]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/cpufeature.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT \
35 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40 COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46
47 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
48 { \
49 .strict = STRICT, \
50 .type = TYPE, \
51 .shift = SHIFT, \
52 .width = WIDTH, \
53 .safe_val = SAFE_VAL, \
54 }
55
56 #define ARM64_FTR_END \
57 { \
58 .width = 0, \
59 }
60
61 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
62 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
63 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
64 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
65 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
66 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
67 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
68 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
69 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
70 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
71 ARM64_FTR_END,
72 };
73
74 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
75 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
76 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
77 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
78 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
79 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
80 /* Linux doesn't care about the EL3 */
81 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
82 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
83 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
85 ARM64_FTR_END,
86 };
87
88 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
89 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
90 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
91 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
92 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
93 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
94 /* Linux shouldn't care about secure memory */
95 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
96 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
97 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
98 /*
99 * Differing PARange is fine as long as all peripherals and memory are mapped
100 * within the minimum PARange of all CPUs
101 */
102 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
103 ARM64_FTR_END,
104 };
105
106 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
107 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
108 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
109 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
110 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
111 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
114 ARM64_FTR_END,
115 };
116
117 static struct arm64_ftr_bits ftr_ctr[] = {
118 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
119 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
120 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
121 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
122 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
123 /*
124 * Linux can handle differing I-cache policies. Userspace JITs will
125 * make use of *minLine
126 */
127 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
129 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
130 ARM64_FTR_END,
131 };
132
133 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
134 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0), /* InnerShr */
135 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
136 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
137 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
138 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
139 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
140 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
141 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
142 ARM64_FTR_END,
143 };
144
145 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
146 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
147 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
148 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
149 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
150 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
151 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
152 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
153 ARM64_FTR_END,
154 };
155
156 static struct arm64_ftr_bits ftr_mvfr2[] = {
157 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
158 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
159 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
160 ARM64_FTR_END,
161 };
162
163 static struct arm64_ftr_bits ftr_dczid[] = {
164 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
165 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
166 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
167 ARM64_FTR_END,
168 };
169
170
171 static struct arm64_ftr_bits ftr_id_isar5[] = {
172 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
173 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
174 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
175 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
176 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
177 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
178 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
179 ARM64_FTR_END,
180 };
181
182 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
183 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
184 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
185 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
186 ARM64_FTR_END,
187 };
188
189 static struct arm64_ftr_bits ftr_id_pfr0[] = {
190 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
191 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
192 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
193 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
194 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
195 ARM64_FTR_END,
196 };
197
198 /*
199 * Common ftr bits for a 32bit register with all hidden, strict
200 * attributes, with 4bit feature fields and a default safe value of
201 * 0. Covers the following 32bit registers:
202 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
203 */
204 static struct arm64_ftr_bits ftr_generic_32bits[] = {
205 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
206 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
207 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
208 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
209 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
210 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
211 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
212 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
213 ARM64_FTR_END,
214 };
215
216 static struct arm64_ftr_bits ftr_generic[] = {
217 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
218 ARM64_FTR_END,
219 };
220
221 static struct arm64_ftr_bits ftr_generic32[] = {
222 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
223 ARM64_FTR_END,
224 };
225
226 static struct arm64_ftr_bits ftr_aa64raz[] = {
227 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
228 ARM64_FTR_END,
229 };
230
231 #define ARM64_FTR_REG(id, table) \
232 { \
233 .sys_id = id, \
234 .name = #id, \
235 .ftr_bits = &((table)[0]), \
236 }
237
238 static struct arm64_ftr_reg arm64_ftr_regs[] = {
239
240 /* Op1 = 0, CRn = 0, CRm = 1 */
241 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
242 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
243 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
244 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
245 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
246 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
247 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
248
249 /* Op1 = 0, CRn = 0, CRm = 2 */
250 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
251 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
252 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
253 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
254 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
255 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
256 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
257
258 /* Op1 = 0, CRn = 0, CRm = 3 */
259 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
260 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
261 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
262
263 /* Op1 = 0, CRn = 0, CRm = 4 */
264 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
265 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
266
267 /* Op1 = 0, CRn = 0, CRm = 5 */
268 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
269 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
270
271 /* Op1 = 0, CRn = 0, CRm = 6 */
272 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
273 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
274
275 /* Op1 = 0, CRn = 0, CRm = 7 */
276 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
277 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
278
279 /* Op1 = 3, CRn = 0, CRm = 0 */
280 ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
281 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
282
283 /* Op1 = 3, CRn = 14, CRm = 0 */
284 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
285 };
286
287 static int search_cmp_ftr_reg(const void *id, const void *regp)
288 {
289 return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
290 }
291
292 /*
293 * get_arm64_ftr_reg - Lookup a feature register entry using its
294 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
295 * ascending order of sys_id , we use binary search to find a matching
296 * entry.
