]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/arm64/kernel/cpufeature.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT \
42 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54
55 /*
56 * Flag to indicate if we have computed the system wide
57 * capabilities based on the boot time active CPUs. This
58 * will be used to determine if a new booting CPU should
59 * go through the verification process to make sure that it
60 * supports the system capabilities, without using a hotplug
61 * notifier.
62 */
63 static bool sys_caps_initialised;
64
65 static inline void set_sys_caps_initialised(void)
66 {
67 sys_caps_initialised = true;
68 }
69
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 /* file-wide pr_fmt adds "CPU features: " prefix */
73 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 return 0;
75 }
76
77 static struct notifier_block cpu_hwcaps_notifier = {
78 .notifier_call = dump_cpu_hwcaps
79 };
80
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 atomic_notifier_chain_register(&panic_notifier_list,
84 &cpu_hwcaps_notifier);
85 return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 { \
94 .sign = SIGNED, \
95 .visible = VISIBLE, \
96 .strict = STRICT, \
97 .type = TYPE, \
98 .shift = SHIFT, \
99 .width = WIDTH, \
100 .safe_val = SAFE_VAL, \
101 }
102
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110
111 #define ARM64_FTR_END \
112 { \
113 .width = 0, \
114 }
115
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119
120
121 /*
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
124 */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
136 ARM64_FTR_END,
137 };
138
139 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
140 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
142 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
144 ARM64_FTR_END,
145 };
146
147 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
148 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
149 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
150 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
151 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
152 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
153 /* Linux doesn't care about the EL3 */
154 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
155 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
156 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
157 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
158 ARM64_FTR_END,
159 };
160
161 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
162 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
163 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
164 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
165 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
166 /* Linux shouldn't care about secure memory */
167 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
170 /*
171 * Differing PARange is fine as long as all peripherals and memory are mapped
172 * within the minimum PARange of all CPUs
173 */
174 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
175 ARM64_FTR_END,
176 };
177
178 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
179 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
180 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
182 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
183 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
184 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
185 ARM64_FTR_END,
186 };
187
188 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
189 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
194 ARM64_FTR_END,
195 };
196
197 static const struct arm64_ftr_bits ftr_ctr[] = {
198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
199 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
200 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
201 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
202 /*
203 * Linux can handle differing I-cache policies. Userspace JITs will
204 * make use of *minLine.
205 * If we have differing I-cache policies, report it as the weakest - VIPT.
206 */
207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
208 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
209 ARM64_FTR_END,
210 };
211
212 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
213 .name = "SYS_CTR_EL0",
214 .ftr_bits = ftr_ctr
215 };
216
217 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
218 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
223 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
226 ARM64_FTR_END,
227 };
228
229 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
231 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
234 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
235 /*
236 * We can instantiate multiple PMU instances with different levels
237 * of support.
238 */
239 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
242 ARM64_FTR_END,
243 };
244
245 static const struct arm64_ftr_bits ftr_mvfr2[] = {
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
248 ARM64_FTR_END,
249 };
250
251 static const struct arm64_ftr_bits ftr_dczid[] = {
252 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
253 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
254 ARM64_FTR_END,
255 };
256
257
258 static const struct arm64_ftr_bits ftr_id_isar5[] = {
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
265 ARM64_FTR_END,
266 };
267
268 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
269 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
270 ARM64_FTR_END,
271 };
272
273 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
274 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
275 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
276 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
