]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - arch/arm64/kernel/cpufeature.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[mirror_ubuntu-kernels.git] / arch / arm64 / kernel / cpufeature.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
4 *
5 * Copyright (C) 2015 ARM Ltd.
6 *
7 * A note for the weary kernel hacker: the code here is confusing and hard to
8 * follow! That's partly because it's solving a nasty problem, but also because
9 * there's a little bit of over-abstraction that tends to obscure what's going
10 * on behind a maze of helper functions and macros.
11 *
12 * The basic problem is that hardware folks have started gluing together CPUs
13 * with distinct architectural features; in some cases even creating SoCs where
14 * user-visible instructions are available only on a subset of the available
15 * cores. We try to address this by snapshotting the feature registers of the
16 * boot CPU and comparing these with the feature registers of each secondary
17 * CPU when bringing them up. If there is a mismatch, then we update the
18 * snapshot state to indicate the lowest-common denominator of the feature,
19 * known as the "safe" value. This snapshot state can be queried to view the
20 * "sanitised" value of a feature register.
21 *
22 * The sanitised register values are used to decide which capabilities we
23 * have in the system. These may be in the form of traditional "hwcaps"
24 * advertised to userspace or internal "cpucaps" which are used to configure
25 * things like alternative patching and static keys. While a feature mismatch
26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
27 * may prevent a CPU from being onlined at all.
28 *
29 * Some implementation details worth remembering:
30 *
31 * - Mismatched features are *always* sanitised to a "safe" value, which
32 * usually indicates that the feature is not supported.
33 *
34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
35 * warning when onlining an offending CPU and the kernel will be tainted
36 * with TAINT_CPU_OUT_OF_SPEC.
37 *
38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
39 * userspace. FTR_VISIBLE features in registers that are only visible
40 * to EL0 by trapping *must* have a corresponding HWCAP so that late
41 * onlining of CPUs cannot lead to features disappearing at runtime.
42 *
43 * - A "feature" is typically a 4-bit register field. A "capability" is the
44 * high-level description derived from the sanitised field value.
45 *
46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
47 * scheme for fields in ID registers") to understand when feature fields
48 * may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
49 *
50 * - KVM exposes its own view of the feature registers to guest operating
51 * systems regardless of FTR_VISIBLE. This is typically driven from the
52 * sanitised register values to allow virtual CPUs to be migrated between
53 * arbitrary physical CPUs, but some features not present on the host are
54 * also advertised and emulated. Look at sys_reg_descs[] for the gory
55 * details.
56 *
57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
58 * field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
59 * This is stronger than FTR_HIDDEN and can be used to hide features from
60 * KVM guests.
61 */
62
63 #define pr_fmt(fmt) "CPU features: " fmt
64
65 #include <linux/bsearch.h>
66 #include <linux/cpumask.h>
67 #include <linux/crash_dump.h>
68 #include <linux/kstrtox.h>
69 #include <linux/sort.h>
70 #include <linux/stop_machine.h>
71 #include <linux/sysfs.h>
72 #include <linux/types.h>
73 #include <linux/minmax.h>
74 #include <linux/mm.h>
75 #include <linux/cpu.h>
76 #include <linux/kasan.h>
77 #include <linux/percpu.h>
78
79 #include <asm/cpu.h>
80 #include <asm/cpufeature.h>
81 #include <asm/cpu_ops.h>
82 #include <asm/fpsimd.h>
83 #include <asm/hwcap.h>
84 #include <asm/insn.h>
85 #include <asm/kvm_host.h>
86 #include <asm/mmu_context.h>
87 #include <asm/mte.h>
88 #include <asm/processor.h>
89 #include <asm/smp.h>
90 #include <asm/sysreg.h>
91 #include <asm/traps.h>
92 #include <asm/vectors.h>
93 #include <asm/virt.h>
94
95 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
96 static DECLARE_BITMAP(elf_hwcap, MAX_CPU_FEATURES) __read_mostly;
97
98 #ifdef CONFIG_COMPAT
99 #define COMPAT_ELF_HWCAP_DEFAULT \
100 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
101 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
102 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
103 COMPAT_HWCAP_LPAE)
104 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
105 unsigned int compat_elf_hwcap2 __read_mostly;
106 #endif
107
108 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
109 EXPORT_SYMBOL(cpu_hwcaps);
110 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
111
112 DECLARE_BITMAP(boot_capabilities, ARM64_NCAPS);
113
114 bool arm64_use_ng_mappings = false;
115 EXPORT_SYMBOL(arm64_use_ng_mappings);
116
117 DEFINE_PER_CPU_READ_MOSTLY(const char *, this_cpu_vector) = vectors;
118
119 /*
120 * Permit PER_LINUX32 and execve() of 32-bit binaries even if not all CPUs
121 * support it?
122 */
123 static bool __read_mostly allow_mismatched_32bit_el0;
124
125 /*
126 * Static branch enabled only if allow_mismatched_32bit_el0 is set and we have
127 * seen at least one CPU capable of 32-bit EL0.
128 */
129 DEFINE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
130
131 /*
132 * Mask of CPUs supporting 32-bit EL0.
133 * Only valid if arm64_mismatched_32bit_el0 is enabled.
134 */
135 static cpumask_var_t cpu_32bit_el0_mask __cpumask_var_read_mostly;
136
137 void dump_cpu_features(void)
138 {
139 /* file-wide pr_fmt adds "CPU features: " prefix */
140 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
141 }
142
143 #define ARM64_CPUID_FIELDS(reg, field, min_value) \
144 .sys_reg = SYS_##reg, \
145 .field_pos = reg##_##field##_SHIFT, \
146 .field_width = reg##_##field##_WIDTH, \
147 .sign = reg##_##field##_SIGNED, \
148 .min_field_value = reg##_##field##_##min_value,
149
150 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
151 { \
152 .sign = SIGNED, \
153 .visible = VISIBLE, \
154 .strict = STRICT, \
155 .type = TYPE, \
156 .shift = SHIFT, \
157 .width = WIDTH, \
158 .safe_val = SAFE_VAL, \
159 }
160
161 /* Define a feature with unsigned values */
162 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
163 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
164
165 /* Define a feature with a signed value */
166 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
167 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
168
169 #define ARM64_FTR_END \
170 { \
171 .width = 0, \
172 }
173
174 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
175
176 static bool __system_matches_cap(unsigned int n);
177
178 /*
179 * NOTE: Any changes to the visibility of features should be kept in
180 * sync with the documentation of the CPU feature register ABI.
181 */
182 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
183 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RNDR_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TLB_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_TS_SHIFT, 4, 0),
186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_FHM_SHIFT, 4, 0),
187 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_DP_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM4_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SM3_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA3_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_RDM_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_ATOMIC_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_CRC32_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA2_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_SHA1_SHIFT, 4, 0),
196 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_EL1_AES_SHIFT, 4, 0),
197 ARM64_FTR_END,
198 };
199
200 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_I8MM_SHIFT, 4, 0),
202 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DGH_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_BF16_SHIFT, 4, 0),
204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SPECRES_SHIFT, 4, 0),
205 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_SB_SHIFT, 4, 0),
206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FRINTTS_SHIFT, 4, 0),
207 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
208 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPI_SHIFT, 4, 0),
209 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
210 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_GPA_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_LRCPC_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_FCMA_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_JSCVT_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
215 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_API_SHIFT, 4, 0),
216 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
217 FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_EL1_APA_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_EL1_DPB_SHIFT, 4, 0),
219 ARM64_FTR_END,
220 };
221
222 static const struct arm64_ftr_bits ftr_id_aa64isar2[] = {
223 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_CSSC_SHIFT, 4, 0),
224 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRFM_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64ISAR2_EL1_BC_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
227 FTR_STRICT, FTR_EXACT, ID_AA64ISAR2_EL1_APA3_SHIFT, 4, 0),
228 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
229 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_GPA3_SHIFT, 4, 0),
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_RPRES_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64ISAR2_EL1_WFxT_SHIFT, 4, 0),
232 ARM64_FTR_END,
233 };
234
235 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
236 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV3_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_CSV2_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_DIT_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AMU_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_MPAM_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SEL2_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
243 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SVE_SHIFT, 4, 0),
244 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_RAS_SHIFT, 4, 0),
245 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_GIC_SHIFT, 4, 0),
246 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_AdvSIMD_SHIFT, 4, ID_AA64PFR0_EL1_AdvSIMD_NI),
247 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_FP_SHIFT, 4, ID_AA64PFR0_EL1_FP_NI),
248 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL3_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL2_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL1_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_EL0_SHIFT, 4, ID_AA64PFR0_EL1_ELx_64BIT_ONLY),
252 ARM64_FTR_END,
253 };
254
255 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
256 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
257 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SME_SHIFT, 4, 0),
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MPAM_frac_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_RAS_frac_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
261 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_MTE_SHIFT, 4, ID_AA64PFR1_EL1_MTE_NI),
262 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_SSBS_SHIFT, 4, ID_AA64PFR1_EL1_SSBS_NI),
263 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
264 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_EL1_BT_SHIFT, 4, 0),
265 ARM64_FTR_END,
266 };
267
268 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
269 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
270 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F64MM_SHIFT, 4, 0),
271 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
272 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_F32MM_SHIFT, 4, 0),
273 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
274 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_I8MM_SHIFT, 4, 0),
275 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
276 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SM4_SHIFT, 4, 0),
277 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
278 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SHA3_SHIFT, 4, 0),
279 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
280 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BF16_SHIFT, 4, 0),
281 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
282 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_BitPerm_SHIFT, 4, 0),
283 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
284 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_AES_SHIFT, 4, 0),
285 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
286 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_EL1_SVEver_SHIFT, 4, 0),
287 ARM64_FTR_END,
288 };
289
290 static const struct arm64_ftr_bits ftr_id_aa64smfr0[] = {
291 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
292 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_FA64_SHIFT, 1, 0),
293 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
294 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_SMEver_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
296 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I64_SHIFT, 4, 0),
297 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
298 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F64F64_SHIFT, 1, 0),
299 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
300 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I16I32_SHIFT, 4, 0),
301 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
302 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16B16_SHIFT, 1, 0),
303 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
304 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F16_SHIFT, 1, 0),
305 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
306 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_I8I32_SHIFT, 4, 0),
307 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
308 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F16F32_SHIFT, 1, 0),
309 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
310 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_B16F32_SHIFT, 1, 0),
311 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
312 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_BI32I32_SHIFT, 1, 0),
313 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SME),
314 FTR_STRICT, FTR_EXACT, ID_AA64SMFR0_EL1_F32F32_SHIFT, 1, 0),
315 ARM64_FTR_END,
316 };
317
318 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
319 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ECV_SHIFT, 4, 0),
320 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_FGT_SHIFT, 4, 0),
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_EXS_SHIFT, 4, 0),
322 /*
323 * Page size not being supported at Stage-2 is not fatal. You
324 * just give up KVM if PAGE_SIZE isn't supported there. Go fix
325 * your favourite nesting hypervisor.
326 *
327 * There is a small corner case where the hypervisor explicitly
328 * advertises a given granule size at Stage-2 (value 2) on some
329 * vCPUs, and uses the fallback to Stage-1 (value 0) for other
330 * vCPUs. Although this is not forbidden by the architecture, it
331 * indicates that the hypervisor is being silly (or buggy).
332 *
333 * We make no effort to cope with this and pretend that if these
334 * fields are inconsistent across vCPUs, then it isn't worth
335 * trying to bring KVM up.
336 */
337 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN4_2_SHIFT, 4, 1),
338 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN64_2_SHIFT, 4, 1),
339 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_EL1_TGRAN16_2_SHIFT, 4, 1),
340 /*
341 * We already refuse to boot CPUs that don't support our configured
342 * page size, so we can only detect mismatches for a page size other
343 * than the one we're currently using. Unfortunately, SoCs like this
344 * exist in the wild so, even though we don't like it, we'll have to go
345 * along with it and treat them as non-strict.
346 */
347 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN4_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN4_NI),
348 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN64_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN64_NI),
349 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_TGRAN16_SHIFT, 4, ID_AA64MMFR0_EL1_TGRAN16_NI),
350
351 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGENDEL0_SHIFT, 4, 0),
352 /* Linux shouldn't care about secure memory */
353 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_SNSMEM_SHIFT, 4, 0),
354 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_BIGEND_SHIFT, 4, 0),
355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_ASIDBITS_SHIFT, 4, 0),
356 /*
357 * Differing PARange is fine as long as all peripherals and memory are mapped
358 * within the minimum PARange of all CPUs
359 */
360 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EL1_PARANGE_SHIFT, 4, 0),
361 ARM64_FTR_END,
362 };
363
364 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
365 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TIDCP1_SHIFT, 4, 0),
366 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_AFP_SHIFT, 4, 0),
367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_ETS_SHIFT, 4, 0),
368 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_TWED_SHIFT, 4, 0),
369 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_XNX_SHIFT, 4, 0),
370 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1_SpecSEI_SHIFT, 4, 0),
371 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_PAN_SHIFT, 4, 0),
372 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_LO_SHIFT, 4, 0),
373 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HPDS_SHIFT, 4, 0),
374 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VH_SHIFT, 4, 0),
375 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_VMIDBits_SHIFT, 4, 0),
376 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_EL1_HAFDBS_SHIFT, 4, 0),
377 ARM64_FTR_END,
378 };
379
380 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
381 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_E0PD_SHIFT, 4, 0),
382 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_EVT_SHIFT, 4, 0),
383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_BBM_SHIFT, 4, 0),
384 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_TTL_SHIFT, 4, 0),
385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_FWB_SHIFT, 4, 0),
386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IDS_SHIFT, 4, 0),
387 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_AT_SHIFT, 4, 0),
388 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_ST_SHIFT, 4, 0),
389 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_NV_SHIFT, 4, 0),
390 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CCIDX_SHIFT, 4, 0),
391 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_VARange_SHIFT, 4, 0),
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_IESB_SHIFT, 4, 0),
393 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_LSM_SHIFT, 4, 0),
394 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_UAO_SHIFT, 4, 0),
395 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EL1_CnP_SHIFT, 4, 0),
396 ARM64_FTR_END,
397 };
398
399 static const struct arm64_ftr_bits ftr_ctr[] = {
400 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
401 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DIC_SHIFT, 1, 1),
402 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IDC_SHIFT, 1, 1),
403 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_CWG_SHIFT, 4, 0),
404 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_EL0_ERG_SHIFT, 4, 0),
405 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_DminLine_SHIFT, 4, 1),
406 /*
407 * Linux can handle differing I-cache policies. Userspace JITs will
408 * make use of *minLine.
409 * If we have differing I-cache policies, report it as the weakest - VIPT.
