]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/cpufeature.c
Merge branch 'v4.13/sps' into v4.13/drivers
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT \
41 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
55 EXPORT_SYMBOL(cpu_hwcap_keys);
56
57 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
58 { \
59 .sign = SIGNED, \
60 .visible = VISIBLE, \
61 .strict = STRICT, \
62 .type = TYPE, \
63 .shift = SHIFT, \
64 .width = WIDTH, \
65 .safe_val = SAFE_VAL, \
66 }
67
68 /* Define a feature with unsigned values */
69 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
70 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
71
72 /* Define a feature with a signed value */
73 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
74 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
75
76 #define ARM64_FTR_END \
77 { \
78 .width = 0, \
79 }
80
81 /* meta feature for alternatives */
82 static bool __maybe_unused
83 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
84
85
86 /*
87 * NOTE: Any changes to the visibility of features should be kept in
88 * sync with the documentation of the CPU feature register ABI.
89 */
90 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
91 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
92 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
93 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
94 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
95 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
96 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
97 ARM64_FTR_END,
98 };
99
100 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
101 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
102 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
103 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
104 ARM64_FTR_END,
105 };
106
107 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
108 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
109 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
110 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
111 /* Linux doesn't care about the EL3 */
112 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
114 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
115 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
116 ARM64_FTR_END,
117 };
118
119 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
120 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
121 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
122 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
123 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
124 /* Linux shouldn't care about secure memory */
125 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
128 /*
129 * Differing PARange is fine as long as all peripherals and memory are mapped
130 * within the minimum PARange of all CPUs
131 */
132 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
133 ARM64_FTR_END,
134 };
135
136 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
137 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
138 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
139 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
140 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
142 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
143 ARM64_FTR_END,
144 };
145
146 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
147 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
148 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
149 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
150 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
151 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
152 ARM64_FTR_END,
153 };
154
155 static const struct arm64_ftr_bits ftr_ctr[] = {
156 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
157 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
158 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
159 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
160 /*
161 * Linux can handle differing I-cache policies. Userspace JITs will
162 * make use of *minLine.
163 * If we have differing I-cache policies, report it as the weakest - VIPT.
164 */
165 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
166 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
167 ARM64_FTR_END,
168 };
169
170 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
171 .name = "SYS_CTR_EL0",
172 .ftr_bits = ftr_ctr
173 };
174
175 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
176 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
177 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
178 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
179 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
180 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
181 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
182 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
183 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
184 ARM64_FTR_END,
185 };
186
187 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
188 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
189 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
193 /*
194 * We can instantiate multiple PMU instances with different levels
195 * of support.
196 */
197 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
200 ARM64_FTR_END,
201 };
202
203 static const struct arm64_ftr_bits ftr_mvfr2[] = {
204 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
205 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
206 ARM64_FTR_END,
207 };
208
209 static const struct arm64_ftr_bits ftr_dczid[] = {
210 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
211 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
212 ARM64_FTR_END,
213 };
214
215
