]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/kernel/cpu_errata.c
arm64: Add per-cpu infrastructure to call ARCH_WORKAROUND_2
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / kernel / cpu_errata.c
1 /*
2 * Contains CPU specific errata definitions
3 *
4 * Copyright (C) 2014 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/types.h>
20 #include <asm/cpu.h>
21 #include <asm/cputype.h>
22 #include <asm/cpufeature.h>
23
24 static bool __maybe_unused
25 is_affected_midr_range(const struct arm64_cpu_capabilities *entry, int scope)
26 {
27 WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
28 return MIDR_IS_CPU_MODEL_RANGE(read_cpuid_id(), entry->midr_model,
29 entry->midr_range_min,
30 entry->midr_range_max);
31 }
32
33 static bool __maybe_unused
34 is_kryo_midr(const struct arm64_cpu_capabilities *entry, int scope)
35 {
36 u32 model;
37
38 WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
39
40 model = read_cpuid_id();
41 model &= MIDR_IMPLEMENTOR_MASK | (0xf00 << MIDR_PARTNUM_SHIFT) |
42 MIDR_ARCHITECTURE_MASK;
43
44 return model == entry->midr_model;
45 }
46
47 static bool
48 has_mismatched_cache_line_size(const struct arm64_cpu_capabilities *entry,
49 int scope)
50 {
51 WARN_ON(scope != SCOPE_LOCAL_CPU || preemptible());
52 return (read_cpuid_cachetype() & arm64_ftr_reg_ctrel0.strict_mask) !=
53 (arm64_ftr_reg_ctrel0.sys_val & arm64_ftr_reg_ctrel0.strict_mask);
54 }
55
56 static int cpu_enable_trap_ctr_access(void *__unused)
57 {
58 /* Clear SCTLR_EL1.UCT */
59 config_sctlr_el1(SCTLR_EL1_UCT, 0);
60 return 0;
61 }
62
63 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
64 #include <asm/mmu_context.h>
65 #include <asm/cacheflush.h>
66
67 DEFINE_PER_CPU_READ_MOSTLY(struct bp_hardening_data, bp_hardening_data);
68
69 #ifdef CONFIG_KVM
70 extern char __qcom_hyp_sanitize_link_stack_start[];
71 extern char __qcom_hyp_sanitize_link_stack_end[];
72 extern char __smccc_workaround_1_smc_start[];
73 extern char __smccc_workaround_1_smc_end[];
74 extern char __smccc_workaround_1_hvc_start[];
75 extern char __smccc_workaround_1_hvc_end[];
76
77 static void __copy_hyp_vect_bpi(int slot, const char *hyp_vecs_start,
78 const char *hyp_vecs_end)
79 {
80 void *dst = lm_alias(__bp_harden_hyp_vecs_start + slot * SZ_2K);
81 int i;
82
83 for (i = 0; i < SZ_2K; i += 0x80)
84 memcpy(dst + i, hyp_vecs_start, hyp_vecs_end - hyp_vecs_start);
85
86 flush_icache_range((uintptr_t)dst, (uintptr_t)dst + SZ_2K);
87 }
88
89 static void __install_bp_hardening_cb(bp_hardening_cb_t fn,
90 const char *hyp_vecs_start,
91 const char *hyp_vecs_end)
92 {
93 static int last_slot = -1;
94 static DEFINE_SPINLOCK(bp_lock);
95 int cpu, slot = -1;
96
97 spin_lock(&bp_lock);
98 for_each_possible_cpu(cpu) {
99 if (per_cpu(bp_hardening_data.fn, cpu) == fn) {
100 slot = per_cpu(bp_hardening_data.hyp_vectors_slot, cpu);
101 break;
102 }
103 }
104
105 if (slot == -1) {
106 last_slot++;
107 BUG_ON(((__bp_harden_hyp_vecs_end - __bp_harden_hyp_vecs_start)
108 / SZ_2K) <= last_slot);
109 slot = last_slot;
110 __copy_hyp_vect_bpi(slot, hyp_vecs_start, hyp_vecs_end);
111 }
112
113 __this_cpu_write(bp_hardening_data.hyp_vectors_slot, slot);
114 __this_cpu_write(bp_hardening_data.fn, fn);
115 spin_unlock(&bp_lock);
116 }
117 #else
118 #define __qcom_hyp_sanitize_link_stack_start NULL
119 #define __qcom_hyp_sanitize_link_stack_end NULL
120 #define __smccc_workaround_1_smc_start NULL
121 #define __smccc_workaround_1_smc_end NULL
122 #define __smccc_workaround_1_hvc_start NULL