297 *
298 * returns - Upon success, matching ftr_reg entry for id.
299 * - NULL on failure. It is upto the caller to decide
300 * the impact of a failure.
301 */
302 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
303 {
304 return bsearch((const void *)(unsigned long)sys_id,
305 arm64_ftr_regs,
306 ARRAY_SIZE(arm64_ftr_regs),
307 sizeof(arm64_ftr_regs[0]),
308 search_cmp_ftr_reg);
309 }
310
311 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
312 {
313 u64 mask = arm64_ftr_mask(ftrp);
314
315 reg &= ~mask;
316 reg |= (ftr_val << ftrp->shift) & mask;
317 return reg;
318 }
319
320 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
321 {
322 s64 ret = 0;
323
324 switch (ftrp->type) {
325 case FTR_EXACT:
326 ret = ftrp->safe_val;
327 break;
328 case FTR_LOWER_SAFE:
329 ret = new < cur ? new : cur;
330 break;
331 case FTR_HIGHER_SAFE:
332 ret = new > cur ? new : cur;
333 break;
334 default:
335 BUG();
336 }
337
338 return ret;
339 }
340
341 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
342 {
343 return ((const struct arm64_ftr_reg *)a)->sys_id -
344 ((const struct arm64_ftr_reg *)b)->sys_id;
345 }
346
347 static void __init swap_ftr_regs(void *a, void *b, int size)
348 {
349 struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
350 *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
351 *(struct arm64_ftr_reg *)b = tmp;
352 }
353
354 static void __init sort_ftr_regs(void)
355 {
356 /* Keep the array sorted so that we can do the binary search */
357 sort(arm64_ftr_regs,
358 ARRAY_SIZE(arm64_ftr_regs),
359 sizeof(arm64_ftr_regs[0]),
360 sort_cmp_ftr_regs,
361 swap_ftr_regs);
362 }
363
364 /*
365 * Initialise the CPU feature register from Boot CPU values.
366 * Also initiliases the strict_mask for the register.
367 */
368 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
369 {
370 u64 val = 0;
371 u64 strict_mask = ~0x0ULL;
372 struct arm64_ftr_bits *ftrp;
373 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
374
375 BUG_ON(!reg);
376
377 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
378 s64 ftr_new = arm64_ftr_value(ftrp, new);
379
380 val = arm64_ftr_set_value(ftrp, val, ftr_new);
381 if (!ftrp->strict)
382 strict_mask &= ~arm64_ftr_mask(ftrp);
383 }
384 reg->sys_val = val;
385 reg->strict_mask = strict_mask;
386 }
387
388 void __init init_cpu_features(struct cpuinfo_arm64 *info)
389 {
390 /* Before we start using the tables, make sure it is sorted */
391 sort_ftr_regs();
392
393 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
394 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
395 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
396 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
397 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
398 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
399 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
400 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
401 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
402 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
403 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
404 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
405 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
406 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
407 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
408 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
409 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
410 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
411 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
412 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
413 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
414 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
415 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
416 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
417 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
418 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
419 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
420 }
421
422 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
423 {
424 struct arm64_ftr_bits *ftrp;
425
426 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
427 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
428 s64 ftr_new = arm64_ftr_value(ftrp, new);
429
430 if (ftr_cur == ftr_new)
431 continue;
432 /* Find a safe value */
433 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
434 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
435 }
436
437 }
438
439 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
440 {
441 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
442
443 BUG_ON(!regp);
444 update_cpu_ftr_reg(regp, val);
445 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
446 return 0;
447 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
448 regp->name, boot, cpu, val);
449 return 1;
450 }
451
452 /*
453 * Update system wide CPU feature registers with the values from a
454 * non-boot CPU. Also performs SANITY checks to make sure that there
455 * aren't any insane variations from that of the boot CPU.