216 static const struct arm64_ftr_bits ftr_id_isar5[] = {
217 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
223 ARM64_FTR_END,
224 };
225
226 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
227 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
228 ARM64_FTR_END,
229 };
230
231 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
232 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
235 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
236 ARM64_FTR_END,
237 };
238
239 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
241 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
243 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
244 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
245 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
248 ARM64_FTR_END,
249 };
250
251 /*
252 * Common ftr bits for a 32bit register with all hidden, strict
253 * attributes, with 4bit feature fields and a default safe value of
254 * 0. Covers the following 32bit registers:
255 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
256 */
257 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
265 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
266 ARM64_FTR_END,
267 };
268
269 /* Table for a single 32bit feature value */
270 static const struct arm64_ftr_bits ftr_single32[] = {
271 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
272 ARM64_FTR_END,
273 };
274
275 static const struct arm64_ftr_bits ftr_raz[] = {
276 ARM64_FTR_END,
277 };
278
279 #define ARM64_FTR_REG(id, table) { \
280 .sys_id = id, \
281 .reg = &(struct arm64_ftr_reg){ \
282 .name = #id, \
283 .ftr_bits = &((table)[0]), \
284 }}
285
286 static const struct __ftr_reg_entry {
287 u32 sys_id;
288 struct arm64_ftr_reg *reg;
289 } arm64_ftr_regs[] = {
290
291 /* Op1 = 0, CRn = 0, CRm = 1 */
292 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
293 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
294 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
295 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
296 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
297 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
298 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
299
300 /* Op1 = 0, CRn = 0, CRm = 2 */
301 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
302 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
303 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
304 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
305 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
306 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
307 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
308
309 /* Op1 = 0, CRn = 0, CRm = 3 */
310 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
311 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
312 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
313
314 /* Op1 = 0, CRn = 0, CRm = 4 */
315 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
316 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
317
318 /* Op1 = 0, CRn = 0, CRm = 5 */
319 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
320 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
321
322 /* Op1 = 0, CRn = 0, CRm = 6 */
323 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
324 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
325
326 /* Op1 = 0, CRn = 0, CRm = 7 */
327 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
328 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
329 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
330
331 /* Op1 = 3, CRn = 0, CRm = 0 */
332 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
333 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
334
335 /* Op1 = 3, CRn = 14, CRm = 0 */
336 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
337 };
338
339 static int search_cmp_ftr_reg(const void *id, const void *regp)
340 {
341 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
342 }
343
344 /*
345 * get_arm64_ftr_reg - Lookup a feature register entry using its
346 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
347 * ascending order of sys_id , we use binary search to find a matching
348 * entry.
349 *
350 * returns - Upon success, matching ftr_reg entry for id.
351 * - NULL on failure. It is upto the caller to decide
352 * the impact of a failure.
353 */
354 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
355 {
356 const struct __ftr_reg_entry *ret;
357
358 ret = bsearch((const void *)(unsigned long)sys_id,
359 arm64_ftr_regs,
360 ARRAY_SIZE(arm64_ftr_regs),
361 sizeof(arm64_ftr_regs[0]),
362 search_cmp_ftr_reg);
363 if (ret)
364 return ret->reg;
365 return NULL;
366 }
367
368 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
369 s64 ftr_val)
370 {
371 u64 mask = arm64_ftr_mask(ftrp);
372
373 reg &= ~mask;
374 reg |= (ftr_val << ftrp->shift) & mask;
375 return reg;
376 }
377
378 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
379 s64 cur)
380 {
381 s64 ret = 0;
382
383 switch (ftrp->type) {
384 case FTR_EXACT:
385 ret = ftrp->safe_val;
386 break;
387 case FTR_LOWER_SAFE:
388 ret = new < cur ? new : cur;
389 break;
390 case FTR_HIGHER_SAFE:
391 ret = new > cur ? new : cur;
392 break;
393 default:
394 BUG();
395 }
396
397 return ret;
398 }
399
400 static void __init sort_ftr_regs(void)
401 {
402 int i;
403
404 /* Check that the array is sorted so that we can do the binary search */
405 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
406 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
407 }
408
409 /*
410 * Initialise the CPU feature register from Boot CPU values.
411 * Also initiliases the strict_mask for the register.
412 * Any bits that are not covered by an arm64_ftr_bits entry are considered
413 * RES0 for the system-wide value, and must strictly match.