410 */
411 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_EL0_L1Ip_SHIFT, 2, CTR_EL0_L1Ip_VIPT), /* L1Ip */
412 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_EL0_IminLine_SHIFT, 4, 0),
413 ARM64_FTR_END,
414 };
415
416 static struct arm64_ftr_override __ro_after_init no_override = { };
417
418 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
419 .name = "SYS_CTR_EL0",
420 .ftr_bits = ftr_ctr,
421 .override = &no_override,
422 };
423
424 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
425 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_InnerShr_SHIFT, 4, 0xf),
426 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_FCSE_SHIFT, 4, 0),
427 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_AuxReg_SHIFT, 4, 0),
428 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_TCM_SHIFT, 4, 0),
429 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_ShareLvl_SHIFT, 4, 0),
430 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_OuterShr_SHIFT, 4, 0xf),
431 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_PMSA_SHIFT, 4, 0),
432 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_EL1_VMSA_SHIFT, 4, 0),
433 ARM64_FTR_END,
434 };
435
436 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
437 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_DoubleLock_SHIFT, 4, 0),
438 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_PMSVer_SHIFT, 4, 0),
439 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_CTX_CMPs_SHIFT, 4, 0),
440 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_WRPs_SHIFT, 4, 0),
441 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_EL1_BRPs_SHIFT, 4, 0),
442 /*
443 * We can instantiate multiple PMU instances with different levels
444 * of support.
445 */
446 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_EL1_PMUVer_SHIFT, 4, 0),
447 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_EL1_DebugVer_SHIFT, 4, 0x6),
448 ARM64_FTR_END,
449 };
450
451 static const struct arm64_ftr_bits ftr_mvfr0[] = {
452 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPRound_SHIFT, 4, 0),
453 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPShVec_SHIFT, 4, 0),
454 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSqrt_SHIFT, 4, 0),
455 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDivide_SHIFT, 4, 0),
456 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPTrap_SHIFT, 4, 0),
457 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPDP_SHIFT, 4, 0),
458 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_FPSP_SHIFT, 4, 0),
459 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR0_EL1_SIMDReg_SHIFT, 4, 0),
460 ARM64_FTR_END,
461 };
462
463 static const struct arm64_ftr_bits ftr_mvfr1[] = {
464 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDFMAC_SHIFT, 4, 0),
465 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPHP_SHIFT, 4, 0),
466 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDHP_SHIFT, 4, 0),
467 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDSP_SHIFT, 4, 0),
468 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDInt_SHIFT, 4, 0),
469 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_SIMDLS_SHIFT, 4, 0),
470 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPDNaN_SHIFT, 4, 0),
471 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR1_EL1_FPFtZ_SHIFT, 4, 0),
472 ARM64_FTR_END,
473 };
474
475 static const struct arm64_ftr_bits ftr_mvfr2[] = {
476 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_FPMisc_SHIFT, 4, 0),
477 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_EL1_SIMDMisc_SHIFT, 4, 0),
478 ARM64_FTR_END,
479 };
480
481 static const struct arm64_ftr_bits ftr_dczid[] = {
482 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_EL0_DZP_SHIFT, 1, 1),
483 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_EL0_BS_SHIFT, 4, 0),
484 ARM64_FTR_END,
485 };
486
487 static const struct arm64_ftr_bits ftr_gmid[] = {
488 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, GMID_EL1_BS_SHIFT, 4, 0),
489 ARM64_FTR_END,
490 };
491
492 static const struct arm64_ftr_bits ftr_id_isar0[] = {
493 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Divide_SHIFT, 4, 0),
494 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Debug_SHIFT, 4, 0),
495 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Coproc_SHIFT, 4, 0),
496 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_CmpBranch_SHIFT, 4, 0),
497 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitField_SHIFT, 4, 0),
498 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_BitCount_SHIFT, 4, 0),
499 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_EL1_Swap_SHIFT, 4, 0),
500 ARM64_FTR_END,
501 };
502
503 static const struct arm64_ftr_bits ftr_id_isar5[] = {
504 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_RDM_SHIFT, 4, 0),
505 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_CRC32_SHIFT, 4, 0),
506 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA2_SHIFT, 4, 0),
507 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SHA1_SHIFT, 4, 0),
508 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_AES_SHIFT, 4, 0),
509 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_EL1_SEVL_SHIFT, 4, 0),
510 ARM64_FTR_END,
511 };
512
513 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
514 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_EVT_SHIFT, 4, 0),
515 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CCIDX_SHIFT, 4, 0),
516 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_LSM_SHIFT, 4, 0),
517 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_HPDS_SHIFT, 4, 0),
518 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_CnP_SHIFT, 4, 0),
519 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_XNX_SHIFT, 4, 0),
520 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EL1_AC2_SHIFT, 4, 0),
521
522 /*
523 * SpecSEI = 1 indicates that the PE might generate an SError on an
524 * external abort on speculative read. It is safe to assume that an
525 * SError might be generated than it will not be. Hence it has been
526 * classified as FTR_HIGHER_SAFE.
527 */
528 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_EL1_SpecSEI_SHIFT, 4, 0),
529 ARM64_FTR_END,
530 };
531
532 static const struct arm64_ftr_bits ftr_id_isar4[] = {
533 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SWP_frac_SHIFT, 4, 0),
534 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_PSR_M_SHIFT, 4, 0),
535 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SynchPrim_frac_SHIFT, 4, 0),
536 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Barrier_SHIFT, 4, 0),
537 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_SMC_SHIFT, 4, 0),
538 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Writeback_SHIFT, 4, 0),
539 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_WithShifts_SHIFT, 4, 0),
540 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_EL1_Unpriv_SHIFT, 4, 0),
541 ARM64_FTR_END,
542 };
543
544 static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
545 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_EL1_ETS_SHIFT, 4, 0),
546 ARM64_FTR_END,
547 };
548
549 static const struct arm64_ftr_bits ftr_id_isar6[] = {
550 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_I8MM_SHIFT, 4, 0),
551 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_BF16_SHIFT, 4, 0),
552 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SPECRES_SHIFT, 4, 0),
553 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_SB_SHIFT, 4, 0),
554 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_FHM_SHIFT, 4, 0),
555 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_DP_SHIFT, 4, 0),
556 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_EL1_JSCVT_SHIFT, 4, 0),
557 ARM64_FTR_END,
558 };
559
560 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
561 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_DIT_SHIFT, 4, 0),
562 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_CSV2_SHIFT, 4, 0),
563 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State3_SHIFT, 4, 0),
564 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State2_SHIFT, 4, 0),
565 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State1_SHIFT, 4, 0),
566 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_EL1_State0_SHIFT, 4, 0),
567 ARM64_FTR_END,
568 };
569
570 static const struct arm64_ftr_bits ftr_id_pfr1[] = {
571 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GIC_SHIFT, 4, 0),
572 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virt_frac_SHIFT, 4, 0),
573 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Sec_frac_SHIFT, 4, 0),
574 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_GenTimer_SHIFT, 4, 0),
575 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Virtualization_SHIFT, 4, 0),
576 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_MProgMod_SHIFT, 4, 0),
577 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_Security_SHIFT, 4, 0),
578 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_EL1_ProgMod_SHIFT, 4, 0),
579 ARM64_FTR_END,
580 };
581
582 static const struct arm64_ftr_bits ftr_id_pfr2[] = {
583 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_SSBS_SHIFT, 4, 0),
584 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_EL1_CSV3_SHIFT, 4, 0),
585 ARM64_FTR_END,
586 };
587
588 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
589 /* [31:28] TraceFilt */
590 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_DFR0_EL1_PerfMon_SHIFT, 4, 0),
591 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MProfDbg_SHIFT, 4, 0),
592 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapTrc_SHIFT, 4, 0),
593 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopTrc_SHIFT, 4, 0),
594 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_MMapDbg_SHIFT, 4, 0),
595 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopSDbg_SHIFT, 4, 0),
596 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_EL1_CopDbg_SHIFT, 4, 0),
597 ARM64_FTR_END,
598 };
599
600 static const struct arm64_ftr_bits ftr_id_dfr1[] = {
601 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_EL1_MTPMU_SHIFT, 4, 0),
602 ARM64_FTR_END,
603 };
604
605 static const struct arm64_ftr_bits ftr_zcr[] = {
606 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
607 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_WIDTH, 0), /* LEN */
608 ARM64_FTR_END,
609 };
610
611 static const struct arm64_ftr_bits ftr_smcr[] = {
612 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
613 SMCR_ELx_LEN_SHIFT, SMCR_ELx_LEN_WIDTH, 0), /* LEN */
614 ARM64_FTR_END,
615 };
616
617 /*
618 * Common ftr bits for a 32bit register with all hidden, strict
619 * attributes, with 4bit feature fields and a default safe value of
620 * 0. Covers the following 32bit registers:
621 * id_isar[1-3], id_mmfr[1-3]
622 */
623 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
624 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
625 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
626 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
627 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
628 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
629 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
630 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
631 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
632 ARM64_FTR_END,
633 };
634
635 /* Table for a single 32bit feature value */
636 static const struct arm64_ftr_bits ftr_single32[] = {
637 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
638 ARM64_FTR_END,
639 };
640
641 static const struct arm64_ftr_bits ftr_raz[] = {
642 ARM64_FTR_END,
643 };
644
645 #define __ARM64_FTR_REG_OVERRIDE(id_str, id, table, ovr) { \
646 .sys_id = id, \
647 .reg = &(struct arm64_ftr_reg){ \
648 .name = id_str, \
649 .override = (ovr), \
650 .ftr_bits = &((table)[0]), \
651 }}
652
653 #define ARM64_FTR_REG_OVERRIDE(id, table, ovr) \
654 __ARM64_FTR_REG_OVERRIDE(#id, id, table, ovr)
655
656 #define ARM64_FTR_REG(id, table) \
657 __ARM64_FTR_REG_OVERRIDE(#id, id, table, &no_override)
658
659 struct arm64_ftr_override __ro_after_init id_aa64mmfr1_override;
660 struct arm64_ftr_override __ro_after_init id_aa64pfr0_override;
661 struct arm64_ftr_override __ro_after_init id_aa64pfr1_override;
662 struct arm64_ftr_override __ro_after_init id_aa64zfr0_override;
663 struct arm64_ftr_override __ro_after_init id_aa64smfr0_override;
664 struct arm64_ftr_override __ro_after_init id_aa64isar1_override;
665 struct arm64_ftr_override __ro_after_init id_aa64isar2_override;
666
667 static const struct __ftr_reg_entry {
668 u32 sys_id;
669 struct arm64_ftr_reg *reg;
670 } arm64_ftr_regs[] = {
671
672 /* Op1 = 0, CRn = 0, CRm = 1 */
673 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
674 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
675 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
676 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
677 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
678 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
679 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
680
681 /* Op1 = 0, CRn = 0, CRm = 2 */
682 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
683 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
684 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
685 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
686 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
687 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
688 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
689 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
690
691 /* Op1 = 0, CRn = 0, CRm = 3 */
692 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_mvfr0),
693 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_mvfr1),
694 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
695 ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
696 ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
697 ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
698
699 /* Op1 = 0, CRn = 0, CRm = 4 */
700 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0,
701 &id_aa64pfr0_override),
702 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1,
703 &id_aa64pfr1_override),
704 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0,
705 &id_aa64zfr0_override),
706 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64SMFR0_EL1, ftr_id_aa64smfr0,
707 &id_aa64smfr0_override),
708
709 /* Op1 = 0, CRn = 0, CRm = 5 */
710 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
711 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
712
713 /* Op1 = 0, CRn = 0, CRm = 6 */
714 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
715 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1,
716 &id_aa64isar1_override),
717 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2,
718 &id_aa64isar2_override),
719
720 /* Op1 = 0, CRn = 0, CRm = 7 */
721 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
722 ARM64_FTR_REG_OVERRIDE(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1,
723 &id_aa64mmfr1_override),
724 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
725
726 /* Op1 = 0, CRn = 1, CRm = 2 */
727 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
728 ARM64_FTR_REG(SYS_SMCR_EL1, ftr_smcr),
729
730 /* Op1 = 1, CRn = 0, CRm = 0 */
731 ARM64_FTR_REG(SYS_GMID_EL1, ftr_gmid),
732
733 /* Op1 = 3, CRn = 0, CRm = 0 */
734 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
735 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
736
737 /* Op1 = 3, CRn = 14, CRm = 0 */
738 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
739 };
740
741 static int search_cmp_ftr_reg(const void *id, const void *regp)
742 {
743 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
744 }
745
746 /*
747 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
748 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
749 * ascending order of sys_id, we use binary search to find a matching
750 * entry.
751 *
752 * returns - Upon success, matching ftr_reg entry for id.
753 * - NULL on failure. It is upto the caller to decide
754 * the impact of a failure.
755 */
756 static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
757 {
758 const struct __ftr_reg_entry *ret;
759
760 ret = bsearch((const void *)(unsigned long)sys_id,
761 arm64_ftr_regs,
762 ARRAY_SIZE(arm64_ftr_regs),
763 sizeof(arm64_ftr_regs[0]),
764 search_cmp_ftr_reg);
765 if (ret)
766 return ret->reg;
767 return NULL;
768 }
769
770 /*
771 * get_arm64_ftr_reg - Looks up a feature register entry using
772 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
773 *
774 * returns - Upon success, matching ftr_reg entry for id.
775 * - NULL on failure but with an WARN_ON().
776 */
777 struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
778 {
779 struct arm64_ftr_reg *reg;
780
781 reg = get_arm64_ftr_reg_nowarn(sys_id);
782
783 /*
784 * Requesting a non-existent register search is an error. Warn
785 * and let the caller handle it.
786 */
787 WARN_ON(!reg);
788 return reg;
789 }
790
791 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
792 s64 ftr_val)
793 {
794 u64 mask = arm64_ftr_mask(ftrp);
795
796 reg &= ~mask;
797 reg |= (ftr_val << ftrp->shift) & mask;
798 return reg;
799 }
800
801 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
802 s64 cur)
803 {
804 s64 ret = 0;
805
806 switch (ftrp->type) {
807 case FTR_EXACT:
808 ret = ftrp->safe_val;
809 break;
810 case FTR_LOWER_SAFE:
811 ret = min(new, cur);
812 break;
813 case FTR_HIGHER_OR_ZERO_SAFE:
814 if (!cur || !new)
815 break;
816 fallthrough;
817 case FTR_HIGHER_SAFE:
818 ret = max(new, cur);
819 break;
820 default:
821 BUG();
822 }
823
824 return ret;
825 }
826
827 static void __init sort_ftr_regs(void)
828 {
829 unsigned int i;
830
831 for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
832 const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
833 const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
834 unsigned int j = 0;
835
836 /*
837 * Features here must be sorted in descending order with respect
838 * to their shift values and should not overlap with each other.