123 #define __smccc_workaround_1_hvc_end NULL
124
125 static void __install_bp_hardening_cb(bp_hardening_cb_t fn,
126 const char *hyp_vecs_start,
127 const char *hyp_vecs_end)
128 {
129 __this_cpu_write(bp_hardening_data.fn, fn);
130 }
131 #endif /* CONFIG_KVM */
132
133 static void install_bp_hardening_cb(const struct arm64_cpu_capabilities *entry,
134 bp_hardening_cb_t fn,
135 const char *hyp_vecs_start,
136 const char *hyp_vecs_end)
137 {
138 u64 pfr0;
139
140 if (!entry->matches(entry, SCOPE_LOCAL_CPU))
141 return;
142
143 pfr0 = read_cpuid(ID_AA64PFR0_EL1);
144 if (cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_CSV2_SHIFT))
145 return;
146
147 __install_bp_hardening_cb(fn, hyp_vecs_start, hyp_vecs_end);
148 }
149
150 #include <uapi/linux/psci.h>
151 #include <linux/arm-smccc.h>
152 #include <linux/psci.h>
153
154 static void call_smc_arch_workaround_1(void)
155 {
156 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
157 }
158
159 static void call_hvc_arch_workaround_1(void)
160 {
161 arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_WORKAROUND_1, NULL);
162 }
163
164 static int enable_smccc_arch_workaround_1(void *data)
165 {
166 const struct arm64_cpu_capabilities *entry = data;
167 bp_hardening_cb_t cb;
168 void *smccc_start, *smccc_end;
169 struct arm_smccc_res res;
170
171 if (!entry->matches(entry, SCOPE_LOCAL_CPU))
172 return 0;
173
174 if (psci_ops.smccc_version == SMCCC_VERSION_1_0)
175 return 0;
176
177 switch (psci_ops.conduit) {
178 case PSCI_CONDUIT_HVC:
179 arm_smccc_1_1_hvc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
180 ARM_SMCCC_ARCH_WORKAROUND_1, &res);
181 if ((int)res.a0 < 0)
182 return 0;
183 cb = call_hvc_arch_workaround_1;
184 smccc_start = __smccc_workaround_1_hvc_start;
185 smccc_end = __smccc_workaround_1_hvc_end;
186 break;
187
188 case PSCI_CONDUIT_SMC:
189 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_FEATURES_FUNC_ID,
190 ARM_SMCCC_ARCH_WORKAROUND_1, &res);
191 if ((int)res.a0 < 0)
192 return 0;
193 cb = call_smc_arch_workaround_1;
194 smccc_start = __smccc_workaround_1_smc_start;
195 smccc_end = __smccc_workaround_1_smc_end;
196 break;
197
198 default:
199 return 0;
200 }
201
202 install_bp_hardening_cb(entry, cb, smccc_start, smccc_end);
203
204 return 0;
205 }
206
207 static void qcom_link_stack_sanitization(void)
208 {
209 u64 tmp;
210
211 asm volatile("mov %0, x30 \n"
212 ".rept 16 \n"
213 "bl . + 4 \n"
214 ".endr \n"
215 "mov x30, %0 \n"
216 : "=&r" (tmp));
217 }
218
219 static int qcom_enable_link_stack_sanitization(void *data)
220 {
221 const struct arm64_cpu_capabilities *entry = data;
222
223 install_bp_hardening_cb(entry, qcom_link_stack_sanitization,
224 __qcom_hyp_sanitize_link_stack_start,
225 __qcom_hyp_sanitize_link_stack_end);
226
227 return 0;
228 }
229 #endif /* CONFIG_HARDEN_BRANCH_PREDICTOR */
230
231 #ifdef CONFIG_ARM64_SSBD
232 DEFINE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
233
234 void __init arm64_update_smccc_conduit(struct alt_instr *alt,
235 __le32 *origptr, __le32 *updptr,
236 int nr_inst)
237 {
238 u32 insn;
239
240 BUG_ON(nr_inst != 1);
241
242 switch (psci_ops.conduit) {
243 case PSCI_CONDUIT_HVC:
244 insn = aarch64_insn_get_hvc_value();
245 break;
246 case PSCI_CONDUIT_SMC:
247 insn = aarch64_insn_get_smc_value();
248 break;
249 default:
250 return;
251 }
252
253 *updptr = cpu_to_le32(insn);
254 }
255 #endif /* CONFIG_ARM64_SSBD */
256
257 #define MIDR_RANGE(model, min, max) \
258 .def_scope = SCOPE_LOCAL_CPU, \
259 .matches = is_affected_midr_range, \
