]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/cpufeature.c
arm64: Read system wide CPUID value
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/processor.h>
27 #include <asm/sysreg.h>
28
29 static bool mixed_endian_el0 = true;
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT \
35 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40 COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46
47
48 bool cpu_supports_mixed_endian_el0(void)
49 {
50 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
51 }
52
53 bool system_supports_mixed_endian_el0(void)
54 {
55 return mixed_endian_el0;
56 }
57
58 static void update_mixed_endian_el0_support(struct cpuinfo_arm64 *info)
59 {
60 mixed_endian_el0 &= id_aa64mmfr0_mixed_endian_el0(info->reg_id_aa64mmfr0);
61 }
62
63 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
64 { \
65 .strict = STRICT, \
66 .type = TYPE, \
67 .shift = SHIFT, \
68 .width = WIDTH, \
69 .safe_val = SAFE_VAL, \
70 }
71
72 #define ARM64_FTR_END \
73 { \
74 .width = 0, \
75 }
76
77 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
78 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
79 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
80 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
81 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
82 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
83 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
84 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
87 ARM64_FTR_END,
88 };
89
90 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
91 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
92 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
93 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
94 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
95 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
96 /* Linux doesn't care about the EL3 */
97 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
98 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
99 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
100 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
101 ARM64_FTR_END,
102 };
103
104 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
105 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
106 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
107 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
108 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
109 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
110 /* Linux shouldn't care about secure memory */
111 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
114 /*
115 * Differing PARange is fine as long as all peripherals and memory are mapped
116 * within the minimum PARange of all CPUs
117 */
118 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
119 ARM64_FTR_END,
120 };
121
122 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
123 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
124 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
125 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
126 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
130 ARM64_FTR_END,
131 };
132
133 static struct arm64_ftr_bits ftr_ctr[] = {
134 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
135 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
136 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
137 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
138 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
139 /*
140 * Linux can handle differing I-cache policies. Userspace JITs will
141 * make use of *minLine
142 */
143 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0), /* L1Ip */
144 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
145 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
146 ARM64_FTR_END,
147 };
148
149 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
150 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0), /* InnerShr */
151 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
152 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
153 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
154 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
155 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
156 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
157 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
158 ARM64_FTR_END,
159 };
160
161 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
162 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
163 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
164 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
165 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
166 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
167 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
169 ARM64_FTR_END,
170 };
171
172 static struct arm64_ftr_bits ftr_mvfr2[] = {
173 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
174 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
175 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
176 ARM64_FTR_END,
177 };
178
179 static struct arm64_ftr_bits ftr_dczid[] = {
180 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
181 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
182 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
183 ARM64_FTR_END,
184 };
185
186
187 static struct arm64_ftr_bits ftr_id_isar5[] = {
188 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
190 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
194 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
195 ARM64_FTR_END,
196 };
197
198 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
199 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
200 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
201 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
202 ARM64_FTR_END,
203 };
204
205 static struct arm64_ftr_bits ftr_id_pfr0[] = {
206 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
207 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
208 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
210 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
211 ARM64_FTR_END,
212 };
213
214 /*
215 * Common ftr bits for a 32bit register with all hidden, strict
216 * attributes, with 4bit feature fields and a default safe value of
217 * 0. Covers the following 32bit registers:
218 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
219 */
220 static struct arm64_ftr_bits ftr_generic_32bits[] = {
221 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
222 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
223 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
224 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
225 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
226 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
227 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
228 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
229 ARM64_FTR_END,
230 };
231
232 static struct arm64_ftr_bits ftr_generic[] = {
233 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
234 ARM64_FTR_END,
235 };
236
237 static struct arm64_ftr_bits ftr_generic32[] = {
238 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
239 ARM64_FTR_END,
240 };
241
242 static struct arm64_ftr_bits ftr_aa64raz[] = {
243 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
244 ARM64_FTR_END,
245 };
246
247 #define ARM64_FTR_REG(id, table) \
248 { \
249 .sys_id = id, \
250 .name = #id, \
251 .ftr_bits = &((table)[0]), \
252 }
253
254 static struct arm64_ftr_reg arm64_ftr_regs[] = {
255
256 /* Op1 = 0, CRn = 0, CRm = 1 */
257 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
258 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
259 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
260 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
261 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
262 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
263 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
264
265 /* Op1 = 0, CRn = 0, CRm = 2 */
266 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
267 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
268 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
269 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
270 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
271 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
272 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
273
274 /* Op1 = 0, CRn = 0, CRm = 3 */
275 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
276 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
277 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
278
279 /* Op1 = 0, CRn = 0, CRm = 4 */
280 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
281 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
282
283 /* Op1 = 0, CRn = 0, CRm = 5 */
284 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
285 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
286
287 /* Op1 = 0, CRn = 0, CRm = 6 */
288 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
289 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
290
291 /* Op1 = 0, CRn = 0, CRm = 7 */
292 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
293 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
294
295 /* Op1 = 3, CRn = 0, CRm = 0 */
296 ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
297 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
298
299 /* Op1 = 3, CRn = 14, CRm = 0 */
300 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
301 };
302
303 static int search_cmp_ftr_reg(const void *id, const void *regp)
304 {
305 return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
306 }
307
308 /*
309 * get_arm64_ftr_reg - Lookup a feature register entry using its
310 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
311 * ascending order of sys_id , we use binary search to find a matching
312 * entry.