456 */
457 void update_cpu_features(int cpu,
458 struct cpuinfo_arm64 *info,
459 struct cpuinfo_arm64 *boot)
460 {
461 int taint = 0;
462
463 /*
464 * The kernel can handle differing I-cache policies, but otherwise
465 * caches should look identical. Userspace JITs will make use of
466 * *minLine.
467 */
468 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
469 info->reg_ctr, boot->reg_ctr);
470
471 /*
472 * Userspace may perform DC ZVA instructions. Mismatched block sizes
473 * could result in too much or too little memory being zeroed if a
474 * process is preempted and migrated between CPUs.
475 */
476 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
477 info->reg_dczid, boot->reg_dczid);
478
479 /* If different, timekeeping will be broken (especially with KVM) */
480 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
481 info->reg_cntfrq, boot->reg_cntfrq);
482
483 /*
484 * The kernel uses self-hosted debug features and expects CPUs to
485 * support identical debug features. We presently need CTX_CMPs, WRPs,
486 * and BRPs to be identical.
487 * ID_AA64DFR1 is currently RES0.
488 */
489 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
490 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
491 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
492 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
493 /*
494 * Even in big.LITTLE, processors should be identical instruction-set
495 * wise.
496 */
497 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
498 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
499 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
500 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
501
502 /*
503 * Differing PARange support is fine as long as all peripherals and
504 * memory are mapped within the minimum PARange of all CPUs.
505 * Linux should not care about secure memory.
506 */
507 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
508 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
509 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
510 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
511
512 /*
513 * EL3 is not our concern.
514 * ID_AA64PFR1 is currently RES0.
515 */
516 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
517 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
518 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
519 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
520
521 /*
522 * If we have AArch32, we care about 32-bit features for compat. These
523 * registers should be RES0 otherwise.
524 */
525 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
526 info->reg_id_dfr0, boot->reg_id_dfr0);
527 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
528 info->reg_id_isar0, boot->reg_id_isar0);
529 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
530 info->reg_id_isar1, boot->reg_id_isar1);
531 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
532 info->reg_id_isar2, boot->reg_id_isar2);
533 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
534 info->reg_id_isar3, boot->reg_id_isar3);
535 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
536 info->reg_id_isar4, boot->reg_id_isar4);
537 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
538 info->reg_id_isar5, boot->reg_id_isar5);
539
540 /*
541 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
542 * ACTLR formats could differ across CPUs and therefore would have to
543 * be trapped for virtualization anyway.
544 */
545 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
546 info->reg_id_mmfr0, boot->reg_id_mmfr0);
547 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
548 info->reg_id_mmfr1, boot->reg_id_mmfr1);
549 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
550 info->reg_id_mmfr2, boot->reg_id_mmfr2);
551 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
552 info->reg_id_mmfr3, boot->reg_id_mmfr3);
553 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
554 info->reg_id_pfr0, boot->reg_id_pfr0);
555 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
556 info->reg_id_pfr1, boot->reg_id_pfr1);
557 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
558 info->reg_mvfr0, boot->reg_mvfr0);
559 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
560 info->reg_mvfr1, boot->reg_mvfr1);
561 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
562 info->reg_mvfr2, boot->reg_mvfr2);
563
564 /*
565 * Mismatched CPU features are a recipe for disaster. Don't even
566 * pretend to support them.