839 */
840 for (; ftr_bits->width != 0; ftr_bits++, j++) {
841 unsigned int width = ftr_reg->ftr_bits[j].width;
842 unsigned int shift = ftr_reg->ftr_bits[j].shift;
843 unsigned int prev_shift;
844
845 WARN((shift + width) > 64,
846 "%s has invalid feature at shift %d\n",
847 ftr_reg->name, shift);
848
849 /*
850 * Skip the first feature. There is nothing to
851 * compare against for now.
852 */
853 if (j == 0)
854 continue;
855
856 prev_shift = ftr_reg->ftr_bits[j - 1].shift;
857 WARN((shift + width) > prev_shift,
858 "%s has feature overlap at shift %d\n",
859 ftr_reg->name, shift);
860 }
861
862 /*
863 * Skip the first register. There is nothing to
864 * compare against for now.
865 */
866 if (i == 0)
867 continue;
868 /*
869 * Registers here must be sorted in ascending order with respect
870 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
871 * to work correctly.
872 */
873 BUG_ON(arm64_ftr_regs[i].sys_id <= arm64_ftr_regs[i - 1].sys_id);
874 }
875 }
876
877 /*
878 * Initialise the CPU feature register from Boot CPU values.
879 * Also initiliases the strict_mask for the register.
880 * Any bits that are not covered by an arm64_ftr_bits entry are considered
881 * RES0 for the system-wide value, and must strictly match.
882 */
883 static void init_cpu_ftr_reg(u32 sys_reg, u64 new)
884 {
885 u64 val = 0;
886 u64 strict_mask = ~0x0ULL;
887 u64 user_mask = 0;
888 u64 valid_mask = 0;
889
890 const struct arm64_ftr_bits *ftrp;
891 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
892
893 if (!reg)
894 return;
895
896 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
897 u64 ftr_mask = arm64_ftr_mask(ftrp);
898 s64 ftr_new = arm64_ftr_value(ftrp, new);
899 s64 ftr_ovr = arm64_ftr_value(ftrp, reg->override->val);
900
901 if ((ftr_mask & reg->override->mask) == ftr_mask) {
902 s64 tmp = arm64_ftr_safe_value(ftrp, ftr_ovr, ftr_new);
903 char *str = NULL;
904
905 if (ftr_ovr != tmp) {
906 /* Unsafe, remove the override */
907 reg->override->mask &= ~ftr_mask;
908 reg->override->val &= ~ftr_mask;
909 tmp = ftr_ovr;
910 str = "ignoring override";
911 } else if (ftr_new != tmp) {
912 /* Override was valid */
913 ftr_new = tmp;
914 str = "forced";
915 } else if (ftr_ovr == tmp) {
916 /* Override was the safe value */
917 str = "already set";
918 }
919
920 if (str)
921 pr_warn("%s[%d:%d]: %s to %llx\n",
922 reg->name,
923 ftrp->shift + ftrp->width - 1,
924 ftrp->shift, str, tmp);
925 } else if ((ftr_mask & reg->override->val) == ftr_mask) {
926 reg->override->val &= ~ftr_mask;
927 pr_warn("%s[%d:%d]: impossible override, ignored\n",
928 reg->name,
929 ftrp->shift + ftrp->width - 1,
930 ftrp->shift);
931 }
932
933 val = arm64_ftr_set_value(ftrp, val, ftr_new);
934
935 valid_mask |= ftr_mask;
936 if (!ftrp->strict)
937 strict_mask &= ~ftr_mask;
938 if (ftrp->visible)
939 user_mask |= ftr_mask;
940 else
941 reg->user_val = arm64_ftr_set_value(ftrp,
942 reg->user_val,
943 ftrp->safe_val);
944 }
945
946 val &= valid_mask;
947
948 reg->sys_val = val;
949 reg->strict_mask = strict_mask;
950 reg->user_mask = user_mask;
951 }
952
953 extern const struct arm64_cpu_capabilities arm64_errata[];
954 static const struct arm64_cpu_capabilities arm64_features[];
955
956 static void __init
957 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
958 {
959 for (; caps->matches; caps++) {
960 if (WARN(caps->capability >= ARM64_NCAPS,
961 "Invalid capability %d\n", caps->capability))
962 continue;
963 if (WARN(cpu_hwcaps_ptrs[caps->capability],
964 "Duplicate entry for capability %d\n",
965 caps->capability))
966 continue;
967 cpu_hwcaps_ptrs[caps->capability] = caps;
968 }
969 }
970
971 static void __init init_cpu_hwcaps_indirect_list(void)
972 {
973 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
974 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
975 }
976
977 static void __init setup_boot_cpu_capabilities(void);
978
979 static void init_32bit_cpu_features(struct cpuinfo_32bit *info)
980 {
981 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
982 init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
983 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
984 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
985 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
986 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
987 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
988 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
989 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
990 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
991 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
992 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
993 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
994 init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
995 init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
996 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
997 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
998 init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
999 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
1000 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
1001 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
1002 }
1003
1004 void __init init_cpu_features(struct cpuinfo_arm64 *info)
1005 {
1006 /* Before we start using the tables, make sure it is sorted */
1007 sort_ftr_regs();
1008
1009 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
1010 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
1011 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
1012 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
1013 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
1014 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
1015 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
1016 init_cpu_ftr_reg(SYS_ID_AA64ISAR2_EL1, info->reg_id_aa64isar2);
1017 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
1018 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
1019 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
1020 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
1021 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
1022 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
1023 init_cpu_ftr_reg(SYS_ID_AA64SMFR0_EL1, info->reg_id_aa64smfr0);
1024
1025 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0))
1026 init_32bit_cpu_features(&info->aarch32);
1027
1028 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1029 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1030 info->reg_zcr = read_zcr_features();
1031 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
1032 vec_init_vq_map(ARM64_VEC_SVE);
1033 }
1034
1035 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1036 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1037 info->reg_smcr = read_smcr_features();
1038 /*
1039 * We mask out SMPS since even if the hardware
1040 * supports priorities the kernel does not at present
1041 * and we block access to them.
1042 */
1043 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1044 init_cpu_ftr_reg(SYS_SMCR_EL1, info->reg_smcr);
1045 vec_init_vq_map(ARM64_VEC_SME);
1046 }
1047
1048 if (id_aa64pfr1_mte(info->reg_id_aa64pfr1))
1049 init_cpu_ftr_reg(SYS_GMID_EL1, info->reg_gmid);
1050
1051 /*
1052 * Initialize the indirect array of CPU hwcaps capabilities pointers
1053 * before we handle the boot CPU below.
1054 */
1055 init_cpu_hwcaps_indirect_list();
1056
1057 /*
1058 * Detect and enable early CPU capabilities based on the boot CPU,
1059 * after we have initialised the CPU feature infrastructure.
1060 */
1061 setup_boot_cpu_capabilities();
1062 }
1063
1064 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
1065 {
1066 const struct arm64_ftr_bits *ftrp;
1067
1068 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
1069 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
1070 s64 ftr_new = arm64_ftr_value(ftrp, new);
1071
1072 if (ftr_cur == ftr_new)
1073 continue;
1074 /* Find a safe value */
1075 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
1076 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
1077 }
1078
1079 }
1080
1081 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
1082 {
1083 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1084
1085 if (!regp)
1086 return 0;
1087
1088 update_cpu_ftr_reg(regp, val);
1089 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
1090 return 0;
1091 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
1092 regp->name, boot, cpu, val);
1093 return 1;
1094 }
1095
1096 static void relax_cpu_ftr_reg(u32 sys_id, int field)
1097 {
1098 const struct arm64_ftr_bits *ftrp;
1099 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
1100
1101 if (!regp)
1102 return;
1103
1104 for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
1105 if (ftrp->shift == field) {
1106 regp->strict_mask &= ~arm64_ftr_mask(ftrp);
1107 break;
1108 }
1109 }
1110
1111 /* Bogus field? */
1112 WARN_ON(!ftrp->width);
1113 }
1114
1115 static void lazy_init_32bit_cpu_features(struct cpuinfo_arm64 *info,
1116 struct cpuinfo_arm64 *boot)
1117 {
1118 static bool boot_cpu_32bit_regs_overridden = false;
1119
1120 if (!allow_mismatched_32bit_el0 || boot_cpu_32bit_regs_overridden)
1121 return;
1122
1123 if (id_aa64pfr0_32bit_el0(boot->reg_id_aa64pfr0))
1124 return;
1125
1126 boot->aarch32 = info->aarch32;
1127 init_32bit_cpu_features(&boot->aarch32);
1128 boot_cpu_32bit_regs_overridden = true;
1129 }
1130
1131 static int update_32bit_cpu_features(int cpu, struct cpuinfo_32bit *info,
1132 struct cpuinfo_32bit *boot)
1133 {
1134 int taint = 0;
1135 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1136
1137 /*
1138 * If we don't have AArch32 at EL1, then relax the strictness of
1139 * EL1-dependent register fields to avoid spurious sanity check fails.
1140 */
1141 if (!id_aa64pfr0_32bit_el1(pfr0)) {
1142 relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_EL1_SMC_SHIFT);
1143 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virt_frac_SHIFT);
1144 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Sec_frac_SHIFT);
1145 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Virtualization_SHIFT);
1146 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_Security_SHIFT);
1147 relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_EL1_ProgMod_SHIFT);
1148 }
1149
1150 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
1151 info->reg_id_dfr0, boot->reg_id_dfr0);
1152 taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
1153 info->reg_id_dfr1, boot->reg_id_dfr1);
1154 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
1155 info->reg_id_isar0, boot->reg_id_isar0);
1156 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
1157 info->reg_id_isar1, boot->reg_id_isar1);
1158 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
1159 info->reg_id_isar2, boot->reg_id_isar2);
1160 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
1161 info->reg_id_isar3, boot->reg_id_isar3);
1162 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
1163 info->reg_id_isar4, boot->reg_id_isar4);
1164 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
1165 info->reg_id_isar5, boot->reg_id_isar5);
1166 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
1167 info->reg_id_isar6, boot->reg_id_isar6);
1168
1169 /*
1170 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
1171 * ACTLR formats could differ across CPUs and therefore would have to
1172 * be trapped for virtualization anyway.
1173 */
1174 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
1175 info->reg_id_mmfr0, boot->reg_id_mmfr0);
1176 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
1177 info->reg_id_mmfr1, boot->reg_id_mmfr1);
1178 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
1179 info->reg_id_mmfr2, boot->reg_id_mmfr2);
1180 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
1181 info->reg_id_mmfr3, boot->reg_id_mmfr3);
1182 taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
1183 info->reg_id_mmfr4, boot->reg_id_mmfr4);
1184 taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
1185 info->reg_id_mmfr5, boot->reg_id_mmfr5);
1186 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
1187 info->reg_id_pfr0, boot->reg_id_pfr0);
1188 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
1189 info->reg_id_pfr1, boot->reg_id_pfr1);
1190 taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1191 info->reg_id_pfr2, boot->reg_id_pfr2);
1192 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1193 info->reg_mvfr0, boot->reg_mvfr0);
1194 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1195 info->reg_mvfr1, boot->reg_mvfr1);
1196 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1197 info->reg_mvfr2, boot->reg_mvfr2);
1198
1199 return taint;
1200 }
1201
1202 /*
1203 * Update system wide CPU feature registers with the values from a
1204 * non-boot CPU. Also performs SANITY checks to make sure that there
1205 * aren't any insane variations from that of the boot CPU.
1206 */
1207 void update_cpu_features(int cpu,
1208 struct cpuinfo_arm64 *info,
1209 struct cpuinfo_arm64 *boot)
1210 {
1211 int taint = 0;
1212
1213 /*
1214 * The kernel can handle differing I-cache policies, but otherwise
1215 * caches should look identical. Userspace JITs will make use of
1216 * *minLine.
1217 */
1218 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1219 info->reg_ctr, boot->reg_ctr);
1220
1221 /*
1222 * Userspace may perform DC ZVA instructions. Mismatched block sizes
1223 * could result in too much or too little memory being zeroed if a
1224 * process is preempted and migrated between CPUs.
1225 */
1226 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1227 info->reg_dczid, boot->reg_dczid);
1228
1229 /* If different, timekeeping will be broken (especially with KVM) */
1230 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1231 info->reg_cntfrq, boot->reg_cntfrq);
1232
1233 /*
1234 * The kernel uses self-hosted debug features and expects CPUs to
1235 * support identical debug features. We presently need CTX_CMPs, WRPs,
1236 * and BRPs to be identical.
1237 * ID_AA64DFR1 is currently RES0.
1238 */
1239 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1240 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1241 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1242 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1243 /*
1244 * Even in big.LITTLE, processors should be identical instruction-set
1245 * wise.
1246 */
1247 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1248 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1249 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1250 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1251 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR2_EL1, cpu,
1252 info->reg_id_aa64isar2, boot->reg_id_aa64isar2);
1253
1254 /*
1255 * Differing PARange support is fine as long as all peripherals and
1256 * memory are mapped within the minimum PARange of all CPUs.
1257 * Linux should not care about secure memory.
1258 */
1259 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1260 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1261 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1262 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1263 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1264 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1265
1266 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1267 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1268 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1269 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1270
1271 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1272 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1273
1274 taint |= check_update_ftr_reg(SYS_ID_AA64SMFR0_EL1, cpu,
1275 info->reg_id_aa64smfr0, boot->reg_id_aa64smfr0);
1276
1277 if (IS_ENABLED(CONFIG_ARM64_SVE) &&
1278 id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1))) {
1279 info->reg_zcr = read_zcr_features();
1280 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1281 info->reg_zcr, boot->reg_zcr);
1282
1283 /* Probe vector lengths */
1284 if (!system_capabilities_finalized())
1285 vec_update_vq_map(ARM64_VEC_SVE);
1286 }
1287
1288 if (IS_ENABLED(CONFIG_ARM64_SME) &&
1289 id_aa64pfr1_sme(read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1))) {
1290 info->reg_smcr = read_smcr_features();
1291 /*
1292 * We mask out SMPS since even if the hardware
1293 * supports priorities the kernel does not at present
1294 * and we block access to them.
1295 */
1296 info->reg_smidr = read_cpuid(SMIDR_EL1) & ~SMIDR_EL1_SMPS;
1297 taint |= check_update_ftr_reg(SYS_SMCR_EL1, cpu,
1298 info->reg_smcr, boot->reg_smcr);
1299
1300 /* Probe vector lengths */
1301 if (!system_capabilities_finalized())
1302 vec_update_vq_map(ARM64_VEC_SME);
1303 }
1304
1305 /*
1306 * The kernel uses the LDGM/STGM instructions and the number of tags
1307 * they read/write depends on the GMID_EL1.BS field. Check that the
1308 * value is the same on all CPUs.