277 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
278 ARM64_FTR_END,
279 };
280
281 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
283 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
288 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
289 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
290 ARM64_FTR_END,
291 };
292
293 static const struct arm64_ftr_bits ftr_zcr[] = {
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
295 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
296 ARM64_FTR_END,
297 };
298
299 /*
300 * Common ftr bits for a 32bit register with all hidden, strict
301 * attributes, with 4bit feature fields and a default safe value of
302 * 0. Covers the following 32bit registers:
303 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
304 */
305 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
307 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
310 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
313 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
314 ARM64_FTR_END,
315 };
316
317 /* Table for a single 32bit feature value */
318 static const struct arm64_ftr_bits ftr_single32[] = {
319 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
320 ARM64_FTR_END,
321 };
322
323 static const struct arm64_ftr_bits ftr_raz[] = {
324 ARM64_FTR_END,
325 };
326
327 #define ARM64_FTR_REG(id, table) { \
328 .sys_id = id, \
329 .reg = &(struct arm64_ftr_reg){ \
330 .name = #id, \
331 .ftr_bits = &((table)[0]), \
332 }}
333
334 static const struct __ftr_reg_entry {
335 u32 sys_id;
336 struct arm64_ftr_reg *reg;
337 } arm64_ftr_regs[] = {
338
339 /* Op1 = 0, CRn = 0, CRm = 1 */
340 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
341 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
342 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
343 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
344 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
345 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
346 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
347
348 /* Op1 = 0, CRn = 0, CRm = 2 */
349 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
350 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
351 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
352 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
353 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
354 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
355 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
356
357 /* Op1 = 0, CRn = 0, CRm = 3 */
358 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
359 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
360 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
361
362 /* Op1 = 0, CRn = 0, CRm = 4 */
363 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
364 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
365 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
366
367 /* Op1 = 0, CRn = 0, CRm = 5 */
368 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
369 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
370
371 /* Op1 = 0, CRn = 0, CRm = 6 */
372 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
373 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
374
375 /* Op1 = 0, CRn = 0, CRm = 7 */
376 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
377 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
378 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
379
380 /* Op1 = 0, CRn = 1, CRm = 2 */
381 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
382
383 /* Op1 = 3, CRn = 0, CRm = 0 */
384 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
385 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
386
387 /* Op1 = 3, CRn = 14, CRm = 0 */
388 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
389 };
390
391 static int search_cmp_ftr_reg(const void *id, const void *regp)
392 {
393 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
394 }
395
396 /*
397 * get_arm64_ftr_reg - Lookup a feature register entry using its
398 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
399 * ascending order of sys_id , we use binary search to find a matching
400 * entry.
401 *
402 * returns - Upon success, matching ftr_reg entry for id.
403 * - NULL on failure. It is upto the caller to decide
404 * the impact of a failure.
405 */
406 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
407 {
408 const struct __ftr_reg_entry *ret;
409
410 ret = bsearch((const void *)(unsigned long)sys_id,
411 arm64_ftr_regs,
412 ARRAY_SIZE(arm64_ftr_regs),
413 sizeof(arm64_ftr_regs[0]),
414 search_cmp_ftr_reg);
415 if (ret)
416 return ret->reg;
417 return NULL;
418 }
419
420 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
421 s64 ftr_val)
422 {
423 u64 mask = arm64_ftr_mask(ftrp);
424
425 reg &= ~mask;
426 reg |= (ftr_val << ftrp->shift) & mask;
427 return reg;
428 }
429
430 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
431 s64 cur)
432 {
433 s64 ret = 0;
434
435 switch (ftrp->type) {
436 case FTR_EXACT:
437 ret = ftrp->safe_val;
438 break;
439 case FTR_LOWER_SAFE:
440 ret = new < cur ? new : cur;
441 break;
442 case FTR_HIGHER_SAFE:
443 ret = new > cur ? new : cur;
444 break;
445 default:
446 BUG();
447 }
448
449 return ret;
450 }
451
452 static void __init sort_ftr_regs(void)
453 {
454 int i;
455
456 /* Check that the array is sorted so that we can do the binary search */
457 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
458 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
459 }
460
461 /*
462 * Initialise the CPU feature register from Boot CPU values.
463 * Also initiliases the strict_mask for the register.
464 * Any bits that are not covered by an arm64_ftr_bits entry are considered
465 * RES0 for the system-wide value, and must strictly match.