414 */
415 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
416 {
417 u64 val = 0;
418 u64 strict_mask = ~0x0ULL;
419 u64 user_mask = 0;
420 u64 valid_mask = 0;
421
422 const struct arm64_ftr_bits *ftrp;
423 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
424
425 BUG_ON(!reg);
426
427 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
428 u64 ftr_mask = arm64_ftr_mask(ftrp);
429 s64 ftr_new = arm64_ftr_value(ftrp, new);
430
431 val = arm64_ftr_set_value(ftrp, val, ftr_new);
432
433 valid_mask |= ftr_mask;
434 if (!ftrp->strict)
435 strict_mask &= ~ftr_mask;
436 if (ftrp->visible)
437 user_mask |= ftr_mask;
438 else
439 reg->user_val = arm64_ftr_set_value(ftrp,
440 reg->user_val,
441 ftrp->safe_val);
442 }
443
444 val &= valid_mask;
445
446 reg->sys_val = val;
447 reg->strict_mask = strict_mask;
448 reg->user_mask = user_mask;
449 }
450
451 void __init init_cpu_features(struct cpuinfo_arm64 *info)
452 {
453 /* Before we start using the tables, make sure it is sorted */
454 sort_ftr_regs();
455
456 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
457 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
458 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
459 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
460 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
461 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
462 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
463 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
464 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
465 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
466 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
467 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
468
469 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
470 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
471 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
472 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
473 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
474 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
475 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
476 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
477 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
478 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
479 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
480 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
481 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
482 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
483 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
484 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
485 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
486 }
487
488 }
489
490 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
491 {
492 const struct arm64_ftr_bits *ftrp;
493
494 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
495 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
496 s64 ftr_new = arm64_ftr_value(ftrp, new);
497
498 if (ftr_cur == ftr_new)
499 continue;
500 /* Find a safe value */
501 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
502 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
503 }
504
505 }
506
507 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
508 {
509 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
510
511 BUG_ON(!regp);
512 update_cpu_ftr_reg(regp, val);
513 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
514 return 0;
515 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
516 regp->name, boot, cpu, val);
517 return 1;
518 }
519
520 /*
521 * Update system wide CPU feature registers with the values from a
522 * non-boot CPU. Also performs SANITY checks to make sure that there
523 * aren't any insane variations from that of the boot CPU.
524 */
525 void update_cpu_features(int cpu,
526 struct cpuinfo_arm64 *info,
527 struct cpuinfo_arm64 *boot)
528 {
529 int taint = 0;
530
531 /*
532 * The kernel can handle differing I-cache policies, but otherwise
533 * caches should look identical. Userspace JITs will make use of
534 * *minLine.
535 */
536 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
537 info->reg_ctr, boot->reg_ctr);
538
539 /*
540 * Userspace may perform DC ZVA instructions. Mismatched block sizes
541 * could result in too much or too little memory being zeroed if a
542 * process is preempted and migrated between CPUs.
543 */
544 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
545 info->reg_dczid, boot->reg_dczid);
546
547 /* If different, timekeeping will be broken (especially with KVM) */
548 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
549 info->reg_cntfrq, boot->reg_cntfrq);
550
551 /*
552 * The kernel uses self-hosted debug features and expects CPUs to
553 * support identical debug features. We presently need CTX_CMPs, WRPs,
554 * and BRPs to be identical.
555 * ID_AA64DFR1 is currently RES0.
556 */
557 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
558 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
559 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
560 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
561 /*
562 * Even in big.LITTLE, processors should be identical instruction-set
563 * wise.
564 */
565 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
566 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
567 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
568 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
569
570 /*
571 * Differing PARange support is fine as long as all peripherals and
572 * memory are mapped within the minimum PARange of all CPUs.
573 * Linux should not care about secure memory.
574 */
575 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
576 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
577 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
578 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
579 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
580 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
581
582 /*
583 * EL3 is not our concern.
584 * ID_AA64PFR1 is currently RES0.
585 */
586 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
587 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
588 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
589 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
590
591 /*
592 * If we have AArch32, we care about 32-bit features for compat.
593 * If the system doesn't support AArch32, don't update them.