313 *
314 * returns - Upon success, matching ftr_reg entry for id.
315 * - NULL on failure. It is upto the caller to decide
316 * the impact of a failure.
317 */
318 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
319 {
320 return bsearch((const void *)(unsigned long)sys_id,
321 arm64_ftr_regs,
322 ARRAY_SIZE(arm64_ftr_regs),
323 sizeof(arm64_ftr_regs[0]),
324 search_cmp_ftr_reg);
325 }
326
327 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
328 {
329 u64 mask = arm64_ftr_mask(ftrp);
330
331 reg &= ~mask;
332 reg |= (ftr_val << ftrp->shift) & mask;
333 return reg;
334 }
335
336 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
337 {
338 s64 ret = 0;
339
340 switch (ftrp->type) {
341 case FTR_EXACT:
342 ret = ftrp->safe_val;
343 break;
344 case FTR_LOWER_SAFE:
345 ret = new < cur ? new : cur;
346 break;
347 case FTR_HIGHER_SAFE:
348 ret = new > cur ? new : cur;
349 break;
350 default:
351 BUG();
352 }
353
354 return ret;
355 }
356
357 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
358 {
359 return ((const struct arm64_ftr_reg *)a)->sys_id -
360 ((const struct arm64_ftr_reg *)b)->sys_id;
361 }
362
363 static void __init swap_ftr_regs(void *a, void *b, int size)
364 {
365 struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
366 *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
367 *(struct arm64_ftr_reg *)b = tmp;
368 }
369
370 static void __init sort_ftr_regs(void)
371 {
372 /* Keep the array sorted so that we can do the binary search */
373 sort(arm64_ftr_regs,
374 ARRAY_SIZE(arm64_ftr_regs),
375 sizeof(arm64_ftr_regs[0]),
376 sort_cmp_ftr_regs,
377 swap_ftr_regs);
378 }
379
380 /*
381 * Initialise the CPU feature register from Boot CPU values.
382 * Also initiliases the strict_mask for the register.
383 */
384 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
385 {
386 u64 val = 0;
387 u64 strict_mask = ~0x0ULL;
388 struct arm64_ftr_bits *ftrp;
389 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
390
391 BUG_ON(!reg);
392
393 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
394 s64 ftr_new = arm64_ftr_value(ftrp, new);
395
396 val = arm64_ftr_set_value(ftrp, val, ftr_new);
397 if (!ftrp->strict)
398 strict_mask &= ~arm64_ftr_mask(ftrp);
399 }
400 reg->sys_val = val;
401 reg->strict_mask = strict_mask;
402 }
403
404 void __init init_cpu_features(struct cpuinfo_arm64 *info)
405 {
406 /* Before we start using the tables, make sure it is sorted */
407 sort_ftr_regs();
408
409 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
410 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
411 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
412 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
413 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
414 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
415 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
416 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
417 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
418 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
419 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
420 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
421 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
422 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
423 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
424 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
425 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
426 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
427 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
428 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
429 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
430 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
431 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
432 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
433 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
434 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
435 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
436
437 /* This will be removed later, once we start using the infrastructure */
438 update_mixed_endian_el0_support(info);
439 }
440
441 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
442 {
443 struct arm64_ftr_bits *ftrp;
444
445 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
446 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
447 s64 ftr_new = arm64_ftr_value(ftrp, new);
448
449 if (ftr_cur == ftr_new)
450 continue;
451 /* Find a safe value */
452 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
453 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
454 }
455
456 }
457
458 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
459 {
460 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
461
462 BUG_ON(!regp);
463 update_cpu_ftr_reg(regp, val);
464 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
465 return 0;
466 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
467 regp->name, boot, cpu, val);
468 return 1;
469 }
470
471 /*
472 * Update system wide CPU feature registers with the values from a
473 * non-boot CPU. Also performs SANITY checks to make sure that there
474 * aren't any insane variations from that of the boot CPU.