466 */
467 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
468 {
469 u64 val = 0;
470 u64 strict_mask = ~0x0ULL;
471 u64 user_mask = 0;
472 u64 valid_mask = 0;
473
474 const struct arm64_ftr_bits *ftrp;
475 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
476
477 BUG_ON(!reg);
478
479 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
480 u64 ftr_mask = arm64_ftr_mask(ftrp);
481 s64 ftr_new = arm64_ftr_value(ftrp, new);
482
483 val = arm64_ftr_set_value(ftrp, val, ftr_new);
484
485 valid_mask |= ftr_mask;
486 if (!ftrp->strict)
487 strict_mask &= ~ftr_mask;
488 if (ftrp->visible)
489 user_mask |= ftr_mask;
490 else
491 reg->user_val = arm64_ftr_set_value(ftrp,
492 reg->user_val,
493 ftrp->safe_val);
494 }
495
496 val &= valid_mask;
497
498 reg->sys_val = val;
499 reg->strict_mask = strict_mask;
500 reg->user_mask = user_mask;
501 }
502
503 void __init init_cpu_features(struct cpuinfo_arm64 *info)
504 {
505 /* Before we start using the tables, make sure it is sorted */
506 sort_ftr_regs();
507
508 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
509 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
510 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
511 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
512 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
513 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
514 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
515 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
516 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
517 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
518 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
519 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
520 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
521
522 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
523 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
524 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
525 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
526 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
527 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
528 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
529 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
530 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
531 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
532 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
533 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
534 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
535 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
536 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
537 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
538 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
539 }
540
541 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
542 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
543 sve_init_vq_map();
544 }
545 }
546
547 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
548 {
549 const struct arm64_ftr_bits *ftrp;
550
551 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
552 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
553 s64 ftr_new = arm64_ftr_value(ftrp, new);
554
555 if (ftr_cur == ftr_new)
556 continue;
557 /* Find a safe value */
558 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
559 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
560 }
561
562 }
563
564 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
565 {
566 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
567
568 BUG_ON(!regp);
569 update_cpu_ftr_reg(regp, val);
570 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
571 return 0;
572 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
573 regp->name, boot, cpu, val);
574 return 1;
575 }
576
577 /*
578 * Update system wide CPU feature registers with the values from a
579 * non-boot CPU. Also performs SANITY checks to make sure that there
580 * aren't any insane variations from that of the boot CPU.
581 */
582 void update_cpu_features(int cpu,
583 struct cpuinfo_arm64 *info,
584 struct cpuinfo_arm64 *boot)
585 {
586 int taint = 0;
587
588 /*
589 * The kernel can handle differing I-cache policies, but otherwise
590 * caches should look identical. Userspace JITs will make use of
591 * *minLine.
592 */
593 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
594 info->reg_ctr, boot->reg_ctr);
595
596 /*
597 * Userspace may perform DC ZVA instructions. Mismatched block sizes
598 * could result in too much or too little memory being zeroed if a
599 * process is preempted and migrated between CPUs.
600 */
601 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
602 info->reg_dczid, boot->reg_dczid);
603
604 /* If different, timekeeping will be broken (especially with KVM) */
605 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
606 info->reg_cntfrq, boot->reg_cntfrq);
607
608 /*
609 * The kernel uses self-hosted debug features and expects CPUs to
610 * support identical debug features. We presently need CTX_CMPs, WRPs,
611 * and BRPs to be identical.
612 * ID_AA64DFR1 is currently RES0.
613 */
614 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
615 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
616 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
617 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
618 /*
619 * Even in big.LITTLE, processors should be identical instruction-set
620 * wise.
621 */
622 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
623 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
624 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
625 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
626
627 /*
628 * Differing PARange support is fine as long as all peripherals and
629 * memory are mapped within the minimum PARange of all CPUs.
630 * Linux should not care about secure memory.
631 */
632 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
633 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
634 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
635 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
636 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
637 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
638
639 /*
640 * EL3 is not our concern.
641 * ID_AA64PFR1 is currently RES0.
642 */
643 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
644 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
645 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
646 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
647
648 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
649 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
650
651 /*
652 * If we have AArch32, we care about 32-bit features for compat.
653 * If the system doesn't support AArch32, don't update them.
654 */
655 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
656 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
657
658 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
659 info->reg_id_dfr0, boot->reg_id_dfr0);
660 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
661 info->reg_id_isar0, boot->reg_id_isar0);
662 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
663 info->reg_id_isar1, boot->reg_id_isar1);
664 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
665 info->reg_id_isar2, boot->reg_id_isar2);
666 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
667 info->reg_id_isar3, boot->reg_id_isar3);
668 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
669 info->reg_id_isar4, boot->reg_id_isar4);
670 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
671 info->reg_id_isar5, boot->reg_id_isar5);
672
673 /*
674 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
675 * ACTLR formats could differ across CPUs and therefore would have to
676 * be trapped for virtualization anyway.