1309 */
1310 if (IS_ENABLED(CONFIG_ARM64_MTE) &&
1311 id_aa64pfr1_mte(info->reg_id_aa64pfr1)) {
1312 taint |= check_update_ftr_reg(SYS_GMID_EL1, cpu,
1313 info->reg_gmid, boot->reg_gmid);
1314 }
1315
1316 /*
1317 * If we don't have AArch32 at all then skip the checks entirely
1318 * as the register values may be UNKNOWN and we're not going to be
1319 * using them for anything.
1320 *
1321 * This relies on a sanitised view of the AArch64 ID registers
1322 * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1323 */
1324 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
1325 lazy_init_32bit_cpu_features(info, boot);
1326 taint |= update_32bit_cpu_features(cpu, &info->aarch32,
1327 &boot->aarch32);
1328 }
1329
1330 /*
1331 * Mismatched CPU features are a recipe for disaster. Don't even
1332 * pretend to support them.
1333 */
1334 if (taint) {
1335 pr_warn_once("Unsupported CPU feature variation detected.\n");
1336 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1337 }
1338 }
1339
1340 u64 read_sanitised_ftr_reg(u32 id)
1341 {
1342 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1343
1344 if (!regp)
1345 return 0;
1346 return regp->sys_val;
1347 }
1348 EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1349
1350 #define read_sysreg_case(r) \
1351 case r: val = read_sysreg_s(r); break;
1352
1353 /*
1354 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1355 * Read the system register on the current CPU
1356 */
1357 u64 __read_sysreg_by_encoding(u32 sys_id)
1358 {
1359 struct arm64_ftr_reg *regp;
1360 u64 val;
1361
1362 switch (sys_id) {
1363 read_sysreg_case(SYS_ID_PFR0_EL1);
1364 read_sysreg_case(SYS_ID_PFR1_EL1);
1365 read_sysreg_case(SYS_ID_PFR2_EL1);
1366 read_sysreg_case(SYS_ID_DFR0_EL1);
1367 read_sysreg_case(SYS_ID_DFR1_EL1);
1368 read_sysreg_case(SYS_ID_MMFR0_EL1);
1369 read_sysreg_case(SYS_ID_MMFR1_EL1);
1370 read_sysreg_case(SYS_ID_MMFR2_EL1);
1371 read_sysreg_case(SYS_ID_MMFR3_EL1);
1372 read_sysreg_case(SYS_ID_MMFR4_EL1);
1373 read_sysreg_case(SYS_ID_MMFR5_EL1);
1374 read_sysreg_case(SYS_ID_ISAR0_EL1);
1375 read_sysreg_case(SYS_ID_ISAR1_EL1);
1376 read_sysreg_case(SYS_ID_ISAR2_EL1);
1377 read_sysreg_case(SYS_ID_ISAR3_EL1);
1378 read_sysreg_case(SYS_ID_ISAR4_EL1);
1379 read_sysreg_case(SYS_ID_ISAR5_EL1);
1380 read_sysreg_case(SYS_ID_ISAR6_EL1);
1381 read_sysreg_case(SYS_MVFR0_EL1);
1382 read_sysreg_case(SYS_MVFR1_EL1);
1383 read_sysreg_case(SYS_MVFR2_EL1);
1384
1385 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1386 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1387 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1388 read_sysreg_case(SYS_ID_AA64SMFR0_EL1);
1389 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1390 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1391 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1392 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1393 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1394 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1395 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1396 read_sysreg_case(SYS_ID_AA64ISAR2_EL1);
1397
1398 read_sysreg_case(SYS_CNTFRQ_EL0);
1399 read_sysreg_case(SYS_CTR_EL0);
1400 read_sysreg_case(SYS_DCZID_EL0);
1401
1402 default:
1403 BUG();
1404 return 0;
1405 }
1406
1407 regp = get_arm64_ftr_reg(sys_id);
1408 if (regp) {
1409 val &= ~regp->override->mask;
1410 val |= (regp->override->val & regp->override->mask);
1411 }
1412
1413 return val;
1414 }
1415
1416 #include <linux/irqchip/arm-gic-v3.h>
1417
1418 static bool
1419 has_always(const struct arm64_cpu_capabilities *entry, int scope)
1420 {
1421 return true;
1422 }
1423
1424 static bool
1425 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1426 {
1427 int val = cpuid_feature_extract_field_width(reg, entry->field_pos,
1428 entry->field_width,
1429 entry->sign);
1430
1431 return val >= entry->min_field_value;
1432 }
1433
1434 static u64
1435 read_scoped_sysreg(const struct arm64_cpu_capabilities *entry, int scope)
1436 {
1437 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1438 if (scope == SCOPE_SYSTEM)
1439 return read_sanitised_ftr_reg(entry->sys_reg);
1440 else
1441 return __read_sysreg_by_encoding(entry->sys_reg);
1442 }
1443
1444 static bool
1445 has_user_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1446 {
1447 int mask;
1448 struct arm64_ftr_reg *regp;
1449 u64 val = read_scoped_sysreg(entry, scope);
1450
1451 regp = get_arm64_ftr_reg(entry->sys_reg);
1452 if (!regp)
1453 return false;
1454
1455 mask = cpuid_feature_extract_unsigned_field_width(regp->user_mask,
1456 entry->field_pos,
1457 entry->field_width);
1458 if (!mask)
1459 return false;
1460
1461 return feature_matches(val, entry);
1462 }
1463
1464 static bool
1465 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1466 {
1467 u64 val = read_scoped_sysreg(entry, scope);
1468 return feature_matches(val, entry);
1469 }
1470
1471 const struct cpumask *system_32bit_el0_cpumask(void)
1472 {
1473 if (!system_supports_32bit_el0())
1474 return cpu_none_mask;
1475
1476 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
1477 return cpu_32bit_el0_mask;
1478
1479 return cpu_possible_mask;
1480 }
1481
1482 static int __init parse_32bit_el0_param(char *str)
1483 {
1484 allow_mismatched_32bit_el0 = true;
1485 return 0;
1486 }
1487 early_param("allow_mismatched_32bit_el0", parse_32bit_el0_param);
1488
1489 static ssize_t aarch32_el0_show(struct device *dev,
1490 struct device_attribute *attr, char *buf)
1491 {
1492 const struct cpumask *mask = system_32bit_el0_cpumask();
1493
1494 return sysfs_emit(buf, "%*pbl\n", cpumask_pr_args(mask));
1495 }
1496 static const DEVICE_ATTR_RO(aarch32_el0);
1497
1498 static int __init aarch32_el0_sysfs_init(void)
1499 {
1500 struct device *dev_root;
1501 int ret = 0;
1502
1503 if (!allow_mismatched_32bit_el0)
1504 return 0;
1505
1506 dev_root = bus_get_dev_root(&cpu_subsys);
1507 if (dev_root) {
1508 ret = device_create_file(dev_root, &dev_attr_aarch32_el0);
1509 put_device(dev_root);
1510 }
1511 return ret;
1512 }
1513 device_initcall(aarch32_el0_sysfs_init);
1514
1515 static bool has_32bit_el0(const struct arm64_cpu_capabilities *entry, int scope)
1516 {
1517 if (!has_cpuid_feature(entry, scope))
1518 return allow_mismatched_32bit_el0;
1519
1520 if (scope == SCOPE_SYSTEM)
1521 pr_info("detected: 32-bit EL0 Support\n");
1522
1523 return true;
1524 }
1525
1526 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1527 {
1528 bool has_sre;
1529
1530 if (!has_cpuid_feature(entry, scope))
1531 return false;
1532
1533 has_sre = gic_enable_sre();
1534 if (!has_sre)
1535 pr_warn_once("%s present but disabled by higher exception level\n",
1536 entry->desc);
1537
1538 return has_sre;
1539 }
1540
1541 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1542 {
1543 u32 midr = read_cpuid_id();
1544
1545 /* Cavium ThunderX pass 1.x and 2.x */
1546 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1547 MIDR_CPU_VAR_REV(0, 0),
1548 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1549 }
1550
1551 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1552 {
1553 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1554
1555 return cpuid_feature_extract_signed_field(pfr0,
1556 ID_AA64PFR0_EL1_FP_SHIFT) < 0;
1557 }
1558
1559 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1560 int scope)
1561 {
1562 u64 ctr;
1563
1564 if (scope == SCOPE_SYSTEM)
1565 ctr = arm64_ftr_reg_ctrel0.sys_val;
1566 else
1567 ctr = read_cpuid_effective_cachetype();
1568
1569 return ctr & BIT(CTR_EL0_IDC_SHIFT);
1570 }
1571
1572 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1573 {
1574 /*
1575 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1576 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1577 * to the CTR_EL0 on this CPU and emulate it with the real/safe
1578 * value.
1579 */
1580 if (!(read_cpuid_cachetype() & BIT(CTR_EL0_IDC_SHIFT)))
1581 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1582 }
1583
1584 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1585 int scope)
1586 {
1587 u64 ctr;
1588
1589 if (scope == SCOPE_SYSTEM)
1590 ctr = arm64_ftr_reg_ctrel0.sys_val;
1591 else
1592 ctr = read_cpuid_cachetype();
1593
1594 return ctr & BIT(CTR_EL0_DIC_SHIFT);
1595 }
1596
1597 static bool __maybe_unused
1598 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1599 {
1600 /*
1601 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1602 * may share TLB entries with a CPU stuck in the crashed
1603 * kernel.
1604 */
1605 if (is_kdump_kernel())
1606 return false;
1607
1608 if (cpus_have_const_cap(ARM64_WORKAROUND_NVIDIA_CARMEL_CNP))
1609 return false;
1610
1611 return has_cpuid_feature(entry, scope);
1612 }
1613
1614 /*
1615 * This check is triggered during the early boot before the cpufeature
1616 * is initialised. Checking the status on the local CPU allows the boot
1617 * CPU to detect the need for non-global mappings and thus avoiding a
1618 * pagetable re-write after all the CPUs are booted. This check will be
1619 * anyway run on individual CPUs, allowing us to get the consistent
1620 * state once the SMP CPUs are up and thus make the switch to non-global
1621 * mappings if required.
1622 */
1623 bool kaslr_requires_kpti(void)
1624 {
1625 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1626 return false;
1627
1628 /*
1629 * E0PD does a similar job to KPTI so can be used instead
1630 * where available.
1631 */
1632 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1633 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1634 if (cpuid_feature_extract_unsigned_field(mmfr2,
1635 ID_AA64MMFR2_EL1_E0PD_SHIFT))
1636 return false;
1637 }
1638
1639 /*
1640 * Systems affected by Cavium erratum 24756 are incompatible
1641 * with KPTI.
1642 */
1643 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1644 extern const struct midr_range cavium_erratum_27456_cpus[];
1645
1646 if (is_midr_in_range_list(read_cpuid_id(),
1647 cavium_erratum_27456_cpus))
1648 return false;
1649 }
1650
1651 return kaslr_enabled();
1652 }
1653
1654 static bool __meltdown_safe = true;
1655 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1656
1657 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1658 int scope)
1659 {
1660 /* List of CPUs that are not vulnerable and don't need KPTI */
1661 static const struct midr_range kpti_safe_list[] = {
1662 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1663 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1664 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1665 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1666 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1667 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1668 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1669 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1670 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1671 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1672 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1673 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1674 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1675 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1676 MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1677 { /* sentinel */ }
1678 };
1679 char const *str = "kpti command line option";
1680 bool meltdown_safe;
1681
1682 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1683
1684 /* Defer to CPU feature registers */
1685 if (has_cpuid_feature(entry, scope))
1686 meltdown_safe = true;
1687
1688 if (!meltdown_safe)
1689 __meltdown_safe = false;
1690
1691 /*
1692 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1693 * ThunderX leads to apparent I-cache corruption of kernel text, which
1694 * ends as well as you might imagine. Don't even try. We cannot rely
1695 * on the cpus_have_*cap() helpers here to detect the CPU erratum
1696 * because cpucap detection order may change. However, since we know
1697 * affected CPUs are always in a homogeneous configuration, it is
1698 * safe to rely on this_cpu_has_cap() here.
1699 */
1700 if (this_cpu_has_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1701 str = "ARM64_WORKAROUND_CAVIUM_27456";
1702 __kpti_forced = -1;
1703 }
1704
1705 /* Useful for KASLR robustness */
1706 if (kaslr_requires_kpti()) {
1707 if (!__kpti_forced) {
1708 str = "KASLR";
1709 __kpti_forced = 1;
1710 }
1711 }
1712
1713 if (cpu_mitigations_off() && !__kpti_forced) {
1714 str = "mitigations=off";
1715 __kpti_forced = -1;
1716 }
1717
1718 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1719 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1720 return false;
1721 }
1722
1723 /* Forced? */
1724 if (__kpti_forced) {
1725 pr_info_once("kernel page table isolation forced %s by %s\n",
1726 __kpti_forced > 0 ? "ON" : "OFF", str);
1727 return __kpti_forced > 0;
1728 }
1729
1730 return !meltdown_safe;
1731 }
1732
1733 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1734 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1735
1736 extern
1737 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
1738 phys_addr_t size, pgprot_t prot,
1739 phys_addr_t (*pgtable_alloc)(int), int flags);
1740
1741 static phys_addr_t kpti_ng_temp_alloc;
1742
1743 static phys_addr_t kpti_ng_pgd_alloc(int shift)
1744 {
1745 kpti_ng_temp_alloc -= PAGE_SIZE;
1746 return kpti_ng_temp_alloc;
1747 }
1748
1749 static void
1750 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1751 {
1752 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1753 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1754 kpti_remap_fn *remap_fn;
1755
1756 int cpu = smp_processor_id();
1757 int levels = CONFIG_PGTABLE_LEVELS;
1758 int order = order_base_2(levels);
1759 u64 kpti_ng_temp_pgd_pa = 0;
1760 pgd_t *kpti_ng_temp_pgd;
1761 u64 alloc = 0;
1762
1763 if (__this_cpu_read(this_cpu_vector) == vectors) {
1764 const char *v = arm64_get_bp_hardening_vector(EL1_VECTOR_KPTI);
1765
1766 __this_cpu_write(this_cpu_vector, v);
1767 }
1768
1769 /*
1770 * We don't need to rewrite the page-tables if either we've done
1771 * it already or we have KASLR enabled and therefore have not
1772 * created any global mappings at all.
1773 */
1774 if (arm64_use_ng_mappings)
1775 return;
1776
1777 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1778
1779 if (!cpu) {
1780 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1781 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1782 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1783
1784 //
1785 // Create a minimal page table hierarchy that permits us to map
1786 // the swapper page tables temporarily as we traverse them.
1787 //
1788 // The physical pages are laid out as follows:
1789 //
1790 // +--------+-/-------+-/------ +-\\--------+
1791 // : PTE[] : | PMD[] : | PUD[] : || PGD[] :
1792 // +--------+-\-------+-\------ +-//--------+
1793 // ^
1794 // The first page is mapped into this hierarchy at a PMD_SHIFT
1795 // aligned virtual address, so that we can manipulate the PTE
1796 // level entries while the mapping is active. The first entry
1797 // covers the PTE[] page itself, the remaining entries are free
1798 // to be used as a ad-hoc fixmap.