594 */
595 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
596 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
597
598 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
599 info->reg_id_dfr0, boot->reg_id_dfr0);
600 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
601 info->reg_id_isar0, boot->reg_id_isar0);
602 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
603 info->reg_id_isar1, boot->reg_id_isar1);
604 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
605 info->reg_id_isar2, boot->reg_id_isar2);
606 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
607 info->reg_id_isar3, boot->reg_id_isar3);
608 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
609 info->reg_id_isar4, boot->reg_id_isar4);
610 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
611 info->reg_id_isar5, boot->reg_id_isar5);
612
613 /*
614 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
615 * ACTLR formats could differ across CPUs and therefore would have to
616 * be trapped for virtualization anyway.
617 */
618 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
619 info->reg_id_mmfr0, boot->reg_id_mmfr0);
620 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
621 info->reg_id_mmfr1, boot->reg_id_mmfr1);
622 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
623 info->reg_id_mmfr2, boot->reg_id_mmfr2);
624 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
625 info->reg_id_mmfr3, boot->reg_id_mmfr3);
626 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
627 info->reg_id_pfr0, boot->reg_id_pfr0);
628 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
629 info->reg_id_pfr1, boot->reg_id_pfr1);
630 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
631 info->reg_mvfr0, boot->reg_mvfr0);
632 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
633 info->reg_mvfr1, boot->reg_mvfr1);
634 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
635 info->reg_mvfr2, boot->reg_mvfr2);
636 }
637
638 /*
639 * Mismatched CPU features are a recipe for disaster. Don't even
640 * pretend to support them.
641 */
642 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
643 "Unsupported CPU feature variation.\n");
644 }
645
646 u64 read_sanitised_ftr_reg(u32 id)
647 {
648 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
649
650 /* We shouldn't get a request for an unsupported register */
651 BUG_ON(!regp);
652 return regp->sys_val;
653 }
654
655 #define read_sysreg_case(r) \
656 case r: return read_sysreg_s(r)
657
658 /*
659 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
660 * Read the system register on the current CPU
661 */
662 static u64 __read_sysreg_by_encoding(u32 sys_id)
663 {
664 switch (sys_id) {
665 read_sysreg_case(SYS_ID_PFR0_EL1);
666 read_sysreg_case(SYS_ID_PFR1_EL1);
667 read_sysreg_case(SYS_ID_DFR0_EL1);
668 read_sysreg_case(SYS_ID_MMFR0_EL1);
669 read_sysreg_case(SYS_ID_MMFR1_EL1);
670 read_sysreg_case(SYS_ID_MMFR2_EL1);
671 read_sysreg_case(SYS_ID_MMFR3_EL1);
672 read_sysreg_case(SYS_ID_ISAR0_EL1);
673 read_sysreg_case(SYS_ID_ISAR1_EL1);
674 read_sysreg_case(SYS_ID_ISAR2_EL1);
675 read_sysreg_case(SYS_ID_ISAR3_EL1);
676 read_sysreg_case(SYS_ID_ISAR4_EL1);
677 read_sysreg_case(SYS_ID_ISAR5_EL1);
678 read_sysreg_case(SYS_MVFR0_EL1);
679 read_sysreg_case(SYS_MVFR1_EL1);
680 read_sysreg_case(SYS_MVFR2_EL1);
681
682 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
683 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
684 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
685 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
686 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
687 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
688 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
689 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
690 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
691
692 read_sysreg_case(SYS_CNTFRQ_EL0);
693 read_sysreg_case(SYS_CTR_EL0);
694 read_sysreg_case(SYS_DCZID_EL0);
695
696 default:
697 BUG();
698 return 0;
699 }
700 }
701
702 #include <linux/irqchip/arm-gic-v3.h>
703
704 static bool
705 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
706 {
707 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
708
709 return val >= entry->min_field_value;
710 }
711
712 static bool
713 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
714 {
715 u64 val;
716
717 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
718 if (scope == SCOPE_SYSTEM)
719 val = read_sanitised_ftr_reg(entry->sys_reg);
720 else
721 val = __read_sysreg_by_encoding(entry->sys_reg);
722
723 return feature_matches(val, entry);
724 }
725
726 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
727 {
728 bool has_sre;
729
730 if (!has_cpuid_feature(entry, scope))
731 return false;
732
733 has_sre = gic_enable_sre();
734 if (!has_sre)
735 pr_warn_once("%s present but disabled by higher exception level\n",
736 entry->desc);
737
738 return has_sre;
739 }
740
741 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
742 {
743 u32 midr = read_cpuid_id();
744
745 /* Cavium ThunderX pass 1.x and 2.x */
746 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
747 MIDR_CPU_VAR_REV(0, 0),
748 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
749 }
750
751 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
752 {
753 return is_kernel_in_hyp_mode();
754 }
755
756 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
757 int __unused)
758 {
759 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
760
761 /*
762 * Activate the lower HYP offset only if:
763 * - the idmap doesn't clash with it,
764 * - the kernel is not running at EL2.