475 */
476 void update_cpu_features(int cpu,
477 struct cpuinfo_arm64 *info,
478 struct cpuinfo_arm64 *boot)
479 {
480 int taint = 0;
481
482 /*
483 * The kernel can handle differing I-cache policies, but otherwise
484 * caches should look identical. Userspace JITs will make use of
485 * *minLine.
486 */
487 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
488 info->reg_ctr, boot->reg_ctr);
489
490 /*
491 * Userspace may perform DC ZVA instructions. Mismatched block sizes
492 * could result in too much or too little memory being zeroed if a
493 * process is preempted and migrated between CPUs.
494 */
495 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
496 info->reg_dczid, boot->reg_dczid);
497
498 /* If different, timekeeping will be broken (especially with KVM) */
499 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
500 info->reg_cntfrq, boot->reg_cntfrq);
501
502 /*
503 * The kernel uses self-hosted debug features and expects CPUs to
504 * support identical debug features. We presently need CTX_CMPs, WRPs,
505 * and BRPs to be identical.
506 * ID_AA64DFR1 is currently RES0.
507 */
508 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
509 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
510 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
511 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
512 /*
513 * Even in big.LITTLE, processors should be identical instruction-set
514 * wise.
515 */
516 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
517 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
518 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
519 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
520
521 /*
522 * Differing PARange support is fine as long as all peripherals and
523 * memory are mapped within the minimum PARange of all CPUs.
524 * Linux should not care about secure memory.
525 */
526 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
527 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
528 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
529 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
530
531 /*
532 * EL3 is not our concern.
533 * ID_AA64PFR1 is currently RES0.
534 */
535 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
536 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
537 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
538 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
539
540 /*
541 * If we have AArch32, we care about 32-bit features for compat. These
542 * registers should be RES0 otherwise.
543 */
544 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
545 info->reg_id_dfr0, boot->reg_id_dfr0);
546 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
547 info->reg_id_isar0, boot->reg_id_isar0);
548 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
549 info->reg_id_isar1, boot->reg_id_isar1);
550 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
551 info->reg_id_isar2, boot->reg_id_isar2);
552 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
553 info->reg_id_isar3, boot->reg_id_isar3);
554 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
555 info->reg_id_isar4, boot->reg_id_isar4);
556 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
557 info->reg_id_isar5, boot->reg_id_isar5);
558
559 /*
560 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
561 * ACTLR formats could differ across CPUs and therefore would have to
562 * be trapped for virtualization anyway.
563 */
564 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
565 info->reg_id_mmfr0, boot->reg_id_mmfr0);
566 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
567 info->reg_id_mmfr1, boot->reg_id_mmfr1);
568 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
569 info->reg_id_mmfr2, boot->reg_id_mmfr2);
570 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
571 info->reg_id_mmfr3, boot->reg_id_mmfr3);
572 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
573 info->reg_id_pfr0, boot->reg_id_pfr0);
574 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
575 info->reg_id_pfr1, boot->reg_id_pfr1);
576 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
577 info->reg_mvfr0, boot->reg_mvfr0);
578 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
579 info->reg_mvfr1, boot->reg_mvfr1);
580 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
581 info->reg_mvfr2, boot->reg_mvfr2);
582
583 /*
584 * Mismatched CPU features are a recipe for disaster. Don't even
585 * pretend to support them.