567 */
568 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
569 "Unsupported CPU feature variation.\n");
570 }
571
572 u64 read_system_reg(u32 id)
573 {
574 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
575
576 /* We shouldn't get a request for an unsupported register */
577 BUG_ON(!regp);
578 return regp->sys_val;
579 }
580
581 #include <linux/irqchip/arm-gic-v3.h>
582
583 static bool
584 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
585 {
586 int val = cpuid_feature_extract_field(reg, entry->field_pos);
587
588 return val >= entry->min_field_value;
589 }
590
591 static bool
592 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
593 {
594 u64 val;
595
596 val = read_system_reg(entry->sys_reg);
597 return feature_matches(val, entry);
598 }
599
600 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
601 {
602 bool has_sre;
603
604 if (!has_cpuid_feature(entry))
605 return false;
606
607 has_sre = gic_enable_sre();
608 if (!has_sre)
609 pr_warn_once("%s present but disabled by higher exception level\n",
610 entry->desc);
611
612 return has_sre;
613 }
614
615 static const struct arm64_cpu_capabilities arm64_features[] = {
616 {
617 .desc = "GIC system register CPU interface",
618 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
619 .matches = has_useable_gicv3_cpuif,
620 .sys_reg = SYS_ID_AA64PFR0_EL1,
621 .field_pos = ID_AA64PFR0_GIC_SHIFT,
622 .min_field_value = 1,
623 },
624 #ifdef CONFIG_ARM64_PAN
625 {
626 .desc = "Privileged Access Never",
627 .capability = ARM64_HAS_PAN,
628 .matches = has_cpuid_feature,
629 .sys_reg = SYS_ID_AA64MMFR1_EL1,
630 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
631 .min_field_value = 1,
632 .enable = cpu_enable_pan,
633 },
634 #endif /* CONFIG_ARM64_PAN */
635 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
636 {
637 .desc = "LSE atomic instructions",
638 .capability = ARM64_HAS_LSE_ATOMICS,
639 .matches = has_cpuid_feature,
640 .sys_reg = SYS_ID_AA64ISAR0_EL1,
641 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
642 .min_field_value = 2,
643 },
644 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
645 {},
646 };
647
648 #define HWCAP_CAP(reg, field, min_value, type, cap) \
649 { \
650 .desc = #cap, \
651 .matches = has_cpuid_feature, \
652 .sys_reg = reg, \
653 .field_pos = field, \
654 .min_field_value = min_value, \
655 .hwcap_type = type, \
656 .hwcap = cap, \
657 }
658
659 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
660 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
661 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
662 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
663 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
664 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
665 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
666 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
667 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
668 #ifdef CONFIG_COMPAT
669 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
670 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
671 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
672 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
673 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
674 #endif
675 {},
676 };
677
678 static void cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
679 {
680 switch (cap->hwcap_type) {
681 case CAP_HWCAP:
682 elf_hwcap |= cap->hwcap;
683 break;
684 #ifdef CONFIG_COMPAT
685 case CAP_COMPAT_HWCAP:
686 compat_elf_hwcap |= (u32)cap->hwcap;
687 break;
688 case CAP_COMPAT_HWCAP2:
689 compat_elf_hwcap2 |= (u32)cap->hwcap;
690 break;
691 #endif
692 default:
693 WARN_ON(1);
694 break;
695 }
696 }
697
698 /* Check if we have a particular HWCAP enabled */
699 static bool cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
700 {
701 bool rc;
702
703 switch (cap->hwcap_type) {