260 .midr_model = model, \
261 .midr_range_min = min, \
262 .midr_range_max = max
263
264 #define MIDR_ALL_VERSIONS(model) \
265 .def_scope = SCOPE_LOCAL_CPU, \
266 .matches = is_affected_midr_range, \
267 .midr_model = model, \
268 .midr_range_min = 0, \
269 .midr_range_max = (MIDR_VARIANT_MASK | MIDR_REVISION_MASK)
270
271 const struct arm64_cpu_capabilities arm64_errata[] = {
272 #if defined(CONFIG_ARM64_ERRATUM_826319) || \
273 defined(CONFIG_ARM64_ERRATUM_827319) || \
274 defined(CONFIG_ARM64_ERRATUM_824069)
275 {
276 /* Cortex-A53 r0p[012] */
277 .desc = "ARM errata 826319, 827319, 824069",
278 .capability = ARM64_WORKAROUND_CLEAN_CACHE,
279 MIDR_RANGE(MIDR_CORTEX_A53, 0x00, 0x02),
280 .enable = cpu_enable_cache_maint_trap,
281 },
282 #endif
283 #ifdef CONFIG_ARM64_ERRATUM_819472
284 {
285 /* Cortex-A53 r0p[01] */
286 .desc = "ARM errata 819472",
287 .capability = ARM64_WORKAROUND_CLEAN_CACHE,
288 MIDR_RANGE(MIDR_CORTEX_A53, 0x00, 0x01),
289 .enable = cpu_enable_cache_maint_trap,
290 },
291 #endif
292 #ifdef CONFIG_ARM64_ERRATUM_832075
293 {
294 /* Cortex-A57 r0p0 - r1p2 */
295 .desc = "ARM erratum 832075",
296 .capability = ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE,
297 MIDR_RANGE(MIDR_CORTEX_A57,
298 MIDR_CPU_VAR_REV(0, 0),
299 MIDR_CPU_VAR_REV(1, 2)),
300 },
301 #endif
302 #ifdef CONFIG_ARM64_ERRATUM_834220
303 {
304 /* Cortex-A57 r0p0 - r1p2 */
305 .desc = "ARM erratum 834220",
306 .capability = ARM64_WORKAROUND_834220,
307 MIDR_RANGE(MIDR_CORTEX_A57,
308 MIDR_CPU_VAR_REV(0, 0),
309 MIDR_CPU_VAR_REV(1, 2)),
310 },
311 #endif
312 #ifdef CONFIG_ARM64_ERRATUM_845719
313 {
314 /* Cortex-A53 r0p[01234] */
315 .desc = "ARM erratum 845719",
316 .capability = ARM64_WORKAROUND_845719,
317 MIDR_RANGE(MIDR_CORTEX_A53, 0x00, 0x04),
318 },
319 #endif
320 #ifdef CONFIG_CAVIUM_ERRATUM_23154
321 {
322 /* Cavium ThunderX, pass 1.x */
323 .desc = "Cavium erratum 23154",
324 .capability = ARM64_WORKAROUND_CAVIUM_23154,
325 MIDR_RANGE(MIDR_THUNDERX, 0x00, 0x01),
326 },
327 #endif
328 #ifdef CONFIG_CAVIUM_ERRATUM_27456
329 {
330 /* Cavium ThunderX, T88 pass 1.x - 2.1 */
331 .desc = "Cavium erratum 27456",
332 .capability = ARM64_WORKAROUND_CAVIUM_27456,
333 MIDR_RANGE(MIDR_THUNDERX,
334 MIDR_CPU_VAR_REV(0, 0),
335 MIDR_CPU_VAR_REV(1, 1)),
336 },
337 {
338 /* Cavium ThunderX, T81 pass 1.0 */
339 .desc = "Cavium erratum 27456",
340 .capability = ARM64_WORKAROUND_CAVIUM_27456,
341 MIDR_RANGE(MIDR_THUNDERX_81XX, 0x00, 0x00),
342 },
343 #endif
344 #ifdef CONFIG_CAVIUM_ERRATUM_30115
345 {
346 /* Cavium ThunderX, T88 pass 1.x - 2.2 */
347 .desc = "Cavium erratum 30115",
348 .capability = ARM64_WORKAROUND_CAVIUM_30115,
349 MIDR_RANGE(MIDR_THUNDERX, 0x00,
350 (1 << MIDR_VARIANT_SHIFT) | 2),
351 },
352 {
353 /* Cavium ThunderX, T81 pass 1.0 - 1.2 */
354 .desc = "Cavium erratum 30115",
355 .capability = ARM64_WORKAROUND_CAVIUM_30115,
356 MIDR_RANGE(MIDR_THUNDERX_81XX, 0x00, 0x02),
357 },
358 {
359 /* Cavium ThunderX, T83 pass 1.0 */
360 .desc = "Cavium erratum 30115",
361 .capability = ARM64_WORKAROUND_CAVIUM_30115,
362 MIDR_RANGE(MIDR_THUNDERX_83XX, 0x00, 0x00),
363 },
364 #endif
365 {
366 .desc = "Mismatched cache line size",
367 .capability = ARM64_MISMATCHED_CACHE_LINE_SIZE,
368 .matches = has_mismatched_cache_line_size,
369 .def_scope = SCOPE_LOCAL_CPU,
370 .enable = cpu_enable_trap_ctr_access,
371 },
372 #ifdef CONFIG_QCOM_FALKOR_ERRATUM_1003
373 {
374 .desc = "Qualcomm Technologies Falkor erratum 1003",
375 .capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003,