1799 //
1800 create_kpti_ng_temp_pgd(kpti_ng_temp_pgd, __pa(alloc),
1801 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1802 kpti_ng_pgd_alloc, 0);
1803 }
1804
1805 cpu_install_idmap();
1806 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1807 cpu_uninstall_idmap();
1808
1809 if (!cpu) {
1810 free_pages(alloc, order);
1811 arm64_use_ng_mappings = true;
1812 }
1813 }
1814 #else
1815 static void
1816 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1817 {
1818 }
1819 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1820
1821 static int __init parse_kpti(char *str)
1822 {
1823 bool enabled;
1824 int ret = kstrtobool(str, &enabled);
1825
1826 if (ret)
1827 return ret;
1828
1829 __kpti_forced = enabled ? 1 : -1;
1830 return 0;
1831 }
1832 early_param("kpti", parse_kpti);
1833
1834 #ifdef CONFIG_ARM64_HW_AFDBM
1835 static inline void __cpu_enable_hw_dbm(void)
1836 {
1837 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1838
1839 write_sysreg(tcr, tcr_el1);
1840 isb();
1841 local_flush_tlb_all();
1842 }
1843
1844 static bool cpu_has_broken_dbm(void)
1845 {
1846 /* List of CPUs which have broken DBM support. */
1847 static const struct midr_range cpus[] = {
1848 #ifdef CONFIG_ARM64_ERRATUM_1024718
1849 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1850 /* Kryo4xx Silver (rdpe => r1p0) */
1851 MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1852 #endif
1853 #ifdef CONFIG_ARM64_ERRATUM_2051678
1854 MIDR_REV_RANGE(MIDR_CORTEX_A510, 0, 0, 2),
1855 #endif
1856 {},
1857 };
1858
1859 return is_midr_in_range_list(read_cpuid_id(), cpus);
1860 }
1861
1862 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1863 {
1864 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1865 !cpu_has_broken_dbm();
1866 }
1867
1868 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1869 {
1870 if (cpu_can_use_dbm(cap))
1871 __cpu_enable_hw_dbm();
1872 }
1873
1874 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1875 int __unused)
1876 {
1877 static bool detected = false;
1878 /*
1879 * DBM is a non-conflicting feature. i.e, the kernel can safely
1880 * run a mix of CPUs with and without the feature. So, we
1881 * unconditionally enable the capability to allow any late CPU
1882 * to use the feature. We only enable the control bits on the
1883 * CPU, if it actually supports.
1884 *
1885 * We have to make sure we print the "feature" detection only
1886 * when at least one CPU actually uses it. So check if this CPU
1887 * can actually use it and print the message exactly once.
1888 *
1889 * This is safe as all CPUs (including secondary CPUs - due to the
1890 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1891 * goes through the "matches" check exactly once. Also if a CPU
1892 * matches the criteria, it is guaranteed that the CPU will turn
1893 * the DBM on, as the capability is unconditionally enabled.
1894 */
1895 if (!detected && cpu_can_use_dbm(cap)) {
1896 detected = true;
1897 pr_info("detected: Hardware dirty bit management\n");
1898 }
1899
1900 return true;
1901 }
1902
1903 #endif
1904
1905 #ifdef CONFIG_ARM64_AMU_EXTN
1906
1907 /*
1908 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1909 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1910 * information regarding all the events that it supports. When a CPU bit is
1911 * set in the cpumask, the user of this feature can only rely on the presence
1912 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1913 * counters are enabled or access to these counters is enabled by code
1914 * executed at higher exception levels (firmware).
1915 */
1916 static struct cpumask amu_cpus __read_mostly;
1917
1918 bool cpu_has_amu_feat(int cpu)
1919 {
1920 return cpumask_test_cpu(cpu, &amu_cpus);
1921 }
1922
1923 int get_cpu_with_amu_feat(void)
1924 {
1925 return cpumask_any(&amu_cpus);
1926 }
1927
1928 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1929 {
1930 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1931 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1932 smp_processor_id());
1933 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1934
1935 /* 0 reference values signal broken/disabled counters */
1936 if (!this_cpu_has_cap(ARM64_WORKAROUND_2457168))
1937 update_freq_counters_refs();
1938 }
1939 }
1940
1941 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1942 int __unused)
1943 {
1944 /*
1945 * The AMU extension is a non-conflicting feature: the kernel can
1946 * safely run a mix of CPUs with and without support for the
1947 * activity monitors extension. Therefore, unconditionally enable
1948 * the capability to allow any late CPU to use the feature.
1949 *
1950 * With this feature unconditionally enabled, the cpu_enable
1951 * function will be called for all CPUs that match the criteria,
1952 * including secondary and hotplugged, marking this feature as
1953 * present on that respective CPU. The enable function will also
1954 * print a detection message.
1955 */
1956
1957 return true;
1958 }
1959 #else
1960 int get_cpu_with_amu_feat(void)
1961 {
1962 return nr_cpu_ids;
1963 }
1964 #endif
1965
1966 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1967 {
1968 return is_kernel_in_hyp_mode();
1969 }
1970
1971 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1972 {
1973 /*
1974 * Copy register values that aren't redirected by hardware.
1975 *
1976 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1977 * this value to tpidr_el2 before we patch the code. Once we've done
1978 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1979 * do anything here.
1980 */
1981 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1982 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1983 }
1984
1985 static bool has_nested_virt_support(const struct arm64_cpu_capabilities *cap,
1986 int scope)
1987 {
1988 if (kvm_get_mode() != KVM_MODE_NV)
1989 return false;
1990
1991 if (!has_cpuid_feature(cap, scope)) {
1992 pr_warn("unavailable: %s\n", cap->desc);
1993 return false;
1994 }
1995
1996 return true;
1997 }
1998
1999 #ifdef CONFIG_ARM64_PAN
2000 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
2001 {
2002 /*
2003 * We modify PSTATE. This won't work from irq context as the PSTATE
2004 * is discarded once we return from the exception.
2005 */
2006 WARN_ON_ONCE(in_interrupt());
2007
2008 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
2009 set_pstate_pan(1);
2010 }
2011 #endif /* CONFIG_ARM64_PAN */
2012
2013 #ifdef CONFIG_ARM64_RAS_EXTN
2014 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
2015 {
2016 /* Firmware may have left a deferred SError in this register. */
2017 write_sysreg_s(0, SYS_DISR_EL1);
2018 }
2019 #endif /* CONFIG_ARM64_RAS_EXTN */
2020
2021 #ifdef CONFIG_ARM64_PTR_AUTH
2022 static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
2023 {
2024 int boot_val, sec_val;
2025
2026 /* We don't expect to be called with SCOPE_SYSTEM */
2027 WARN_ON(scope == SCOPE_SYSTEM);
2028 /*
2029 * The ptr-auth feature levels are not intercompatible with lower
2030 * levels. Hence we must match ptr-auth feature level of the secondary
2031 * CPUs with that of the boot CPU. The level of boot cpu is fetched
2032 * from the sanitised register whereas direct register read is done for
2033 * the secondary CPUs.
2034 * The sanitised feature state is guaranteed to match that of the
2035 * boot CPU as a mismatched secondary CPU is parked before it gets
2036 * a chance to update the state, with the capability.
2037 */
2038 boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
2039 entry->field_pos, entry->sign);
2040 if (scope & SCOPE_BOOT_CPU)
2041 return boot_val >= entry->min_field_value;
2042 /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
2043 sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
2044 entry->field_pos, entry->sign);
2045 return (sec_val >= entry->min_field_value) && (sec_val == boot_val);
2046 }
2047
2048 static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
2049 int scope)
2050 {
2051 bool api = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
2052 bool apa = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5], scope);
2053 bool apa3 = has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3], scope);
2054
2055 return apa || apa3 || api;
2056 }
2057
2058 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
2059 int __unused)
2060 {
2061 bool gpi = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
2062 bool gpa = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5);
2063 bool gpa3 = __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3);
2064
2065 return gpa || gpa3 || gpi;
2066 }
2067 #endif /* CONFIG_ARM64_PTR_AUTH */
2068
2069 #ifdef CONFIG_ARM64_E0PD
2070 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
2071 {
2072 if (this_cpu_has_cap(ARM64_HAS_E0PD))
2073 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
2074 }
2075 #endif /* CONFIG_ARM64_E0PD */
2076
2077 #ifdef CONFIG_ARM64_PSEUDO_NMI
2078 static bool enable_pseudo_nmi;
2079
2080 static int __init early_enable_pseudo_nmi(char *p)
2081 {
2082 return kstrtobool(p, &enable_pseudo_nmi);
2083 }
2084 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
2085
2086 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
2087 int scope)
2088 {
2089 /*
2090 * ARM64_HAS_GIC_CPUIF_SYSREGS has a lower index, and is a boot CPU
2091 * feature, so will be detected earlier.
2092 */
2093 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_MASKING <= ARM64_HAS_GIC_CPUIF_SYSREGS);
2094 if (!cpus_have_cap(ARM64_HAS_GIC_CPUIF_SYSREGS))
2095 return false;
2096
2097 return enable_pseudo_nmi;
2098 }
2099
2100 static bool has_gic_prio_relaxed_sync(const struct arm64_cpu_capabilities *entry,
2101 int scope)
2102 {
2103 /*
2104 * If we're not using priority masking then we won't be poking PMR_EL1,
2105 * and there's no need to relax synchronization of writes to it, and
2106 * ICC_CTLR_EL1 might not be accessible and we must avoid reads from
2107 * that.
2108 *
2109 * ARM64_HAS_GIC_PRIO_MASKING has a lower index, and is a boot CPU
2110 * feature, so will be detected earlier.
2111 */
2112 BUILD_BUG_ON(ARM64_HAS_GIC_PRIO_RELAXED_SYNC <= ARM64_HAS_GIC_PRIO_MASKING);
2113 if (!cpus_have_cap(ARM64_HAS_GIC_PRIO_MASKING))
2114 return false;
2115
2116 /*
2117 * When Priority Mask Hint Enable (PMHE) == 0b0, PMR is not used as a
2118 * hint for interrupt distribution, a DSB is not necessary when
2119 * unmasking IRQs via PMR, and we can relax the barrier to a NOP.
2120 *
2121 * Linux itself doesn't use 1:N distribution, so has no need to
2122 * set PMHE. The only reason to have it set is if EL3 requires it
2123 * (and we can't change it).
2124 */
2125 return (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK) == 0;
2126 }
2127 #endif
2128
2129 #ifdef CONFIG_ARM64_BTI
2130 static void bti_enable(const struct arm64_cpu_capabilities *__unused)
2131 {
2132 /*
2133 * Use of X16/X17 for tail-calls and trampolines that jump to
2134 * function entry points using BR is a requirement for
2135 * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
2136 * So, be strict and forbid other BRs using other registers to
2137 * jump onto a PACIxSP instruction:
2138 */
2139 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
2140 isb();
2141 }
2142 #endif /* CONFIG_ARM64_BTI */
2143
2144 #ifdef CONFIG_ARM64_MTE
2145 static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
2146 {
2147 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_ATA | SCTLR_EL1_ATA0);
2148
2149 mte_cpu_setup();
2150
2151 /*
2152 * Clear the tags in the zero page. This needs to be done via the
2153 * linear map which has the Tagged attribute.
2154 */
2155 if (try_page_mte_tagging(ZERO_PAGE(0))) {
2156 mte_clear_page_tags(lm_alias(empty_zero_page));
2157 set_page_mte_tagged(ZERO_PAGE(0));
2158 }
2159
2160 kasan_init_hw_tags_cpu();
2161 }
2162 #endif /* CONFIG_ARM64_MTE */
2163
2164 static void elf_hwcap_fixup(void)
2165 {
2166 #ifdef CONFIG_ARM64_ERRATUM_1742098
2167 if (cpus_have_const_cap(ARM64_WORKAROUND_1742098))
2168 compat_elf_hwcap2 &= ~COMPAT_HWCAP2_AES;
2169 #endif /* ARM64_ERRATUM_1742098 */
2170 }
2171
2172 #ifdef CONFIG_KVM
2173 static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
2174 {
2175 return kvm_get_mode() == KVM_MODE_PROTECTED;
2176 }
2177 #endif /* CONFIG_KVM */
2178
2179 static void cpu_trap_el0_impdef(const struct arm64_cpu_capabilities *__unused)
2180 {
2181 sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_TIDCP);
2182 }
2183
2184 static void cpu_enable_dit(const struct arm64_cpu_capabilities *__unused)
2185 {
2186 set_pstate_dit(1);
2187 }
2188
2189 /* Internal helper functions to match cpu capability type */
2190 static bool
2191 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
2192 {
2193 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
2194 }
2195
2196 static bool
2197 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
2198 {
2199 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
2200 }
2201
2202 static bool
2203 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
2204 {
2205 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
2206 }
2207
2208 static const struct arm64_cpu_capabilities arm64_features[] = {
2209 {
2210 .capability = ARM64_ALWAYS_BOOT,
2211 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2212 .matches = has_always,
2213 },
2214 {
2215 .capability = ARM64_ALWAYS_SYSTEM,
2216 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2217 .matches = has_always,
2218 },
2219 {
2220 .desc = "GIC system register CPU interface",
2221 .capability = ARM64_HAS_GIC_CPUIF_SYSREGS,
2222 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2223 .matches = has_useable_gicv3_cpuif,
2224 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, GIC, IMP)
2225 },
2226 {
2227 .desc = "Enhanced Counter Virtualization",
2228 .capability = ARM64_HAS_ECV,
2229 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2230 .matches = has_cpuid_feature,
2231 ARM64_CPUID_FIELDS(ID_AA64MMFR0_EL1, ECV, IMP)
2232 },
2233 {
2234 .desc = "Enhanced Counter Virtualization (CNTPOFF)",
2235 .capability = ARM64_HAS_ECV_CNTPOFF,
2236 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2237 .matches = has_cpuid_feature,
2238 .sys_reg = SYS_ID_AA64MMFR0_EL1,
2239 .field_pos = ID_AA64MMFR0_EL1_ECV_SHIFT,
2240 .field_width = 4,
2241 .sign = FTR_UNSIGNED,
2242 .min_field_value = ID_AA64MMFR0_EL1_ECV_CNTPOFF,
2243 },
2244 #ifdef CONFIG_ARM64_PAN
2245 {
2246 .desc = "Privileged Access Never",
2247 .capability = ARM64_HAS_PAN,
2248 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2249 .matches = has_cpuid_feature,
2250 .cpu_enable = cpu_enable_pan,
2251 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, IMP)
2252 },
2253 #endif /* CONFIG_ARM64_PAN */
2254 #ifdef CONFIG_ARM64_EPAN
2255 {
2256 .desc = "Enhanced Privileged Access Never",
2257 .capability = ARM64_HAS_EPAN,
2258 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2259 .matches = has_cpuid_feature,
2260 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, PAN, PAN3)
2261 },
2262 #endif /* CONFIG_ARM64_EPAN */
2263 #ifdef CONFIG_ARM64_LSE_ATOMICS
2264 {
2265 .desc = "LSE atomic instructions",
2266 .capability = ARM64_HAS_LSE_ATOMICS,
2267 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2268 .matches = has_cpuid_feature,
2269 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, ATOMIC, IMP)
2270 },
2271 #endif /* CONFIG_ARM64_LSE_ATOMICS */
2272 {
2273 .desc = "Software prefetching using PRFM",
2274 .capability = ARM64_HAS_NO_HW_PREFETCH,
2275 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2276 .matches = has_no_hw_prefetch,
2277 },
2278 {
2279 .desc = "Virtualization Host Extensions",
2280 .capability = ARM64_HAS_VIRT_HOST_EXTN,
2281 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2282 .matches = runs_at_el2,
2283 .cpu_enable = cpu_copy_el2regs,
2284 },
2285 {
2286 .desc = "Nested Virtualization Support",
2287 .capability = ARM64_HAS_NESTED_VIRT,
2288 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2289 .matches = has_nested_virt_support,
2290 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, NV, IMP)
2291 },
2292 {
2293 .capability = ARM64_HAS_32BIT_EL0_DO_NOT_USE,
2294 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2295 .matches = has_32bit_el0,
2296 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL0, AARCH32)
2297 },
2298 #ifdef CONFIG_KVM
2299 {
2300 .desc = "32-bit EL1 Support",
2301 .capability = ARM64_HAS_32BIT_EL1,
2302 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2303 .matches = has_cpuid_feature,
2304 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, EL1, AARCH32)
2305 },
2306 {
2307 .desc = "Protected KVM",
2308 .capability = ARM64_KVM_PROTECTED_MODE,
2309 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2310 .matches = is_kvm_protected_mode,
2311 },
2312 #endif
2313 {
2314 .desc = "Kernel page table isolation (KPTI)",
2315 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
2316 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2317 .cpu_enable = kpti_install_ng_mappings,
2318 .matches = unmap_kernel_at_el0,
2319 /*
2320 * The ID feature fields below are used to indicate that
2321 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
2322 * more details.