677 */
678 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
679 info->reg_id_mmfr0, boot->reg_id_mmfr0);
680 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
681 info->reg_id_mmfr1, boot->reg_id_mmfr1);
682 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
683 info->reg_id_mmfr2, boot->reg_id_mmfr2);
684 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
685 info->reg_id_mmfr3, boot->reg_id_mmfr3);
686 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
687 info->reg_id_pfr0, boot->reg_id_pfr0);
688 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
689 info->reg_id_pfr1, boot->reg_id_pfr1);
690 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
691 info->reg_mvfr0, boot->reg_mvfr0);
692 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
693 info->reg_mvfr1, boot->reg_mvfr1);
694 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
695 info->reg_mvfr2, boot->reg_mvfr2);
696 }
697
698 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
699 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
700 info->reg_zcr, boot->reg_zcr);
701
702 /* Probe vector lengths, unless we already gave up on SVE */
703 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
704 !sys_caps_initialised)
705 sve_update_vq_map();
706 }
707
708 /*
709 * Mismatched CPU features are a recipe for disaster. Don't even
710 * pretend to support them.
711 */
712 if (taint) {
713 pr_warn_once("Unsupported CPU feature variation detected.\n");
714 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
715 }
716 }
717
718 u64 read_sanitised_ftr_reg(u32 id)
719 {
720 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
721
722 /* We shouldn't get a request for an unsupported register */
723 BUG_ON(!regp);
724 return regp->sys_val;
725 }
726
727 #define read_sysreg_case(r) \
728 case r: return read_sysreg_s(r)
729
730 /*
731 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
732 * Read the system register on the current CPU
733 */
734 static u64 __read_sysreg_by_encoding(u32 sys_id)
735 {
736 switch (sys_id) {
737 read_sysreg_case(SYS_ID_PFR0_EL1);
738 read_sysreg_case(SYS_ID_PFR1_EL1);
739 read_sysreg_case(SYS_ID_DFR0_EL1);
740 read_sysreg_case(SYS_ID_MMFR0_EL1);
741 read_sysreg_case(SYS_ID_MMFR1_EL1);
742 read_sysreg_case(SYS_ID_MMFR2_EL1);
743 read_sysreg_case(SYS_ID_MMFR3_EL1);
744 read_sysreg_case(SYS_ID_ISAR0_EL1);
745 read_sysreg_case(SYS_ID_ISAR1_EL1);
746 read_sysreg_case(SYS_ID_ISAR2_EL1);
747 read_sysreg_case(SYS_ID_ISAR3_EL1);
748 read_sysreg_case(SYS_ID_ISAR4_EL1);
749 read_sysreg_case(SYS_ID_ISAR5_EL1);
750 read_sysreg_case(SYS_MVFR0_EL1);
751 read_sysreg_case(SYS_MVFR1_EL1);
752 read_sysreg_case(SYS_MVFR2_EL1);
753
754 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
755 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
756 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
757 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
758 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
759 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
760 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
761 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
762 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
763
764 read_sysreg_case(SYS_CNTFRQ_EL0);
765 read_sysreg_case(SYS_CTR_EL0);
766 read_sysreg_case(SYS_DCZID_EL0);
767
768 default:
769 BUG();
770 return 0;
771 }
772 }
773
774 #include <linux/irqchip/arm-gic-v3.h>
775
776 static bool
777 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
778 {
779 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
780
781 return val >= entry->min_field_value;
782 }
783
784 static bool
785 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
786 {
787 u64 val;
788
789 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
790 if (scope == SCOPE_SYSTEM)
791 val = read_sanitised_ftr_reg(entry->sys_reg);
792 else
793 val = __read_sysreg_by_encoding(entry->sys_reg);
794
795 return feature_matches(val, entry);
796 }
797
798 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
799 {
800 bool has_sre;
801
802 if (!has_cpuid_feature(entry, scope))
803 return false;
804
805 has_sre = gic_enable_sre();
806 if (!has_sre)
807 pr_warn_once("%s present but disabled by higher exception level\n",
808 entry->desc);
809
810 return has_sre;
811 }
812
813 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
814 {
815 u32 midr = read_cpuid_id();
816
817 /* Cavium ThunderX pass 1.x and 2.x */
818 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
819 MIDR_CPU_VAR_REV(0, 0),
820 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
821 }
822
823 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
824 {
825 return is_kernel_in_hyp_mode();
826 }
827
828 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
829 int __unused)
830 {
831 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
832
833 /*
834 * Activate the lower HYP offset only if:
835 * - the idmap doesn't clash with it,
836 * - the kernel is not running at EL2.