376 MIDR_RANGE(MIDR_QCOM_FALKOR_V1,
377 MIDR_CPU_VAR_REV(0, 0),
378 MIDR_CPU_VAR_REV(0, 0)),
379 },
380 {
381 .desc = "Qualcomm Technologies Kryo erratum 1003",
382 .capability = ARM64_WORKAROUND_QCOM_FALKOR_E1003,
383 .def_scope = SCOPE_LOCAL_CPU,
384 .midr_model = MIDR_QCOM_KRYO,
385 .matches = is_kryo_midr,
386 },
387 #endif
388 #ifdef CONFIG_QCOM_FALKOR_ERRATUM_1009
389 {
390 .desc = "Qualcomm Technologies Falkor erratum 1009",
391 .capability = ARM64_WORKAROUND_REPEAT_TLBI,
392 MIDR_RANGE(MIDR_QCOM_FALKOR_V1,
393 MIDR_CPU_VAR_REV(0, 0),
394 MIDR_CPU_VAR_REV(0, 0)),
395 },
396 #endif
397 #ifdef CONFIG_ARM64_ERRATUM_858921
398 {
399 /* Cortex-A73 all versions */
400 .desc = "ARM erratum 858921",
401 .capability = ARM64_WORKAROUND_858921,
402 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
403 },
404 #endif
405 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
406 {
407 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
408 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
409 .enable = enable_smccc_arch_workaround_1,
410 },
411 {
412 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
413 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
414 .enable = enable_smccc_arch_workaround_1,
415 },
416 {
417 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
418 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
419 .enable = enable_smccc_arch_workaround_1,
420 },
421 {
422 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
423 MIDR_ALL_VERSIONS(MIDR_CORTEX_A75),
424 .enable = enable_smccc_arch_workaround_1,
425 },
426 {
427 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
428 MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR_V1),
429 .enable = qcom_enable_link_stack_sanitization,
430 },
431 {
432 .capability = ARM64_HARDEN_BP_POST_GUEST_EXIT,
433 MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR_V1),
434 },
435 {
436 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
437 MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR),
438 .enable = qcom_enable_link_stack_sanitization,
439 },
440 {
441 .capability = ARM64_HARDEN_BP_POST_GUEST_EXIT,
442 MIDR_ALL_VERSIONS(MIDR_QCOM_FALKOR),
443 },
444 {
445 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
446 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
447 .enable = enable_smccc_arch_workaround_1,
448 },
449 {
450 .capability = ARM64_HARDEN_BRANCH_PREDICTOR,
451 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
452 .enable = enable_smccc_arch_workaround_1,
453 },
454 #endif
455 {
456 }
457 };
458
459 /*
460 * The CPU Errata work arounds are detected and applied at boot time
461 * and the related information is freed soon after. If the new CPU requires
462 * an errata not detected at boot, fail this CPU.
463 */
464 void verify_local_cpu_errata_workarounds(void)
465 {
466 const struct arm64_cpu_capabilities *caps = arm64_errata;
467
468 for (; caps->matches; caps++) {
469 if (cpus_have_cap(caps->capability)) {
470 if (caps->enable)
471 caps->enable((void *)caps);
472 } else if (caps->matches(caps, SCOPE_LOCAL_CPU)) {
473 pr_crit("CPU%d: Requires work around for %s, not detected"
474 " at boot time\n",
475 smp_processor_id(),
476 caps->desc ? : "an erratum");
477 cpu_die_early();
478 }
479 }
480 }
481
482 void update_cpu_errata_workarounds(void)
483 {
484 update_cpu_capabilities(arm64_errata, "enabling workaround for");
485 }
486
487 void __init enable_errata_workarounds(void)
488 {
489 enable_cpu_capabilities(arm64_errata);
490 }