765 */
766 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
767 }
768
769 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
770 {
771 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
772
773 return cpuid_feature_extract_signed_field(pfr0,
774 ID_AA64PFR0_FP_SHIFT) < 0;
775 }
776
777 static const struct arm64_cpu_capabilities arm64_features[] = {
778 {
779 .desc = "GIC system register CPU interface",
780 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
781 .def_scope = SCOPE_SYSTEM,
782 .matches = has_useable_gicv3_cpuif,
783 .sys_reg = SYS_ID_AA64PFR0_EL1,
784 .field_pos = ID_AA64PFR0_GIC_SHIFT,
785 .sign = FTR_UNSIGNED,
786 .min_field_value = 1,
787 },
788 #ifdef CONFIG_ARM64_PAN
789 {
790 .desc = "Privileged Access Never",
791 .capability = ARM64_HAS_PAN,
792 .def_scope = SCOPE_SYSTEM,
793 .matches = has_cpuid_feature,
794 .sys_reg = SYS_ID_AA64MMFR1_EL1,
795 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
796 .sign = FTR_UNSIGNED,
797 .min_field_value = 1,
798 .enable = cpu_enable_pan,
799 },
800 #endif /* CONFIG_ARM64_PAN */
801 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
802 {
803 .desc = "LSE atomic instructions",
804 .capability = ARM64_HAS_LSE_ATOMICS,
805 .def_scope = SCOPE_SYSTEM,
806 .matches = has_cpuid_feature,
807 .sys_reg = SYS_ID_AA64ISAR0_EL1,
808 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
809 .sign = FTR_UNSIGNED,
810 .min_field_value = 2,
811 },
812 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
813 {
814 .desc = "Software prefetching using PRFM",
815 .capability = ARM64_HAS_NO_HW_PREFETCH,
816 .def_scope = SCOPE_SYSTEM,
817 .matches = has_no_hw_prefetch,
818 },
819 #ifdef CONFIG_ARM64_UAO
820 {
821 .desc = "User Access Override",
822 .capability = ARM64_HAS_UAO,
823 .def_scope = SCOPE_SYSTEM,
824 .matches = has_cpuid_feature,
825 .sys_reg = SYS_ID_AA64MMFR2_EL1,
826 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
827 .min_field_value = 1,
828 /*
829 * We rely on stop_machine() calling uao_thread_switch() to set
830 * UAO immediately after patching.