837 */
838 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
839 }
840
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
842 {
843 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
844
845 return cpuid_feature_extract_signed_field(pfr0,
846 ID_AA64PFR0_FP_SHIFT) < 0;
847 }
848
849 static const struct arm64_cpu_capabilities arm64_features[] = {
850 {
851 .desc = "GIC system register CPU interface",
852 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
853 .def_scope = SCOPE_SYSTEM,
854 .matches = has_useable_gicv3_cpuif,
855 .sys_reg = SYS_ID_AA64PFR0_EL1,
856 .field_pos = ID_AA64PFR0_GIC_SHIFT,
857 .sign = FTR_UNSIGNED,
858 .min_field_value = 1,
859 },
860 #ifdef CONFIG_ARM64_PAN
861 {
862 .desc = "Privileged Access Never",
863 .capability = ARM64_HAS_PAN,
864 .def_scope = SCOPE_SYSTEM,
865 .matches = has_cpuid_feature,
866 .sys_reg = SYS_ID_AA64MMFR1_EL1,
867 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
868 .sign = FTR_UNSIGNED,
869 .min_field_value = 1,
870 .enable = cpu_enable_pan,
871 },
872 #endif /* CONFIG_ARM64_PAN */
873 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
874 {
875 .desc = "LSE atomic instructions",
876 .capability = ARM64_HAS_LSE_ATOMICS,
877 .def_scope = SCOPE_SYSTEM,
878 .matches = has_cpuid_feature,
879 .sys_reg = SYS_ID_AA64ISAR0_EL1,
880 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
881 .sign = FTR_UNSIGNED,
882 .min_field_value = 2,
883 },
884 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
885 {
886 .desc = "Software prefetching using PRFM",
887 .capability = ARM64_HAS_NO_HW_PREFETCH,
888 .def_scope = SCOPE_SYSTEM,
889 .matches = has_no_hw_prefetch,
890 },
891 #ifdef CONFIG_ARM64_UAO
892 {
893 .desc = "User Access Override",
894 .capability = ARM64_HAS_UAO,
895 .def_scope = SCOPE_SYSTEM,
896 .matches = has_cpuid_feature,
897 .sys_reg = SYS_ID_AA64MMFR2_EL1,
898 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
899 .min_field_value = 1,
900 /*
901 * We rely on stop_machine() calling uao_thread_switch() to set
902 * UAO immediately after patching.
903 */
904 },
905 #endif /* CONFIG_ARM64_UAO */
906 #ifdef CONFIG_ARM64_PAN
907 {
908 .capability = ARM64_ALT_PAN_NOT_UAO,
909 .def_scope = SCOPE_SYSTEM,
910 .matches = cpufeature_pan_not_uao,
911 },
912 #endif /* CONFIG_ARM64_PAN */
913 {
914 .desc = "Virtualization Host Extensions",
915 .capability = ARM64_HAS_VIRT_HOST_EXTN,
916 .def_scope = SCOPE_SYSTEM,
917 .matches = runs_at_el2,
918 },
919 {
920 .desc = "32-bit EL0 Support",
921 .capability = ARM64_HAS_32BIT_EL0,
922 .def_scope = SCOPE_SYSTEM,
923 .matches = has_cpuid_feature,
924 .sys_reg = SYS_ID_AA64PFR0_EL1,
925 .sign = FTR_UNSIGNED,
926 .field_pos = ID_AA64PFR0_EL0_SHIFT,
927 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
928 },
929 {
930 .desc = "Reduced HYP mapping offset",
931 .capability = ARM64_HYP_OFFSET_LOW,
932 .def_scope = SCOPE_SYSTEM,
933 .matches = hyp_offset_low,
934 },
935 {
936 /* FP/SIMD is not implemented */
937 .capability = ARM64_HAS_NO_FPSIMD,
938 .def_scope = SCOPE_SYSTEM,
939 .min_field_value = 0,
940 .matches = has_no_fpsimd,
941 },
942 #ifdef CONFIG_ARM64_PMEM
943 {
944 .desc = "Data cache clean to Point of Persistence",
945 .capability = ARM64_HAS_DCPOP,
946 .def_scope = SCOPE_SYSTEM,
947 .matches = has_cpuid_feature,
948 .sys_reg = SYS_ID_AA64ISAR1_EL1,
949 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
950 .min_field_value = 1,
951 },
952 #endif
953 #ifdef CONFIG_ARM64_SVE
954 {
955 .desc = "Scalable Vector Extension",
956 .capability = ARM64_SVE,
957 .def_scope = SCOPE_SYSTEM,
958 .sys_reg = SYS_ID_AA64PFR0_EL1,
959 .sign = FTR_UNSIGNED,
960 .field_pos = ID_AA64PFR0_SVE_SHIFT,
961 .min_field_value = ID_AA64PFR0_SVE,
962 .matches = has_cpuid_feature,
963 .enable = sve_kernel_enable,
964 },
965 #endif /* CONFIG_ARM64_SVE */
966 {},
967 };
968
969 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
970 { \
971 .desc = #cap, \
972 .def_scope = SCOPE_SYSTEM, \
973 .matches = has_cpuid_feature, \
974 .sys_reg = reg, \
975 .field_pos = field, \
976 .sign = s, \
977 .min_field_value = min_value, \