586 */
587 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
588 "Unsupported CPU feature variation.\n");
589
590 update_mixed_endian_el0_support(info);
591 }
592
593 u64 read_system_reg(u32 id)
594 {
595 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
596
597 /* We shouldn't get a request for an unsupported register */
598 BUG_ON(!regp);
599 return regp->sys_val;
600 }
601
602 static bool
603 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
604 {
605 int val = cpuid_feature_extract_field(reg, entry->field_pos);
606
607 return val >= entry->min_field_value;
608 }
609
610 #define __ID_FEAT_CHK(reg) \
611 static bool __maybe_unused \
612 has_##reg##_feature(const struct arm64_cpu_capabilities *entry) \
613 { \
614 u64 val; \
615 \
616 val = read_cpuid(reg##_el1); \
617 return feature_matches(val, entry); \
618 }
619
620 __ID_FEAT_CHK(id_aa64pfr0);
621 __ID_FEAT_CHK(id_aa64mmfr1);
622 __ID_FEAT_CHK(id_aa64isar0);
623
624 static const struct arm64_cpu_capabilities arm64_features[] = {
625 {
626 .desc = "GIC system register CPU interface",
627 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
628 .matches = has_id_aa64pfr0_feature,
629 .field_pos = 24,
630 .min_field_value = 1,
631 },
632 #ifdef CONFIG_ARM64_PAN
633 {
634 .desc = "Privileged Access Never",
635 .capability = ARM64_HAS_PAN,
636 .matches = has_id_aa64mmfr1_feature,
637 .field_pos = 20,
638 .min_field_value = 1,
639 .enable = cpu_enable_pan,
640 },
641 #endif /* CONFIG_ARM64_PAN */
642 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
643 {
644 .desc = "LSE atomic instructions",
645 .capability = ARM64_HAS_LSE_ATOMICS,
646 .matches = has_id_aa64isar0_feature,
647 .field_pos = 20,
648 .min_field_value = 2,
649 },
650 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
651 {},
652 };
653
654 void check_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
655 const char *info)
656 {
657 int i;
658
659 for (i = 0; caps[i].desc; i++) {
660 if (!caps[i].matches(&caps[i]))
661 continue;
662
663 if (!cpus_have_cap(caps[i].capability))
664 pr_info("%s %s\n", info, caps[i].desc);
665 cpus_set_cap(caps[i].capability);
666 }
667
668 /* second pass allows enable() to consider interacting capabilities */
669 for (i = 0; caps[i].desc; i++) {
670 if (cpus_have_cap(caps[i].capability) && caps[i].enable)
671 caps[i].enable();
672 }
673 }
674
675 void check_local_cpu_features(void)
676 {
677 check_cpu_capabilities(arm64_features, "detected feature:");
678 }
679
680 void __init setup_cpu_features(void)
681 {
682 u64 features;
683 s64 block;
684 u32 cwg;
685 int cls;
686
687 /*
688 * Check for sane CTR_EL0.CWG value.
689 */
690 cwg = cache_type_cwg();
691 cls = cache_line_size();
692 if (!cwg)
693 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
694 cls);
695 if (L1_CACHE_BYTES < cls)
696 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
697 L1_CACHE_BYTES, cls);
698
699 /*
700 * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks.
701 * The blocks we test below represent incremental functionality
702 * for non-negative values. Negative values are reserved.
703 */
704 features = read_cpuid(ID_AA64ISAR0_EL1);
705 block = cpuid_feature_extract_field(features, 4);
706 if (block > 0) {
707 switch (block) {
708 default:
709 case 2:
710 elf_hwcap |= HWCAP_PMULL;
711 case 1:
712 elf_hwcap |= HWCAP_AES;
713 case 0:
714 break;
715 }
716 }
717
718 if (cpuid_feature_extract_field(features, 8) > 0)
719 elf_hwcap |= HWCAP_SHA1;
720
721 if (cpuid_feature_extract_field(features, 12) > 0)
722 elf_hwcap |= HWCAP_SHA2;
723
724 if (cpuid_feature_extract_field(features, 16) > 0)
725 elf_hwcap |= HWCAP_CRC32;
726
727 block = cpuid_feature_extract_field(features, 20);
728 if (block > 0) {
729 switch (block) {
730 default:
731 case 2:
732 elf_hwcap |= HWCAP_ATOMICS;
733 case 1:
734 /* RESERVED */
735 case 0:
736 break;
737 }
738 }
739
740 #ifdef CONFIG_COMPAT
741 /*
742 * ID_ISAR5_EL1 carries similar information as above, but pertaining to
743 * the AArch32 32-bit execution state.
744 */
745 features = read_cpuid(ID_ISAR5_EL1);
746 block = cpuid_feature_extract_field(features, 4);
747 if (block > 0) {
748 switch (block) {
749 default:
750 case 2:
751 compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL;
752 case 1:
753 compat_elf_hwcap2 |= COMPAT_HWCAP2_AES;
754 case 0:
755 break;
756 }
757 }
758
759 if (cpuid_feature_extract_field(features, 8) > 0)
760 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1;
761
762 if (cpuid_feature_extract_field(features, 12) > 0)
763 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2;
764
765 if (cpuid_feature_extract_field(features, 16) > 0)
766 compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32;
767 #endif
768 }