831 */
832 },
833 #endif /* CONFIG_ARM64_UAO */
834 #ifdef CONFIG_ARM64_PAN
835 {
836 .capability = ARM64_ALT_PAN_NOT_UAO,
837 .def_scope = SCOPE_SYSTEM,
838 .matches = cpufeature_pan_not_uao,
839 },
840 #endif /* CONFIG_ARM64_PAN */
841 {
842 .desc = "Virtualization Host Extensions",
843 .capability = ARM64_HAS_VIRT_HOST_EXTN,
844 .def_scope = SCOPE_SYSTEM,
845 .matches = runs_at_el2,
846 },
847 {
848 .desc = "32-bit EL0 Support",
849 .capability = ARM64_HAS_32BIT_EL0,
850 .def_scope = SCOPE_SYSTEM,
851 .matches = has_cpuid_feature,
852 .sys_reg = SYS_ID_AA64PFR0_EL1,
853 .sign = FTR_UNSIGNED,
854 .field_pos = ID_AA64PFR0_EL0_SHIFT,
855 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
856 },
857 {
858 .desc = "Reduced HYP mapping offset",
859 .capability = ARM64_HYP_OFFSET_LOW,
860 .def_scope = SCOPE_SYSTEM,
861 .matches = hyp_offset_low,
862 },
863 {
864 /* FP/SIMD is not implemented */
865 .capability = ARM64_HAS_NO_FPSIMD,
866 .def_scope = SCOPE_SYSTEM,
867 .min_field_value = 0,
868 .matches = has_no_fpsimd,
869 },
870 {},
871 };
872
873 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
874 { \
875 .desc = #cap, \
876 .def_scope = SCOPE_SYSTEM, \
877 .matches = has_cpuid_feature, \
878 .sys_reg = reg, \
879 .field_pos = field, \
880 .sign = s, \
881 .min_field_value = min_value, \
882 .hwcap_type = type, \
883 .hwcap = cap, \
884 }
885
886 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
887 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
888 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
889 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
890 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
891 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
892 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
893 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
894 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
895 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
896 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
897 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
898 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
899 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
900 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
901 {},
902 };
903
904 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
905 #ifdef CONFIG_COMPAT
906 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
907 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
908 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
909 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
910 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
911 #endif
912 {},
913 };
914
915 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
916 {
917 switch (cap->hwcap_type) {
918 case CAP_HWCAP:
919 elf_hwcap |= cap->hwcap;
920 break;
921 #ifdef CONFIG_COMPAT
922 case CAP_COMPAT_HWCAP:
923 compat_elf_hwcap |= (u32)cap->hwcap;
924 break;
925 case CAP_COMPAT_HWCAP2:
926 compat_elf_hwcap2 |= (u32)cap->hwcap;
927 break;
928 #endif
929 default:
930 WARN_ON(1);
931 break;
932 }
933 }
934
935 /* Check if we have a particular HWCAP enabled */
936 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
937 {
938 bool rc;
939
940 switch (cap->hwcap_type) {
941 case CAP_HWCAP:
942 rc = (elf_hwcap & cap->hwcap) != 0;
943 break;
944 #ifdef CONFIG_COMPAT
945 case CAP_COMPAT_HWCAP:
946 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
947 break;
948 case CAP_COMPAT_HWCAP2:
949 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
950 break;
951 #endif
952 default:
953 WARN_ON(1);
954 rc = false;
955 }
956
957 return rc;
958 }
959
960 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
961 {
962 /* We support emulation of accesses to CPU ID feature registers */
963 elf_hwcap |= HWCAP_CPUID;
964 for (; hwcaps->matches; hwcaps++)
965 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
966 cap_set_elf_hwcap(hwcaps);
967 }
968
969 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
970 const char *info)
971 {
972 for (; caps->matches; caps++) {
973 if (!caps->matches(caps, caps->def_scope))
974 continue;
975
976 if (!cpus_have_cap(caps->capability) && caps->desc)
977 pr_info("%s %s\n", info, caps->desc);
978 cpus_set_cap(caps->capability);
979 }
980 }
981
982 /*
983 * Run through the enabled capabilities and enable() it on all active
984 * CPUs
985 */
986 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
987 {
988 for (; caps->matches; caps++)
989 if (caps->enable && cpus_have_cap(caps->capability))
990 /*
991 * Use stop_machine() as it schedules the work allowing
992 * us to modify PSTATE, instead of on_each_cpu() which
993 * uses an IPI, giving us a PSTATE that disappears when
994 * we return.