978 .hwcap_type = type, \
979 .hwcap = cap, \
980 }
981
982 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
983 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
984 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
985 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
986 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
987 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
988 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
989 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
990 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
991 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
992 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
993 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
994 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
995 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
996 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
997 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
998 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
999 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1000 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1001 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1002 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1003 #ifdef CONFIG_ARM64_SVE
1004 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1005 #endif
1006 {},
1007 };
1008
1009 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1010 #ifdef CONFIG_COMPAT
1011 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1012 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1013 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1014 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1015 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1016 #endif
1017 {},
1018 };
1019
1020 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1021 {
1022 switch (cap->hwcap_type) {
1023 case CAP_HWCAP:
1024 elf_hwcap |= cap->hwcap;
1025 break;
1026 #ifdef CONFIG_COMPAT
1027 case CAP_COMPAT_HWCAP:
1028 compat_elf_hwcap |= (u32)cap->hwcap;
1029 break;
1030 case CAP_COMPAT_HWCAP2:
1031 compat_elf_hwcap2 |= (u32)cap->hwcap;
1032 break;
1033 #endif
1034 default:
1035 WARN_ON(1);
1036 break;
1037 }
1038 }
1039
1040 /* Check if we have a particular HWCAP enabled */
1041 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1042 {
1043 bool rc;
1044
1045 switch (cap->hwcap_type) {
1046 case CAP_HWCAP:
1047 rc = (elf_hwcap & cap->hwcap) != 0;
1048 break;
1049 #ifdef CONFIG_COMPAT
1050 case CAP_COMPAT_HWCAP:
1051 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1052 break;
1053 case CAP_COMPAT_HWCAP2:
1054 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1055 break;
1056 #endif
1057 default:
1058 WARN_ON(1);
1059 rc = false;
1060 }
1061
1062 return rc;
1063 }
1064
1065 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1066 {
1067 /* We support emulation of accesses to CPU ID feature registers */
1068 elf_hwcap |= HWCAP_CPUID;
1069 for (; hwcaps->matches; hwcaps++)
1070 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1071 cap_set_elf_hwcap(hwcaps);
1072 }
1073
1074 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1075 const char *info)
1076 {
1077 for (; caps->matches; caps++) {
1078 if (!caps->matches(caps, caps->def_scope))
1079 continue;
1080
1081 if (!cpus_have_cap(caps->capability) && caps->desc)
1082 pr_info("%s %s\n", info, caps->desc);
1083 cpus_set_cap(caps->capability);
1084 }
1085 }
1086
1087 /*
1088 * Run through the enabled capabilities and enable() it on all active
1089 * CPUs
1090 */
1091 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1092 {
1093 for (; caps->matches; caps++) {
1094 unsigned int num = caps->capability;
1095
1096 if (!cpus_have_cap(num))
1097 continue;
1098
1099 /* Ensure cpus_have_const_cap(num) works */
1100 static_branch_enable(&cpu_hwcap_keys[num]);
1101
1102 if (caps->enable) {
1103 /*
1104 * Use stop_machine() as it schedules the work allowing
1105 * us to modify PSTATE, instead of on_each_cpu() which
1106 * uses an IPI, giving us a PSTATE that disappears when
1107 * we return.