2323 */
2324 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, CSV3, IMP)
2325 },
2326 {
2327 /* FP/SIMD is not implemented */
2328 .capability = ARM64_HAS_NO_FPSIMD,
2329 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
2330 .min_field_value = 0,
2331 .matches = has_no_fpsimd,
2332 },
2333 #ifdef CONFIG_ARM64_PMEM
2334 {
2335 .desc = "Data cache clean to Point of Persistence",
2336 .capability = ARM64_HAS_DCPOP,
2337 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2338 .matches = has_cpuid_feature,
2339 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, IMP)
2340 },
2341 {
2342 .desc = "Data cache clean to Point of Deep Persistence",
2343 .capability = ARM64_HAS_DCPODP,
2344 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2345 .matches = has_cpuid_feature,
2346 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, DPB, DPB2)
2347 },
2348 #endif
2349 #ifdef CONFIG_ARM64_SVE
2350 {
2351 .desc = "Scalable Vector Extension",
2352 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2353 .capability = ARM64_SVE,
2354 .cpu_enable = sve_kernel_enable,
2355 .matches = has_cpuid_feature,
2356 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, SVE, IMP)
2357 },
2358 #endif /* CONFIG_ARM64_SVE */
2359 #ifdef CONFIG_ARM64_RAS_EXTN
2360 {
2361 .desc = "RAS Extension Support",
2362 .capability = ARM64_HAS_RAS_EXTN,
2363 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2364 .matches = has_cpuid_feature,
2365 .cpu_enable = cpu_clear_disr,
2366 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, RAS, IMP)
2367 },
2368 #endif /* CONFIG_ARM64_RAS_EXTN */
2369 #ifdef CONFIG_ARM64_AMU_EXTN
2370 {
2371 /*
2372 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
2373 * Therefore, don't provide .desc as we don't want the detection
2374 * message to be shown until at least one CPU is detected to
2375 * support the feature.
2376 */
2377 .capability = ARM64_HAS_AMU_EXTN,
2378 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2379 .matches = has_amu,
2380 .cpu_enable = cpu_amu_enable,
2381 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, AMU, IMP)
2382 },
2383 #endif /* CONFIG_ARM64_AMU_EXTN */
2384 {
2385 .desc = "Data cache clean to the PoU not required for I/D coherence",
2386 .capability = ARM64_HAS_CACHE_IDC,
2387 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2388 .matches = has_cache_idc,
2389 .cpu_enable = cpu_emulate_effective_ctr,
2390 },
2391 {
2392 .desc = "Instruction cache invalidation not required for I/D coherence",
2393 .capability = ARM64_HAS_CACHE_DIC,
2394 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2395 .matches = has_cache_dic,
2396 },
2397 {
2398 .desc = "Stage-2 Force Write-Back",
2399 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2400 .capability = ARM64_HAS_STAGE2_FWB,
2401 .matches = has_cpuid_feature,
2402 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, FWB, IMP)
2403 },
2404 {
2405 .desc = "ARMv8.4 Translation Table Level",
2406 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2407 .capability = ARM64_HAS_ARMv8_4_TTL,
2408 .matches = has_cpuid_feature,
2409 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, TTL, IMP)
2410 },
2411 {
2412 .desc = "TLB range maintenance instructions",
2413 .capability = ARM64_HAS_TLB_RANGE,
2414 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2415 .matches = has_cpuid_feature,
2416 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, TLB, RANGE)
2417 },
2418 #ifdef CONFIG_ARM64_HW_AFDBM
2419 {
2420 /*
2421 * Since we turn this on always, we don't want the user to
2422 * think that the feature is available when it may not be.
2423 * So hide the description.
2424 *
2425 * .desc = "Hardware pagetable Dirty Bit Management",
2426 *
2427 */
2428 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
2429 .capability = ARM64_HW_DBM,
2430 .matches = has_hw_dbm,
2431 .cpu_enable = cpu_enable_hw_dbm,
2432 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, HAFDBS, DBM)
2433 },
2434 #endif
2435 {
2436 .desc = "CRC32 instructions",
2437 .capability = ARM64_HAS_CRC32,
2438 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2439 .matches = has_cpuid_feature,
2440 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, CRC32, IMP)
2441 },
2442 {
2443 .desc = "Speculative Store Bypassing Safe (SSBS)",
2444 .capability = ARM64_SSBS,
2445 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2446 .matches = has_cpuid_feature,
2447 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SSBS, IMP)
2448 },
2449 #ifdef CONFIG_ARM64_CNP
2450 {
2451 .desc = "Common not Private translations",
2452 .capability = ARM64_HAS_CNP,
2453 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2454 .matches = has_useable_cnp,
2455 .cpu_enable = cpu_enable_cnp,
2456 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, CnP, IMP)
2457 },
2458 #endif
2459 {
2460 .desc = "Speculation barrier (SB)",
2461 .capability = ARM64_HAS_SB,
2462 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2463 .matches = has_cpuid_feature,
2464 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, SB, IMP)
2465 },
2466 #ifdef CONFIG_ARM64_PTR_AUTH
2467 {
2468 .desc = "Address authentication (architected QARMA5 algorithm)",
2469 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA5,
2470 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2471 .matches = has_address_auth_cpucap,
2472 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, APA, PAuth)
2473 },
2474 {
2475 .desc = "Address authentication (architected QARMA3 algorithm)",
2476 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH_QARMA3,
2477 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2478 .matches = has_address_auth_cpucap,
2479 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, APA3, PAuth)
2480 },
2481 {
2482 .desc = "Address authentication (IMP DEF algorithm)",
2483 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2484 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2485 .matches = has_address_auth_cpucap,
2486 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, API, PAuth)
2487 },
2488 {
2489 .capability = ARM64_HAS_ADDRESS_AUTH,
2490 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2491 .matches = has_address_auth_metacap,
2492 },
2493 {
2494 .desc = "Generic authentication (architected QARMA5 algorithm)",
2495 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA5,
2496 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2497 .matches = has_cpuid_feature,
2498 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPA, IMP)
2499 },
2500 {
2501 .desc = "Generic authentication (architected QARMA3 algorithm)",
2502 .capability = ARM64_HAS_GENERIC_AUTH_ARCH_QARMA3,
2503 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2504 .matches = has_cpuid_feature,
2505 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, GPA3, IMP)
2506 },
2507 {
2508 .desc = "Generic authentication (IMP DEF algorithm)",
2509 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2510 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2511 .matches = has_cpuid_feature,
2512 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, GPI, IMP)
2513 },
2514 {
2515 .capability = ARM64_HAS_GENERIC_AUTH,
2516 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2517 .matches = has_generic_auth,
2518 },
2519 #endif /* CONFIG_ARM64_PTR_AUTH */
2520 #ifdef CONFIG_ARM64_PSEUDO_NMI
2521 {
2522 /*
2523 * Depends on having GICv3
2524 */
2525 .desc = "IRQ priority masking",
2526 .capability = ARM64_HAS_GIC_PRIO_MASKING,
2527 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2528 .matches = can_use_gic_priorities,
2529 },
2530 {
2531 /*
2532 * Depends on ARM64_HAS_GIC_PRIO_MASKING
2533 */
2534 .capability = ARM64_HAS_GIC_PRIO_RELAXED_SYNC,
2535 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2536 .matches = has_gic_prio_relaxed_sync,
2537 },
2538 #endif
2539 #ifdef CONFIG_ARM64_E0PD
2540 {
2541 .desc = "E0PD",
2542 .capability = ARM64_HAS_E0PD,
2543 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2544 .cpu_enable = cpu_enable_e0pd,
2545 .matches = has_cpuid_feature,
2546 ARM64_CPUID_FIELDS(ID_AA64MMFR2_EL1, E0PD, IMP)
2547 },
2548 #endif
2549 {
2550 .desc = "Random Number Generator",
2551 .capability = ARM64_HAS_RNG,
2552 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2553 .matches = has_cpuid_feature,
2554 ARM64_CPUID_FIELDS(ID_AA64ISAR0_EL1, RNDR, IMP)
2555 },
2556 #ifdef CONFIG_ARM64_BTI
2557 {
2558 .desc = "Branch Target Identification",
2559 .capability = ARM64_BTI,
2560 #ifdef CONFIG_ARM64_BTI_KERNEL
2561 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2562 #else
2563 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2564 #endif
2565 .matches = has_cpuid_feature,
2566 .cpu_enable = bti_enable,
2567 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, BT, IMP)
2568 },
2569 #endif
2570 #ifdef CONFIG_ARM64_MTE
2571 {
2572 .desc = "Memory Tagging Extension",
2573 .capability = ARM64_MTE,
2574 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2575 .matches = has_cpuid_feature,
2576 .cpu_enable = cpu_enable_mte,
2577 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE2)
2578 },
2579 {
2580 .desc = "Asymmetric MTE Tag Check Fault",
2581 .capability = ARM64_MTE_ASYMM,
2582 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2583 .matches = has_cpuid_feature,
2584 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, MTE, MTE3)
2585 },
2586 #endif /* CONFIG_ARM64_MTE */
2587 {
2588 .desc = "RCpc load-acquire (LDAPR)",
2589 .capability = ARM64_HAS_LDAPR,
2590 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2591 .matches = has_cpuid_feature,
2592 ARM64_CPUID_FIELDS(ID_AA64ISAR1_EL1, LRCPC, IMP)
2593 },
2594 #ifdef CONFIG_ARM64_SME
2595 {
2596 .desc = "Scalable Matrix Extension",
2597 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2598 .capability = ARM64_SME,
2599 .matches = has_cpuid_feature,
2600 .cpu_enable = sme_kernel_enable,
2601 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, IMP)
2602 },
2603 /* FA64 should be sorted after the base SME capability */
2604 {
2605 .desc = "FA64",
2606 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2607 .capability = ARM64_SME_FA64,
2608 .matches = has_cpuid_feature,
2609 .cpu_enable = fa64_kernel_enable,
2610 ARM64_CPUID_FIELDS(ID_AA64SMFR0_EL1, FA64, IMP)
2611 },
2612 {
2613 .desc = "SME2",
2614 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2615 .capability = ARM64_SME2,
2616 .matches = has_cpuid_feature,
2617 .cpu_enable = sme2_kernel_enable,
2618 ARM64_CPUID_FIELDS(ID_AA64PFR1_EL1, SME, SME2)
2619 },
2620 #endif /* CONFIG_ARM64_SME */
2621 {
2622 .desc = "WFx with timeout",
2623 .capability = ARM64_HAS_WFXT,
2624 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2625 .matches = has_cpuid_feature,
2626 ARM64_CPUID_FIELDS(ID_AA64ISAR2_EL1, WFxT, IMP)
2627 },
2628 {
2629 .desc = "Trap EL0 IMPLEMENTATION DEFINED functionality",
2630 .capability = ARM64_HAS_TIDCP1,
2631 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2632 .matches = has_cpuid_feature,
2633 .cpu_enable = cpu_trap_el0_impdef,
2634 ARM64_CPUID_FIELDS(ID_AA64MMFR1_EL1, TIDCP1, IMP)
2635 },
2636 {
2637 .desc = "Data independent timing control (DIT)",
2638 .capability = ARM64_HAS_DIT,
2639 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2640 .matches = has_cpuid_feature,
2641 .cpu_enable = cpu_enable_dit,
2642 ARM64_CPUID_FIELDS(ID_AA64PFR0_EL1, DIT, IMP)
2643 },
2644 {},
2645 };
2646
2647 #define HWCAP_CPUID_MATCH(reg, field, min_value) \
2648 .matches = has_user_cpuid_feature, \
2649 ARM64_CPUID_FIELDS(reg, field, min_value)
2650
2651 #define __HWCAP_CAP(name, cap_type, cap) \
2652 .desc = name, \
2653 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
2654 .hwcap_type = cap_type, \
2655 .hwcap = cap, \
2656
2657 #define HWCAP_CAP(reg, field, min_value, cap_type, cap) \
2658 { \
2659 __HWCAP_CAP(#cap, cap_type, cap) \
2660 HWCAP_CPUID_MATCH(reg, field, min_value) \
2661 }
2662
2663 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
2664 { \
2665 __HWCAP_CAP(#cap, cap_type, cap) \
2666 .matches = cpucap_multi_entry_cap_matches, \
2667 .match_list = list, \
2668 }
2669
2670 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
2671 { \
2672 __HWCAP_CAP(#cap, cap_type, cap) \
2673 .matches = match, \
2674 }
2675
2676 #ifdef CONFIG_ARM64_PTR_AUTH
2677 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2678 {
2679 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, APA, PAuth)
2680 },
2681 {
2682 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, APA3, PAuth)
2683 },
2684 {
2685 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, API, PAuth)
2686 },
2687 {},
2688 };
2689
2690 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2691 {
2692 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPA, IMP)
2693 },
2694 {
2695 HWCAP_CPUID_MATCH(ID_AA64ISAR2_EL1, GPA3, IMP)
2696 },
2697 {
2698 HWCAP_CPUID_MATCH(ID_AA64ISAR1_EL1, GPI, IMP)
2699 },
2700 {},
2701 };
2702 #endif
2703
2704 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2705 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, PMULL, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2706 HWCAP_CAP(ID_AA64ISAR0_EL1, AES, AES, CAP_HWCAP, KERNEL_HWCAP_AES),