995 */
996 stop_machine(caps->enable, NULL, cpu_online_mask);
997 }
998
999 /*
1000 * Flag to indicate if we have computed the system wide
1001 * capabilities based on the boot time active CPUs. This
1002 * will be used to determine if a new booting CPU should
1003 * go through the verification process to make sure that it
1004 * supports the system capabilities, without using a hotplug
1005 * notifier.
1006 */
1007 static bool sys_caps_initialised;
1008
1009 static inline void set_sys_caps_initialised(void)
1010 {
1011 sys_caps_initialised = true;
1012 }
1013
1014 /*
1015 * Check for CPU features that are used in early boot
1016 * based on the Boot CPU value.
1017 */
1018 static void check_early_cpu_features(void)
1019 {
1020 verify_cpu_run_el();
1021 verify_cpu_asid_bits();
1022 }
1023
1024 static void
1025 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1026 {
1027
1028 for (; caps->matches; caps++)
1029 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1030 pr_crit("CPU%d: missing HWCAP: %s\n",
1031 smp_processor_id(), caps->desc);
1032 cpu_die_early();
1033 }
1034 }
1035
1036 static void
1037 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1038 {
1039 for (; caps->matches; caps++) {
1040 if (!cpus_have_cap(caps->capability))
1041 continue;
1042 /*
1043 * If the new CPU misses an advertised feature, we cannot proceed
1044 * further, park the cpu.
1045 */
1046 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1047 pr_crit("CPU%d: missing feature: %s\n",
1048 smp_processor_id(), caps->desc);
1049 cpu_die_early();
1050 }
1051 if (caps->enable)
1052 caps->enable(NULL);
1053 }
1054 }
1055
1056 /*
1057 * Run through the enabled system capabilities and enable() it on this CPU.
1058 * The capabilities were decided based on the available CPUs at the boot time.
1059 * Any new CPU should match the system wide status of the capability. If the
1060 * new CPU doesn't have a capability which the system now has enabled, we
1061 * cannot do anything to fix it up and could cause unexpected failures. So
1062 * we park the CPU.
1063 */
1064 static void verify_local_cpu_capabilities(void)
1065 {
1066 verify_local_cpu_errata_workarounds();
1067 verify_local_cpu_features(arm64_features);
1068 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1069 if (system_supports_32bit_el0())
1070 verify_local_elf_hwcaps(compat_elf_hwcaps);
1071 }
1072
1073 void check_local_cpu_capabilities(void)
1074 {
1075 /*
1076 * All secondary CPUs should conform to the early CPU features
1077 * in use by the kernel based on boot CPU.
1078 */
1079 check_early_cpu_features();
1080
1081 /*
1082 * If we haven't finalised the system capabilities, this CPU gets
1083 * a chance to update the errata work arounds.
1084 * Otherwise, this CPU should verify that it has all the system
1085 * advertised capabilities.
1086 */
1087 if (!sys_caps_initialised)
1088 update_cpu_errata_workarounds();
1089 else
1090 verify_local_cpu_capabilities();
1091 }
1092
1093 static void __init setup_feature_capabilities(void)
1094 {
1095 update_cpu_capabilities(arm64_features, "detected feature:");
1096 enable_cpu_capabilities(arm64_features);
1097 }
1098
1099 /*
1100 * Check if the current CPU has a given feature capability.
1101 * Should be called from non-preemptible context.
1102 */
1103 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1104 unsigned int cap)
1105 {
1106 const struct arm64_cpu_capabilities *caps;
1107
1108 if (WARN_ON(preemptible()))
1109 return false;
1110
1111 for (caps = cap_array; caps->desc; caps++)
1112 if (caps->capability == cap && caps->matches)
1113 return caps->matches(caps, SCOPE_LOCAL_CPU);
1114
1115 return false;
1116 }
1117
1118 extern const struct arm64_cpu_capabilities arm64_errata[];
1119
1120 bool this_cpu_has_cap(unsigned int cap)
1121 {
1122 return (__this_cpu_has_cap(arm64_features, cap) ||
1123 __this_cpu_has_cap(arm64_errata, cap));
1124 }
1125
1126 void __init setup_cpu_features(void)
1127 {
1128 u32 cwg;
1129 int cls;
1130
1131 /* Set the CPU feature capabilies */
1132 setup_feature_capabilities();
1133 enable_errata_workarounds();
1134 setup_elf_hwcaps(arm64_elf_hwcaps);
1135
1136 if (system_supports_32bit_el0())
1137 setup_elf_hwcaps(compat_elf_hwcaps);
1138
1139 /* Advertise that we have computed the system capabilities */
1140 set_sys_caps_initialised();
1141
1142 /*
1143 * Check for sane CTR_EL0.CWG value.