704 case CAP_HWCAP:
705 rc = (elf_hwcap & cap->hwcap) != 0;
706 break;
707 #ifdef CONFIG_COMPAT
708 case CAP_COMPAT_HWCAP:
709 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
710 break;
711 case CAP_COMPAT_HWCAP2:
712 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
713 break;
714 #endif
715 default:
716 WARN_ON(1);
717 rc = false;
718 }
719
720 return rc;
721 }
722
723 static void setup_cpu_hwcaps(void)
724 {
725 int i;
726 const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
727
728 for (i = 0; hwcaps[i].desc; i++)
729 if (hwcaps[i].matches(&hwcaps[i]))
730 cap_set_hwcap(&hwcaps[i]);
731 }
732
733 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
734 const char *info)
735 {
736 int i;
737
738 for (i = 0; caps[i].desc; i++) {
739 if (!caps[i].matches(&caps[i]))
740 continue;
741
742 if (!cpus_have_cap(caps[i].capability))
743 pr_info("%s %s\n", info, caps[i].desc);
744 cpus_set_cap(caps[i].capability);
745 }
746 }
747
748 /*
749 * Run through the enabled capabilities and enable() it on all active
750 * CPUs
751 */
752 static void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
753 {
754 int i;
755
756 for (i = 0; caps[i].desc; i++)
757 if (caps[i].enable && cpus_have_cap(caps[i].capability))
758 on_each_cpu(caps[i].enable, NULL, true);
759 }
760
761 #ifdef CONFIG_HOTPLUG_CPU
762
763 /*
764 * Flag to indicate if we have computed the system wide
765 * capabilities based on the boot time active CPUs. This
766 * will be used to determine if a new booting CPU should
767 * go through the verification process to make sure that it
768 * supports the system capabilities, without using a hotplug
769 * notifier.
770 */
771 static bool sys_caps_initialised;
772
773 static inline void set_sys_caps_initialised(void)
774 {
775 sys_caps_initialised = true;
776 }
777
778 /*
779 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
780 */
781 static u64 __raw_read_system_reg(u32 sys_id)
782 {
783 switch (sys_id) {
784 case SYS_ID_PFR0_EL1: return (u64)read_cpuid(ID_PFR0_EL1);
785 case SYS_ID_PFR1_EL1: return (u64)read_cpuid(ID_PFR1_EL1);
786 case SYS_ID_DFR0_EL1: return (u64)read_cpuid(ID_DFR0_EL1);
787 case SYS_ID_MMFR0_EL1: return (u64)read_cpuid(ID_MMFR0_EL1);
788 case SYS_ID_MMFR1_EL1: return (u64)read_cpuid(ID_MMFR1_EL1);
789 case SYS_ID_MMFR2_EL1: return (u64)read_cpuid(ID_MMFR2_EL1);
790 case SYS_ID_MMFR3_EL1: return (u64)read_cpuid(ID_MMFR3_EL1);
791 case SYS_ID_ISAR0_EL1: return (u64)read_cpuid(ID_ISAR0_EL1);
792 case SYS_ID_ISAR1_EL1: return (u64)read_cpuid(ID_ISAR1_EL1);
793 case SYS_ID_ISAR2_EL1: return (u64)read_cpuid(ID_ISAR2_EL1);
794 case SYS_ID_ISAR3_EL1: return (u64)read_cpuid(ID_ISAR3_EL1);
795 case SYS_ID_ISAR4_EL1: return (u64)read_cpuid(ID_ISAR4_EL1);
796 case SYS_ID_ISAR5_EL1: return (u64)read_cpuid(ID_ISAR4_EL1);
797 case SYS_MVFR0_EL1: return (u64)read_cpuid(MVFR0_EL1);
798 case SYS_MVFR1_EL1: return (u64)read_cpuid(MVFR1_EL1);
799 case SYS_MVFR2_EL1: return (u64)read_cpuid(MVFR2_EL1);
800
801 case SYS_ID_AA64PFR0_EL1: return (u64)read_cpuid(ID_AA64PFR0_EL1);
802 case SYS_ID_AA64PFR1_EL1: return (u64)read_cpuid(ID_AA64PFR0_EL1);
803 case SYS_ID_AA64DFR0_EL1: return (u64)read_cpuid(ID_AA64DFR0_EL1);
804 case SYS_ID_AA64DFR1_EL1: return (u64)read_cpuid(ID_AA64DFR0_EL1);
805 case SYS_ID_AA64MMFR0_EL1: return (u64)read_cpuid(ID_AA64MMFR0_EL1);
806 case SYS_ID_AA64MMFR1_EL1: return (u64)read_cpuid(ID_AA64MMFR1_EL1);
807 case SYS_ID_AA64ISAR0_EL1: return (u64)read_cpuid(ID_AA64ISAR0_EL1);
808 case SYS_ID_AA64ISAR1_EL1: return (u64)read_cpuid(ID_AA64ISAR1_EL1);
809
810 case SYS_CNTFRQ_EL0: return (u64)read_cpuid(CNTFRQ_EL0);
811 case SYS_CTR_EL0: return (u64)read_cpuid(CTR_EL0);
812 case SYS_DCZID_EL0: return (u64)read_cpuid(DCZID_EL0);
813 default:
814 BUG();
815 return 0;
816 }
817 }
818
819 /*
820 * Park the CPU which doesn't have the capability as advertised
821 * by the system.