2707 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA1, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2708 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA256, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2709 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA2, SHA512, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2710 HWCAP_CAP(ID_AA64ISAR0_EL1, CRC32, IMP, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2711 HWCAP_CAP(ID_AA64ISAR0_EL1, ATOMIC, IMP, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2712 HWCAP_CAP(ID_AA64ISAR0_EL1, RDM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2713 HWCAP_CAP(ID_AA64ISAR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2714 HWCAP_CAP(ID_AA64ISAR0_EL1, SM3, IMP, CAP_HWCAP, KERNEL_HWCAP_SM3),
2715 HWCAP_CAP(ID_AA64ISAR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SM4),
2716 HWCAP_CAP(ID_AA64ISAR0_EL1, DP, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2717 HWCAP_CAP(ID_AA64ISAR0_EL1, FHM, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2718 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2719 HWCAP_CAP(ID_AA64ISAR0_EL1, TS, FLAGM2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2720 HWCAP_CAP(ID_AA64ISAR0_EL1, RNDR, IMP, CAP_HWCAP, KERNEL_HWCAP_RNG),
2721 HWCAP_CAP(ID_AA64PFR0_EL1, FP, IMP, CAP_HWCAP, KERNEL_HWCAP_FP),
2722 HWCAP_CAP(ID_AA64PFR0_EL1, FP, FP16, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2723 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, IMP, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2724 HWCAP_CAP(ID_AA64PFR0_EL1, AdvSIMD, FP16, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2725 HWCAP_CAP(ID_AA64PFR0_EL1, DIT, IMP, CAP_HWCAP, KERNEL_HWCAP_DIT),
2726 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, IMP, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2727 HWCAP_CAP(ID_AA64ISAR1_EL1, DPB, DPB2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2728 HWCAP_CAP(ID_AA64ISAR1_EL1, JSCVT, IMP, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2729 HWCAP_CAP(ID_AA64ISAR1_EL1, FCMA, IMP, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2730 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, IMP, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2731 HWCAP_CAP(ID_AA64ISAR1_EL1, LRCPC, LRCPC2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2732 HWCAP_CAP(ID_AA64ISAR1_EL1, FRINTTS, IMP, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2733 HWCAP_CAP(ID_AA64ISAR1_EL1, SB, IMP, CAP_HWCAP, KERNEL_HWCAP_SB),
2734 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_BF16),
2735 HWCAP_CAP(ID_AA64ISAR1_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_EBF16),
2736 HWCAP_CAP(ID_AA64ISAR1_EL1, DGH, IMP, CAP_HWCAP, KERNEL_HWCAP_DGH),
2737 HWCAP_CAP(ID_AA64ISAR1_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2738 HWCAP_CAP(ID_AA64MMFR2_EL1, AT, IMP, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2739 #ifdef CONFIG_ARM64_SVE
2740 HWCAP_CAP(ID_AA64PFR0_EL1, SVE, IMP, CAP_HWCAP, KERNEL_HWCAP_SVE),
2741 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2p1, CAP_HWCAP, KERNEL_HWCAP_SVE2P1),
2742 HWCAP_CAP(ID_AA64ZFR0_EL1, SVEver, SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2743 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2744 HWCAP_CAP(ID_AA64ZFR0_EL1, AES, PMULL128, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2745 HWCAP_CAP(ID_AA64ZFR0_EL1, BitPerm, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2746 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2747 HWCAP_CAP(ID_AA64ZFR0_EL1, BF16, EBF16, CAP_HWCAP, KERNEL_HWCAP_SVE_EBF16),
2748 HWCAP_CAP(ID_AA64ZFR0_EL1, SHA3, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2749 HWCAP_CAP(ID_AA64ZFR0_EL1, SM4, IMP, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2750 HWCAP_CAP(ID_AA64ZFR0_EL1, I8MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2751 HWCAP_CAP(ID_AA64ZFR0_EL1, F32MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2752 HWCAP_CAP(ID_AA64ZFR0_EL1, F64MM, IMP, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2753 #endif
2754 HWCAP_CAP(ID_AA64PFR1_EL1, SSBS, SSBS2, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2755 #ifdef CONFIG_ARM64_BTI
2756 HWCAP_CAP(ID_AA64PFR1_EL1, BT, IMP, CAP_HWCAP, KERNEL_HWCAP_BTI),
2757 #endif
2758 #ifdef CONFIG_ARM64_PTR_AUTH
2759 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2760 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2761 #endif
2762 #ifdef CONFIG_ARM64_MTE
2763 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE2, CAP_HWCAP, KERNEL_HWCAP_MTE),
2764 HWCAP_CAP(ID_AA64PFR1_EL1, MTE, MTE3, CAP_HWCAP, KERNEL_HWCAP_MTE3),
2765 #endif /* CONFIG_ARM64_MTE */
2766 HWCAP_CAP(ID_AA64MMFR0_EL1, ECV, IMP, CAP_HWCAP, KERNEL_HWCAP_ECV),
2767 HWCAP_CAP(ID_AA64MMFR1_EL1, AFP, IMP, CAP_HWCAP, KERNEL_HWCAP_AFP),
2768 HWCAP_CAP(ID_AA64ISAR2_EL1, CSSC, IMP, CAP_HWCAP, KERNEL_HWCAP_CSSC),
2769 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRFM, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRFM),
2770 HWCAP_CAP(ID_AA64ISAR2_EL1, RPRES, IMP, CAP_HWCAP, KERNEL_HWCAP_RPRES),
2771 HWCAP_CAP(ID_AA64ISAR2_EL1, WFxT, IMP, CAP_HWCAP, KERNEL_HWCAP_WFXT),
2772 #ifdef CONFIG_ARM64_SME
2773 HWCAP_CAP(ID_AA64PFR1_EL1, SME, IMP, CAP_HWCAP, KERNEL_HWCAP_SME),
2774 HWCAP_CAP(ID_AA64SMFR0_EL1, FA64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_FA64),
2775 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2p1, CAP_HWCAP, KERNEL_HWCAP_SME2P1),
2776 HWCAP_CAP(ID_AA64SMFR0_EL1, SMEver, SME2, CAP_HWCAP, KERNEL_HWCAP_SME2),
2777 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I64),
2778 HWCAP_CAP(ID_AA64SMFR0_EL1, F64F64, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F64F64),
2779 HWCAP_CAP(ID_AA64SMFR0_EL1, I16I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I16I32),
2780 HWCAP_CAP(ID_AA64SMFR0_EL1, B16B16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16B16),
2781 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F16, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F16),
2782 HWCAP_CAP(ID_AA64SMFR0_EL1, I8I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_I8I32),
2783 HWCAP_CAP(ID_AA64SMFR0_EL1, F16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F16F32),
2784 HWCAP_CAP(ID_AA64SMFR0_EL1, B16F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_B16F32),
2785 HWCAP_CAP(ID_AA64SMFR0_EL1, BI32I32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_BI32I32),
2786 HWCAP_CAP(ID_AA64SMFR0_EL1, F32F32, IMP, CAP_HWCAP, KERNEL_HWCAP_SME_F32F32),
2787 #endif /* CONFIG_ARM64_SME */
2788 {},
2789 };
2790
2791 #ifdef CONFIG_COMPAT
2792 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2793 {
2794 /*
2795 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2796 * in line with that of arm32 as in vfp_init(). We make sure that the
2797 * check is future proof, by making sure value is non-zero.
2798 */
2799 u32 mvfr1;
2800
2801 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2802 if (scope == SCOPE_SYSTEM)
2803 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2804 else
2805 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2806
2807 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDSP_SHIFT) &&
2808 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDInt_SHIFT) &&
2809 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_EL1_SIMDLS_SHIFT);
2810 }
2811 #endif
2812
2813 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2814 #ifdef CONFIG_COMPAT
2815 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2816 HWCAP_CAP(MVFR1_EL1, SIMDFMAC, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2817 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2818 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2819 HWCAP_CAP(MVFR0_EL1, FPDP, VFPv3, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2820 HWCAP_CAP(MVFR1_EL1, FPHP, FP16, CAP_COMPAT_HWCAP, COMPAT_HWCAP_FPHP),
2821 HWCAP_CAP(MVFR1_EL1, SIMDHP, SIMDHP_FLOAT, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDHP),
2822 HWCAP_CAP(ID_ISAR5_EL1, AES, VMULL, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2823 HWCAP_CAP(ID_ISAR5_EL1, AES, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2824 HWCAP_CAP(ID_ISAR5_EL1, SHA1, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2825 HWCAP_CAP(ID_ISAR5_EL1, SHA2, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2826 HWCAP_CAP(ID_ISAR5_EL1, CRC32, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2827 HWCAP_CAP(ID_ISAR6_EL1, DP, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDDP),
2828 HWCAP_CAP(ID_ISAR6_EL1, FHM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDFHM),
2829 HWCAP_CAP(ID_ISAR6_EL1, SB, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SB),
2830 HWCAP_CAP(ID_ISAR6_EL1, BF16, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_ASIMDBF16),
2831 HWCAP_CAP(ID_ISAR6_EL1, I8MM, IMP, CAP_COMPAT_HWCAP, COMPAT_HWCAP_I8MM),
2832 HWCAP_CAP(ID_PFR2_EL1, SSBS, IMP, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SSBS),
2833 #endif
2834 {},
2835 };
2836
2837 static void cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2838 {
2839 switch (cap->hwcap_type) {
2840 case CAP_HWCAP:
2841 cpu_set_feature(cap->hwcap);
2842 break;
2843 #ifdef CONFIG_COMPAT
2844 case CAP_COMPAT_HWCAP:
2845 compat_elf_hwcap |= (u32)cap->hwcap;
2846 break;
2847 case CAP_COMPAT_HWCAP2:
2848 compat_elf_hwcap2 |= (u32)cap->hwcap;
2849 break;
2850 #endif
2851 default:
2852 WARN_ON(1);
2853 break;
2854 }
2855 }
2856
2857 /* Check if we have a particular HWCAP enabled */
2858 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2859 {
2860 bool rc;
2861
2862 switch (cap->hwcap_type) {
2863 case CAP_HWCAP:
2864 rc = cpu_have_feature(cap->hwcap);
2865 break;
2866 #ifdef CONFIG_COMPAT
2867 case CAP_COMPAT_HWCAP:
2868 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2869 break;
2870 case CAP_COMPAT_HWCAP2:
2871 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2872 break;
2873 #endif
2874 default:
2875 WARN_ON(1);
2876 rc = false;
2877 }
2878
2879 return rc;
2880 }
2881
2882 static void setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2883 {
2884 /* We support emulation of accesses to CPU ID feature registers */
2885 cpu_set_named_feature(CPUID);
2886 for (; hwcaps->matches; hwcaps++)
2887 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2888 cap_set_elf_hwcap(hwcaps);
2889 }
2890
2891 static void update_cpu_capabilities(u16 scope_mask)
2892 {
2893 int i;
2894 const struct arm64_cpu_capabilities *caps;
2895
2896 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2897 for (i = 0; i < ARM64_NCAPS; i++) {
2898 caps = cpu_hwcaps_ptrs[i];
2899 if (!caps || !(caps->type & scope_mask) ||
2900 cpus_have_cap(caps->capability) ||
2901 !caps->matches(caps, cpucap_default_scope(caps)))
2902 continue;
2903
2904 if (caps->desc)
2905 pr_info("detected: %s\n", caps->desc);
2906 cpus_set_cap(caps->capability);
2907
2908 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2909 set_bit(caps->capability, boot_capabilities);
2910 }
2911 }
2912
2913 /*
2914 * Enable all the available capabilities on this CPU. The capabilities
2915 * with BOOT_CPU scope are handled separately and hence skipped here.
2916 */
2917 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2918 {
2919 int i;
2920 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2921
2922 for_each_available_cap(i) {
2923 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2924
2925 if (WARN_ON(!cap))
2926 continue;
2927
2928 if (!(cap->type & non_boot_scope))
2929 continue;
2930
2931 if (cap->cpu_enable)
2932 cap->cpu_enable(cap);
2933 }
2934 return 0;
2935 }
2936
2937 /*
2938 * Run through the enabled capabilities and enable() it on all active
2939 * CPUs
2940 */
2941 static void __init enable_cpu_capabilities(u16 scope_mask)
2942 {
2943 int i;
2944 const struct arm64_cpu_capabilities *caps;
2945 bool boot_scope;
2946
2947 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2948 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2949
2950 for (i = 0; i < ARM64_NCAPS; i++) {
2951 unsigned int num;
2952
2953 caps = cpu_hwcaps_ptrs[i];
2954 if (!caps || !(caps->type & scope_mask))
2955 continue;
2956 num = caps->capability;
2957 if (!cpus_have_cap(num))
2958 continue;
2959
2960 if (boot_scope && caps->cpu_enable)
2961 /*
2962 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2963 * before any secondary CPU boots. Thus, each secondary
2964 * will enable the capability as appropriate via
2965 * check_local_cpu_capabilities(). The only exception is
2966 * the boot CPU, for which the capability must be
2967 * enabled here. This approach avoids costly
2968 * stop_machine() calls for this case.
2969 */
2970 caps->cpu_enable(caps);
2971 }
2972
2973 /*
2974 * For all non-boot scope capabilities, use stop_machine()
2975 * as it schedules the work allowing us to modify PSTATE,
2976 * instead of on_each_cpu() which uses an IPI, giving us a
2977 * PSTATE that disappears when we return.
2978 */
2979 if (!boot_scope)
2980 stop_machine(cpu_enable_non_boot_scope_capabilities,
2981 NULL, cpu_online_mask);
2982 }
2983
2984 /*
2985 * Run through the list of capabilities to check for conflicts.
2986 * If the system has already detected a capability, take necessary
2987 * action on this CPU.