1144 */
1145 cwg = cache_type_cwg();
1146 cls = cache_line_size();
1147 if (!cwg)
1148 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1149 cls);
1150 if (L1_CACHE_BYTES < cls)
1151 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1152 L1_CACHE_BYTES, cls);
1153 }
1154
1155 static bool __maybe_unused
1156 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1157 {
1158 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1159 }
1160
1161 /*
1162 * We emulate only the following system register space.
1163 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1164 * See Table C5-6 System instruction encodings for System register accesses,
1165 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1166 */
1167 static inline bool __attribute_const__ is_emulated(u32 id)
1168 {
1169 return (sys_reg_Op0(id) == 0x3 &&
1170 sys_reg_CRn(id) == 0x0 &&
1171 sys_reg_Op1(id) == 0x0 &&
1172 (sys_reg_CRm(id) == 0 ||
1173 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1174 }
1175
1176 /*
1177 * With CRm == 0, reg should be one of :
1178 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1179 */
1180 static inline int emulate_id_reg(u32 id, u64 *valp)
1181 {
1182 switch (id) {
1183 case SYS_MIDR_EL1:
1184 *valp = read_cpuid_id();
1185 break;
1186 case SYS_MPIDR_EL1:
1187 *valp = SYS_MPIDR_SAFE_VAL;
1188 break;
1189 case SYS_REVIDR_EL1:
1190 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1191 *valp = 0;
1192 break;
1193 default:
1194 return -EINVAL;
1195 }
1196
1197 return 0;
1198 }
1199
1200 static int emulate_sys_reg(u32 id, u64 *valp)
1201 {
1202 struct arm64_ftr_reg *regp;
1203
1204 if (!is_emulated(id))
1205 return -EINVAL;
1206
1207 if (sys_reg_CRm(id) == 0)
1208 return emulate_id_reg(id, valp);
1209
1210 regp = get_arm64_ftr_reg(id);
1211 if (regp)
1212 *valp = arm64_ftr_reg_user_value(regp);
1213 else
1214 /*
1215 * The untracked registers are either IMPLEMENTATION DEFINED
1216 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1217 */
1218 *valp = 0;
1219 return 0;
1220 }
1221
1222 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1223 {
1224 int rc;
1225 u32 sys_reg, dst;
1226 u64 val;
1227
1228 /*
1229 * sys_reg values are defined as used in mrs/msr instruction.
1230 * shift the imm value to get the encoding.
1231 */
1232 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1233 rc = emulate_sys_reg(sys_reg, &val);
1234 if (!rc) {
1235 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1236 pt_regs_write_reg(regs, dst, val);
1237 regs->pc += 4;
1238 }
1239
1240 return rc;
1241 }
1242
1243 static struct undef_hook mrs_hook = {
1244 .instr_mask = 0xfff00000,
1245 .instr_val = 0xd5300000,
1246 .pstate_mask = COMPAT_PSR_MODE_MASK,
1247 .pstate_val = PSR_MODE_EL0t,
1248 .fn = emulate_mrs,
1249 };
1250
1251 static int __init enable_mrs_emulation(void)
1252 {
1253 register_undef_hook(&mrs_hook);
1254 return 0;
1255 }
1256
1257 late_initcall(enable_mrs_emulation);