619 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
620 #define pud_clear_fixmap()
621
622 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
623
624 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
625
626 #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
627
628 /* to find an entry in a page-table-directory */
629 #define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
630
631 #define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr))
632
633 #define pgd_offset(mm, addr) (pgd_offset_raw((mm)->pgd, (addr)))
634
635 /* to find an entry in a kernel page-table-directory */
636 #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
637
638 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
639 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
640
641 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
642 {
643 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
644 PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
645 /* preserve the hardware dirty information */
646 if (pte_hw_dirty(pte))
647 pte = pte_mkdirty(pte);
648 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
649 return pte;
650 }
651
652 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
653 {
654 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
655 }
656
657 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
658 extern int ptep_set_access_flags(struct vm_area_struct *vma,
659 unsigned long address, pte_t *ptep,
660 pte_t entry, int dirty);
661
662 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
663 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
664 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
665 unsigned long address, pmd_t *pmdp,
666 pmd_t entry, int dirty)
667 {
668 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
669 }
670 #endif
671
672 /*
673 * Atomic pte/pmd modifications.
674 */
675 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
676 static inline int __ptep_test_and_clear_young(pte_t *ptep)
677 {
678 pte_t old_pte, pte;
679
680 pte = READ_ONCE(*ptep);
681 do {
682 old_pte = pte;
683 pte = pte_mkold(pte);
684 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
685 pte_val(old_pte), pte_val(pte));
686 } while (pte_val(pte) != pte_val(old_pte));
687
688 return pte_young(pte);
689 }
690
691 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
692 unsigned long address,
693 pte_t *ptep)
694 {
695 return __ptep_test_and_clear_young(ptep);
696 }
697
698 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
699 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
700 unsigned long address, pte_t *ptep)
701 {
702 int young = ptep_test_and_clear_young(vma, address, ptep);
703
704 if (young) {
705 /*
706 * We can elide the trailing DSB here since the worst that can
707 * happen is that a CPU continues to use the young entry in its
708 * TLB and we mistakenly reclaim the associated page. The
709 * window for such an event is bounded by the next
710 * context-switch, which provides a DSB to complete the TLB
711 * invalidation.
712 */
713 flush_tlb_page_nosync(vma, address);
714 }
715
716 return young;
717 }
718
719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
720 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
721 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
722 unsigned long address,
723 pmd_t *pmdp)
724 {
725 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
726 }
727 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
728
729 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
730 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
731 unsigned long address, pte_t *ptep)
732 {
733 return __pte(xchg_relaxed(&pte_val(*ptep), 0));
734 }
735
736 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
737 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
738 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
739 unsigned long address, pmd_t *pmdp)
740 {
741 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
742 }
743 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
744
745 /*
746 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
747 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
748 */
749 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
750 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
751 {
752 pte_t old_pte, pte;
753
754 pte = READ_ONCE(*ptep);
755 do {
756 old_pte = pte;
757 /*
758 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
759 * clear), set the PTE_DIRTY bit.
760 */
761 if (pte_hw_dirty(pte))
762 pte = pte_mkdirty(pte);
763 pte = pte_wrprotect(pte);
764 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
765 pte_val(old_pte), pte_val(pte));
766 } while (pte_val(pte) != pte_val(old_pte));
767 }
768
769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
770 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
771 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
772 unsigned long address, pmd_t *pmdp)
773 {
774 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
775 }
776
777 #define pmdp_establish pmdp_establish
778 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
779 unsigned long address, pmd_t *pmdp, pmd_t pmd)
780 {
781 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
782 }
783 #endif
784
785 /*
786 * Encode and decode a swap entry:
787 * bits 0-1: present (must be zero)
788 * bits 2-7: swap type
789 * bits 8-57: swap offset
790 * bit 58: PTE_PROT_NONE (must be zero)
791 */
792 #define __SWP_TYPE_SHIFT 2
793 #define __SWP_TYPE_BITS 6
794 #define __SWP_OFFSET_BITS 50
795 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
796 #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
797 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
798
799 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
800 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
801 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
802
803 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
804 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
805
806 /*
807 * Ensure that there are not more swap files than can be encoded in the kernel
808 * PTEs.
809 */
810 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
811
812 extern int kern_addr_valid(unsigned long addr);
813
814 #include <asm-generic/pgtable.h>
815
816 void pgd_cache_init(void);
817 #define pgtable_cache_init pgd_cache_init
818
819 /*
820 * On AArch64, the cache coherency is handled via the set_pte_at() function.
821 */
822 static inline void update_mmu_cache(struct vm_area_struct *vma,
823 unsigned long addr, pte_t *ptep)
824 {
825 /*
826 * We don't do anything here, so there's a very small chance of
827 * us retaking a user fault which we just fixed up. The alternative
828 * is doing a dsb(ishst), but that penalises the fastpath.
829 */
830 }
831
832 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
833
834 #define kc_vaddr_to_offset(v) ((v) & ~VA_START)
835 #define kc_offset_to_vaddr(o) ((o) | VA_START)
836
837 #ifdef CONFIG_ARM64_PA_BITS_52
838 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
839 #else
840 #define phys_to_ttbr(addr) (addr)
841 #endif
842
843 #endif /* !__ASSEMBLY__ */
844
845 #endif /* __ASM_PGTABLE_H */