2988 */
2989 static void verify_local_cpu_caps(u16 scope_mask)
2990 {
2991 int i;
2992 bool cpu_has_cap, system_has_cap;
2993 const struct arm64_cpu_capabilities *caps;
2994
2995 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2996
2997 for (i = 0; i < ARM64_NCAPS; i++) {
2998 caps = cpu_hwcaps_ptrs[i];
2999 if (!caps || !(caps->type & scope_mask))
3000 continue;
3001
3002 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
3003 system_has_cap = cpus_have_cap(caps->capability);
3004
3005 if (system_has_cap) {
3006 /*
3007 * Check if the new CPU misses an advertised feature,
3008 * which is not safe to miss.
3009 */
3010 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
3011 break;
3012 /*
3013 * We have to issue cpu_enable() irrespective of
3014 * whether the CPU has it or not, as it is enabeld
3015 * system wide. It is upto the call back to take
3016 * appropriate action on this CPU.
3017 */
3018 if (caps->cpu_enable)
3019 caps->cpu_enable(caps);
3020 } else {
3021 /*
3022 * Check if the CPU has this capability if it isn't
3023 * safe to have when the system doesn't.
3024 */
3025 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
3026 break;
3027 }
3028 }
3029
3030 if (i < ARM64_NCAPS) {
3031 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
3032 smp_processor_id(), caps->capability,
3033 caps->desc, system_has_cap, cpu_has_cap);
3034
3035 if (cpucap_panic_on_conflict(caps))
3036 cpu_panic_kernel();
3037 else
3038 cpu_die_early();
3039 }
3040 }
3041
3042 /*
3043 * Check for CPU features that are used in early boot
3044 * based on the Boot CPU value.
3045 */
3046 static void check_early_cpu_features(void)
3047 {
3048 verify_cpu_asid_bits();
3049
3050 verify_local_cpu_caps(SCOPE_BOOT_CPU);
3051 }
3052
3053 static void
3054 __verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
3055 {
3056
3057 for (; caps->matches; caps++)
3058 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
3059 pr_crit("CPU%d: missing HWCAP: %s\n",
3060 smp_processor_id(), caps->desc);
3061 cpu_die_early();
3062 }
3063 }
3064
3065 static void verify_local_elf_hwcaps(void)
3066 {
3067 __verify_local_elf_hwcaps(arm64_elf_hwcaps);
3068
3069 if (id_aa64pfr0_32bit_el0(read_cpuid(ID_AA64PFR0_EL1)))
3070 __verify_local_elf_hwcaps(compat_elf_hwcaps);
3071 }
3072
3073 static void verify_sve_features(void)
3074 {
3075 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
3076 u64 zcr = read_zcr_features();
3077
3078 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
3079 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
3080
3081 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SVE)) {
3082 pr_crit("CPU%d: SVE: vector length support mismatch\n",
3083 smp_processor_id());
3084 cpu_die_early();
3085 }
3086
3087 /* Add checks on other ZCR bits here if necessary */
3088 }
3089
3090 static void verify_sme_features(void)
3091 {
3092 u64 safe_smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
3093 u64 smcr = read_smcr_features();
3094
3095 unsigned int safe_len = safe_smcr & SMCR_ELx_LEN_MASK;
3096 unsigned int len = smcr & SMCR_ELx_LEN_MASK;
3097
3098 if (len < safe_len || vec_verify_vq_map(ARM64_VEC_SME)) {
3099 pr_crit("CPU%d: SME: vector length support mismatch\n",
3100 smp_processor_id());
3101 cpu_die_early();
3102 }
3103
3104 /* Add checks on other SMCR bits here if necessary */
3105 }
3106
3107 static void verify_hyp_capabilities(void)
3108 {
3109 u64 safe_mmfr1, mmfr0, mmfr1;
3110 int parange, ipa_max;
3111 unsigned int safe_vmid_bits, vmid_bits;
3112
3113 if (!IS_ENABLED(CONFIG_KVM))
3114 return;
3115
3116 safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
3117 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
3118 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
3119
3120 /* Verify VMID bits */
3121 safe_vmid_bits = get_vmid_bits(safe_mmfr1);
3122 vmid_bits = get_vmid_bits(mmfr1);
3123 if (vmid_bits < safe_vmid_bits) {
3124 pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
3125 cpu_die_early();
3126 }
3127
3128 /* Verify IPA range */
3129 parange = cpuid_feature_extract_unsigned_field(mmfr0,
3130 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
3131 ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
3132 if (ipa_max < get_kvm_ipa_limit()) {
3133 pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
3134 cpu_die_early();
3135 }
3136 }
3137
3138 /*
3139 * Run through the enabled system capabilities and enable() it on this CPU.
3140 * The capabilities were decided based on the available CPUs at the boot time.
3141 * Any new CPU should match the system wide status of the capability. If the
3142 * new CPU doesn't have a capability which the system now has enabled, we
3143 * cannot do anything to fix it up and could cause unexpected failures. So
3144 * we park the CPU.
3145 */
3146 static void verify_local_cpu_capabilities(void)
3147 {
3148 /*
3149 * The capabilities with SCOPE_BOOT_CPU are checked from
3150 * check_early_cpu_features(), as they need to be verified
3151 * on all secondary CPUs.
3152 */
3153 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3154 verify_local_elf_hwcaps();
3155
3156 if (system_supports_sve())
3157 verify_sve_features();
3158
3159 if (system_supports_sme())
3160 verify_sme_features();
3161
3162 if (is_hyp_mode_available())
3163 verify_hyp_capabilities();
3164 }
3165
3166 void check_local_cpu_capabilities(void)
3167 {
3168 /*
3169 * All secondary CPUs should conform to the early CPU features
3170 * in use by the kernel based on boot CPU.
3171 */
3172 check_early_cpu_features();
3173
3174 /*
3175 * If we haven't finalised the system capabilities, this CPU gets
3176 * a chance to update the errata work arounds and local features.
3177 * Otherwise, this CPU should verify that it has all the system
3178 * advertised capabilities.
3179 */
3180 if (!system_capabilities_finalized())
3181 update_cpu_capabilities(SCOPE_LOCAL_CPU);
3182 else
3183 verify_local_cpu_capabilities();
3184 }
3185
3186 static void __init setup_boot_cpu_capabilities(void)
3187 {
3188 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
3189 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
3190 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
3191 enable_cpu_capabilities(SCOPE_BOOT_CPU);
3192 }
3193
3194 bool this_cpu_has_cap(unsigned int n)
3195 {
3196 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
3197 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3198
3199 if (cap)
3200 return cap->matches(cap, SCOPE_LOCAL_CPU);
3201 }
3202
3203 return false;
3204 }
3205 EXPORT_SYMBOL_GPL(this_cpu_has_cap);
3206
3207 /*
3208 * This helper function is used in a narrow window when,
3209 * - The system wide safe registers are set with all the SMP CPUs and,
3210 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
3211 * In all other cases cpus_have_{const_}cap() should be used.
3212 */
3213 static bool __maybe_unused __system_matches_cap(unsigned int n)
3214 {
3215 if (n < ARM64_NCAPS) {
3216 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
3217
3218 if (cap)
3219 return cap->matches(cap, SCOPE_SYSTEM);
3220 }
3221 return false;
3222 }
3223
3224 void cpu_set_feature(unsigned int num)
3225 {
3226 set_bit(num, elf_hwcap);
3227 }
3228
3229 bool cpu_have_feature(unsigned int num)
3230 {
3231 return test_bit(num, elf_hwcap);
3232 }
3233 EXPORT_SYMBOL_GPL(cpu_have_feature);
3234
3235 unsigned long cpu_get_elf_hwcap(void)
3236 {
3237 /*
3238 * We currently only populate the first 32 bits of AT_HWCAP. Please
3239 * note that for userspace compatibility we guarantee that bits 62
3240 * and 63 will always be returned as 0.
3241 */
3242 return elf_hwcap[0];
3243 }
3244
3245 unsigned long cpu_get_elf_hwcap2(void)
3246 {
3247 return elf_hwcap[1];
3248 }
3249
3250 static void __init setup_system_capabilities(void)
3251 {
3252 /*
3253 * We have finalised the system-wide safe feature
3254 * registers, finalise the capabilities that depend
3255 * on it. Also enable all the available capabilities,
3256 * that are not enabled already.
3257 */
3258 update_cpu_capabilities(SCOPE_SYSTEM);
3259 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
3260 }
3261
3262 void __init setup_cpu_features(void)
3263 {
3264 u32 cwg;
3265
3266 setup_system_capabilities();
3267 setup_elf_hwcaps(arm64_elf_hwcaps);
3268
3269 if (system_supports_32bit_el0()) {
3270 setup_elf_hwcaps(compat_elf_hwcaps);
3271 elf_hwcap_fixup();
3272 }
3273
3274 if (system_uses_ttbr0_pan())
3275 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
3276
3277 sve_setup();
3278 sme_setup();
3279 minsigstksz_setup();
3280
3281 /*
3282 * Check for sane CTR_EL0.CWG value.
3283 */
3284 cwg = cache_type_cwg();
3285 if (!cwg)
3286 pr_warn("No Cache Writeback Granule information, assuming %d\n",
3287 ARCH_DMA_MINALIGN);
3288 }
3289
3290 static int enable_mismatched_32bit_el0(unsigned int cpu)
3291 {
3292 /*
3293 * The first 32-bit-capable CPU we detected and so can no longer
3294 * be offlined by userspace. -1 indicates we haven't yet onlined
3295 * a 32-bit-capable CPU.
3296 */
3297 static int lucky_winner = -1;
3298
3299 struct cpuinfo_arm64 *info = &per_cpu(cpu_data, cpu);
3300 bool cpu_32bit = id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0);
3301
3302 if (cpu_32bit) {
3303 cpumask_set_cpu(cpu, cpu_32bit_el0_mask);
3304 static_branch_enable_cpuslocked(&arm64_mismatched_32bit_el0);
3305 }
3306
3307 if (cpumask_test_cpu(0, cpu_32bit_el0_mask) == cpu_32bit)
3308 return 0;
3309
3310 if (lucky_winner >= 0)
3311 return 0;
3312
3313 /*
3314 * We've detected a mismatch. We need to keep one of our CPUs with
3315 * 32-bit EL0 online so that is_cpu_allowed() doesn't end up rejecting
3316 * every CPU in the system for a 32-bit task.
3317 */
3318 lucky_winner = cpu_32bit ? cpu : cpumask_any_and(cpu_32bit_el0_mask,
3319 cpu_active_mask);
3320 get_cpu_device(lucky_winner)->offline_disabled = true;
3321 setup_elf_hwcaps(compat_elf_hwcaps);
3322 elf_hwcap_fixup();
3323 pr_info("Asymmetric 32-bit EL0 support detected on CPU %u; CPU hot-unplug disabled on CPU %u\n",
3324 cpu, lucky_winner);
3325 return 0;
3326 }
3327
3328 static int __init init_32bit_el0_mask(void)
3329 {
3330 if (!allow_mismatched_32bit_el0)
3331 return 0;
3332
3333 if (!zalloc_cpumask_var(&cpu_32bit_el0_mask, GFP_KERNEL))
3334 return -ENOMEM;
3335
3336 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
3337 "arm64/mismatched_32bit_el0:online",
3338 enable_mismatched_32bit_el0, NULL);
3339 }
3340 subsys_initcall_sync(init_32bit_el0_mask);
3341
3342 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
3343 {
3344 cpu_replace_ttbr1(lm_alias(swapper_pg_dir), idmap_pg_dir);
3345 }
3346
3347 /*
3348 * We emulate only the following system register space.
3349 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 2 - 7]
3350 * See Table C5-6 System instruction encodings for System register accesses,
3351 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
3352 */
3353 static inline bool __attribute_const__ is_emulated(u32 id)
3354 {
3355 return (sys_reg_Op0(id) == 0x3 &&
3356 sys_reg_CRn(id) == 0x0 &&
3357 sys_reg_Op1(id) == 0x0 &&
3358 (sys_reg_CRm(id) == 0 ||
3359 ((sys_reg_CRm(id) >= 2) && (sys_reg_CRm(id) <= 7))));
3360 }
3361
3362 /*
3363 * With CRm == 0, reg should be one of :
3364 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
3365 */
3366 static inline int emulate_id_reg(u32 id, u64 *valp)
3367 {
3368 switch (id) {
3369 case SYS_MIDR_EL1:
3370 *valp = read_cpuid_id();
3371 break;
3372 case SYS_MPIDR_EL1:
3373 *valp = SYS_MPIDR_SAFE_VAL;
3374 break;
3375 case SYS_REVIDR_EL1:
3376 /* IMPLEMENTATION DEFINED values are emulated with 0 */
3377 *valp = 0;
3378 break;
3379 default:
3380 return -EINVAL;
3381 }
3382
3383 return 0;
3384 }
3385
3386 static int emulate_sys_reg(u32 id, u64 *valp)
3387 {
3388 struct arm64_ftr_reg *regp;
3389
3390 if (!is_emulated(id))
3391 return -EINVAL;
3392
3393 if (sys_reg_CRm(id) == 0)
3394 return emulate_id_reg(id, valp);
3395
3396 regp = get_arm64_ftr_reg_nowarn(id);
3397 if (regp)
3398 *valp = arm64_ftr_reg_user_value(regp);
3399 else
3400 /*
3401 * The untracked registers are either IMPLEMENTATION DEFINED
3402 * (e.g, ID_AFR0_EL1) or reserved RAZ.
3403 */
3404 *valp = 0;
3405 return 0;
3406 }
3407
3408 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
3409 {
3410 int rc;
3411 u64 val;
3412
3413 rc = emulate_sys_reg(sys_reg, &val);
3414 if (!rc) {
3415 pt_regs_write_reg(regs, rt, val);
3416 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
3417 }
3418 return rc;
3419 }
3420
3421 bool try_emulate_mrs(struct pt_regs *regs, u32 insn)
3422 {
3423 u32 sys_reg, rt;
3424
3425 if (compat_user_mode(regs) || !aarch64_insn_is_mrs(insn))
3426 return false;
3427
3428 /*
3429 * sys_reg values are defined as used in mrs/msr instruction.
3430 * shift the imm value to get the encoding.
3431 */
3432 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
3433 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
3434 return do_emulate_mrs(regs, sys_reg, rt) == 0;
3435 }
3436
3437 enum mitigation_state arm64_get_meltdown_state(void)
3438 {
3439 if (__meltdown_safe)
3440 return SPECTRE_UNAFFECTED;
3441
3442 if (arm64_kernel_unmapped_at_el0())
3443 return SPECTRE_MITIGATED;
3444
3445 return SPECTRE_VULNERABLE;
3446 }
3447
3448 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
3449 char *buf)
3450 {
3451 switch (arm64_get_meltdown_state()) {
3452 case SPECTRE_UNAFFECTED:
3453 return sprintf(buf, "Not affected\n");
3454
3455 case SPECTRE_MITIGATED:
3456 return sprintf(buf, "Mitigation: PTI\n");
3457
3458 default:
3459 return sprintf(buf, "Vulnerable\n");
3460 }
3461 }