1108 */
1109 stop_machine(caps->enable, NULL, cpu_online_mask);
1110 }
1111 }
1112 }
1113
1114 /*
1115 * Check for CPU features that are used in early boot
1116 * based on the Boot CPU value.
1117 */
1118 static void check_early_cpu_features(void)
1119 {
1120 verify_cpu_run_el();
1121 verify_cpu_asid_bits();
1122 }
1123
1124 static void
1125 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1126 {
1127
1128 for (; caps->matches; caps++)
1129 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1130 pr_crit("CPU%d: missing HWCAP: %s\n",
1131 smp_processor_id(), caps->desc);
1132 cpu_die_early();
1133 }
1134 }
1135
1136 static void
1137 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1138 {
1139 for (; caps->matches; caps++) {
1140 if (!cpus_have_cap(caps->capability))
1141 continue;
1142 /*
1143 * If the new CPU misses an advertised feature, we cannot proceed
1144 * further, park the cpu.
1145 */
1146 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1147 pr_crit("CPU%d: missing feature: %s\n",
1148 smp_processor_id(), caps->desc);
1149 cpu_die_early();
1150 }
1151 if (caps->enable)
1152 caps->enable(NULL);
1153 }
1154 }
1155
1156 static void verify_sve_features(void)
1157 {
1158 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1159 u64 zcr = read_zcr_features();
1160
1161 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1162 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1163
1164 if (len < safe_len || sve_verify_vq_map()) {
1165 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1166 smp_processor_id());
1167 cpu_die_early();
1168 }
1169
1170 /* Add checks on other ZCR bits here if necessary */
1171 }
1172
1173 /*
1174 * Run through the enabled system capabilities and enable() it on this CPU.
1175 * The capabilities were decided based on the available CPUs at the boot time.
1176 * Any new CPU should match the system wide status of the capability. If the
1177 * new CPU doesn't have a capability which the system now has enabled, we
1178 * cannot do anything to fix it up and could cause unexpected failures. So
1179 * we park the CPU.
1180 */
1181 static void verify_local_cpu_capabilities(void)
1182 {
1183 verify_local_cpu_errata_workarounds();
1184 verify_local_cpu_features(arm64_features);
1185 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1186
1187 if (system_supports_32bit_el0())
1188 verify_local_elf_hwcaps(compat_elf_hwcaps);
1189
1190 if (system_supports_sve())
1191 verify_sve_features();
1192 }
1193
1194 void check_local_cpu_capabilities(void)
1195 {
1196 /*
1197 * All secondary CPUs should conform to the early CPU features
1198 * in use by the kernel based on boot CPU.
1199 */
1200 check_early_cpu_features();
1201
1202 /*
1203 * If we haven't finalised the system capabilities, this CPU gets
1204 * a chance to update the errata work arounds.
1205 * Otherwise, this CPU should verify that it has all the system
1206 * advertised capabilities.
1207 */
1208 if (!sys_caps_initialised)
1209 update_cpu_errata_workarounds();
1210 else
1211 verify_local_cpu_capabilities();
1212 }
1213
1214 static void __init setup_feature_capabilities(void)
1215 {
1216 update_cpu_capabilities(arm64_features, "detected feature:");
1217 enable_cpu_capabilities(arm64_features);
1218 }
1219
1220 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1221 EXPORT_SYMBOL(arm64_const_caps_ready);
1222
1223 static void __init mark_const_caps_ready(void)
1224 {
1225 static_branch_enable(&arm64_const_caps_ready);
1226 }
1227
1228 /*
1229 * Check if the current CPU has a given feature capability.
1230 * Should be called from non-preemptible context.