822 */
823 static void fail_incapable_cpu(char *cap_type,
824 const struct arm64_cpu_capabilities *cap)
825 {
826 int cpu = smp_processor_id();
827
828 pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
829 /* Mark this CPU absent */
830 set_cpu_present(cpu, 0);
831
832 /* Check if we can park ourselves */
833 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
834 cpu_ops[cpu]->cpu_die(cpu);
835 asm(
836 "1: wfe\n"
837 " wfi\n"
838 " b 1b");
839 }
840
841 /*
842 * Run through the enabled system capabilities and enable() it on this CPU.
843 * The capabilities were decided based on the available CPUs at the boot time.
844 * Any new CPU should match the system wide status of the capability. If the
845 * new CPU doesn't have a capability which the system now has enabled, we
846 * cannot do anything to fix it up and could cause unexpected failures. So
847 * we park the CPU.
848 */
849 void verify_local_cpu_capabilities(void)
850 {
851 int i;
852 const struct arm64_cpu_capabilities *caps;
853
854 /*
855 * If we haven't computed the system capabilities, there is nothing
856 * to verify.
857 */
858 if (!sys_caps_initialised)
859 return;
860
861 caps = arm64_features;
862 for (i = 0; caps[i].desc; i++) {
863 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
864 continue;
865 /*
866 * If the new CPU misses an advertised feature, we cannot proceed
867 * further, park the cpu.
868 */
869 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
870 fail_incapable_cpu("arm64_features", &caps[i]);
871 if (caps[i].enable)
872 caps[i].enable(NULL);
873 }
874
875 for (i = 0, caps = arm64_hwcaps; caps[i].desc; i++) {
876 if (!cpus_have_hwcap(&caps[i]))
877 continue;
878 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
879 fail_incapable_cpu("arm64_hwcaps", &caps[i]);
880 }
881 }
882
883 #else /* !CONFIG_HOTPLUG_CPU */
884
885 static inline void set_sys_caps_initialised(void)
886 {
887 }
888
889 #endif /* CONFIG_HOTPLUG_CPU */
890
891 static void setup_feature_capabilities(void)
892 {
893 update_cpu_capabilities(arm64_features, "detected feature:");
894 enable_cpu_capabilities(arm64_features);
895 }
896
897 void __init setup_cpu_features(void)
898 {
899 u32 cwg;
900 int cls;
901
902 /* Set the CPU feature capabilies */
903 setup_feature_capabilities();
904 setup_cpu_hwcaps();
905
906 /* Advertise that we have computed the system capabilities */
907 set_sys_caps_initialised();
908
909 /*
910 * Check for sane CTR_EL0.CWG value.
911 */
912 cwg = cache_type_cwg();
913 cls = cache_line_size();
914 if (!cwg)
915 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
916 cls);
917 if (L1_CACHE_BYTES < cls)
918 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
919 L1_CACHE_BYTES, cls);
920 }