1231 */
1232 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1233 unsigned int cap)
1234 {
1235 const struct arm64_cpu_capabilities *caps;
1236
1237 if (WARN_ON(preemptible()))
1238 return false;
1239
1240 for (caps = cap_array; caps->desc; caps++)
1241 if (caps->capability == cap && caps->matches)
1242 return caps->matches(caps, SCOPE_LOCAL_CPU);
1243
1244 return false;
1245 }
1246
1247 extern const struct arm64_cpu_capabilities arm64_errata[];
1248
1249 bool this_cpu_has_cap(unsigned int cap)
1250 {
1251 return (__this_cpu_has_cap(arm64_features, cap) ||
1252 __this_cpu_has_cap(arm64_errata, cap));
1253 }
1254
1255 void __init setup_cpu_features(void)
1256 {
1257 u32 cwg;
1258 int cls;
1259
1260 /* Set the CPU feature capabilies */
1261 setup_feature_capabilities();
1262 enable_errata_workarounds();
1263 mark_const_caps_ready();
1264 setup_elf_hwcaps(arm64_elf_hwcaps);
1265
1266 if (system_supports_32bit_el0())
1267 setup_elf_hwcaps(compat_elf_hwcaps);
1268
1269 sve_setup();
1270
1271 /* Advertise that we have computed the system capabilities */
1272 set_sys_caps_initialised();
1273
1274 /*
1275 * Check for sane CTR_EL0.CWG value.
1276 */
1277 cwg = cache_type_cwg();
1278 cls = cache_line_size();
1279 if (!cwg)
1280 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1281 cls);
1282 if (L1_CACHE_BYTES < cls)
1283 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1284 L1_CACHE_BYTES, cls);
1285 }
1286
1287 static bool __maybe_unused
1288 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1289 {
1290 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1291 }
1292
1293 /*
1294 * We emulate only the following system register space.
1295 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1296 * See Table C5-6 System instruction encodings for System register accesses,
1297 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1298 */
1299 static inline bool __attribute_const__ is_emulated(u32 id)
1300 {
1301 return (sys_reg_Op0(id) == 0x3 &&
1302 sys_reg_CRn(id) == 0x0 &&
1303 sys_reg_Op1(id) == 0x0 &&
1304 (sys_reg_CRm(id) == 0 ||
1305 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1306 }
1307
1308 /*
1309 * With CRm == 0, reg should be one of :
1310 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1311 */
1312 static inline int emulate_id_reg(u32 id, u64 *valp)
1313 {
1314 switch (id) {
1315 case SYS_MIDR_EL1:
1316 *valp = read_cpuid_id();
1317 break;
1318 case SYS_MPIDR_EL1:
1319 *valp = SYS_MPIDR_SAFE_VAL;
1320 break;
1321 case SYS_REVIDR_EL1:
1322 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1323 *valp = 0;
1324 break;
1325 default:
1326 return -EINVAL;
1327 }
1328
1329 return 0;
1330 }
1331
1332 static int emulate_sys_reg(u32 id, u64 *valp)
1333 {
1334 struct arm64_ftr_reg *regp;
1335
1336 if (!is_emulated(id))
1337 return -EINVAL;
1338
1339 if (sys_reg_CRm(id) == 0)
1340 return emulate_id_reg(id, valp);
1341
1342 regp = get_arm64_ftr_reg(id);
1343 if (regp)
1344 *valp = arm64_ftr_reg_user_value(regp);
1345 else
1346 /*
1347 * The untracked registers are either IMPLEMENTATION DEFINED
1348 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1349 */
1350 *valp = 0;
1351 return 0;
1352 }
1353
1354 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1355 {
1356 int rc;
1357 u32 sys_reg, dst;
1358 u64 val;
1359
1360 /*
1361 * sys_reg values are defined as used in mrs/msr instruction.
1362 * shift the imm value to get the encoding.
1363 */
1364 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1365 rc = emulate_sys_reg(sys_reg, &val);
1366 if (!rc) {
1367 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1368 pt_regs_write_reg(regs, dst, val);
1369 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1370 }
1371
1372 return rc;
1373 }
1374
1375 static struct undef_hook mrs_hook = {
1376 .instr_mask = 0xfff00000,
1377 .instr_val = 0xd5300000,
1378 .pstate_mask = COMPAT_PSR_MODE_MASK,
1379 .pstate_val = PSR_MODE_EL0t,
1380 .fn = emulate_mrs,
1381 };
1382
1383 static int __init enable_mrs_emulation(void)
1384 {
1385 register_undef_hook(&mrs_hook);
1386 return 0;
1387 }
1388
1389 core_initcall(enable_mrs_emulation);