]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/kernel/cpufeature.c
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64...
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT \
42 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47 COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54
55 /*
56 * Flag to indicate if we have computed the system wide
57 * capabilities based on the boot time active CPUs. This
58 * will be used to determine if a new booting CPU should
59 * go through the verification process to make sure that it
60 * supports the system capabilities, without using a hotplug
61 * notifier.
62 */
63 static bool sys_caps_initialised;
64
65 static inline void set_sys_caps_initialised(void)
66 {
67 sys_caps_initialised = true;
68 }
69
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72 /* file-wide pr_fmt adds "CPU features: " prefix */
73 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74 return 0;
75 }
76
77 static struct notifier_block cpu_hwcaps_notifier = {
78 .notifier_call = dump_cpu_hwcaps
79 };
80
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83 atomic_notifier_chain_register(&panic_notifier_list,
84 &cpu_hwcaps_notifier);
85 return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 { \
94 .sign = SIGNED, \
95 .visible = VISIBLE, \
96 .strict = STRICT, \
97 .type = TYPE, \
98 .shift = SHIFT, \
99 .width = WIDTH, \
100 .safe_val = SAFE_VAL, \
101 }
102
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110
111 #define ARM64_FTR_END \
112 { \
113 .width = 0, \
114 }
115
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119
120
121 /*
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
124 */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
136 ARM64_FTR_END,
137 };
138
139 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
140 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
142 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
144 ARM64_FTR_END,
145 };
146
147 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
148 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
149 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
150 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
151 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
152 /* Linux doesn't care about the EL3 */
153 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
154 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
155 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
156 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
157 ARM64_FTR_END,
158 };
159
160 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
161 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
162 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
163 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
164 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
165 /* Linux shouldn't care about secure memory */
166 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
167 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
169 /*
170 * Differing PARange is fine as long as all peripherals and memory are mapped
171 * within the minimum PARange of all CPUs
172 */
173 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
174 ARM64_FTR_END,
175 };
176
177 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
178 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
179 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
180 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
181 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
182 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
183 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
184 ARM64_FTR_END,
185 };
186
187 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
188 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
190 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
192 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
193 ARM64_FTR_END,
194 };
195
196 static const struct arm64_ftr_bits ftr_ctr[] = {
197 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
198 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
199 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
200 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
201 /*
202 * Linux can handle differing I-cache policies. Userspace JITs will
203 * make use of *minLine.
204 * If we have differing I-cache policies, report it as the weakest - VIPT.
205 */
206 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
207 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
208 ARM64_FTR_END,
209 };
210
211 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
212 .name = "SYS_CTR_EL0",
213 .ftr_bits = ftr_ctr
214 };
215
216 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
217 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
221 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
222 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
223 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
225 ARM64_FTR_END,
226 };
227
228 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
229 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
230 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
231 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
232 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
233 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
234 /*
235 * We can instantiate multiple PMU instances with different levels
236 * of support.
237 */
238 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
241 ARM64_FTR_END,
242 };
243
244 static const struct arm64_ftr_bits ftr_mvfr2[] = {
245 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
247 ARM64_FTR_END,
248 };
249
250 static const struct arm64_ftr_bits ftr_dczid[] = {
251 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
252 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
253 ARM64_FTR_END,
254 };
255
256
257 static const struct arm64_ftr_bits ftr_id_isar5[] = {
258 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
259 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
261 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
264 ARM64_FTR_END,
265 };
266
267 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
268 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
269 ARM64_FTR_END,
270 };
271
272 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
273 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
274 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
275 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
276 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
277 ARM64_FTR_END,
278 };
279
280 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
282 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
288 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
289 ARM64_FTR_END,
290 };
291
292 static const struct arm64_ftr_bits ftr_zcr[] = {
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
294 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
295 ARM64_FTR_END,
296 };
297
298 /*
299 * Common ftr bits for a 32bit register with all hidden, strict
300 * attributes, with 4bit feature fields and a default safe value of
301 * 0. Covers the following 32bit registers:
302 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
303 */
304 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
305 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
306 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
307 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
310 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
311 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
312 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
313 ARM64_FTR_END,
314 };
315
316 /* Table for a single 32bit feature value */
317 static const struct arm64_ftr_bits ftr_single32[] = {
318 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
319 ARM64_FTR_END,
320 };
321
322 static const struct arm64_ftr_bits ftr_raz[] = {
323 ARM64_FTR_END,
324 };
325
326 #define ARM64_FTR_REG(id, table) { \
327 .sys_id = id, \
328 .reg = &(struct arm64_ftr_reg){ \
329 .name = #id, \
330 .ftr_bits = &((table)[0]), \
331 }}
332
333 static const struct __ftr_reg_entry {
334 u32 sys_id;
335 struct arm64_ftr_reg *reg;
336 } arm64_ftr_regs[] = {
337
338 /* Op1 = 0, CRn = 0, CRm = 1 */
339 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
340 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
341 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
342 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
343 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
344 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
345 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
346
347 /* Op1 = 0, CRn = 0, CRm = 2 */
348 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
349 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
350 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
351 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
352 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
353 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
354 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
355
356 /* Op1 = 0, CRn = 0, CRm = 3 */
357 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
358 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
359 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
360
361 /* Op1 = 0, CRn = 0, CRm = 4 */
362 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
363 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
364 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
365
366 /* Op1 = 0, CRn = 0, CRm = 5 */
367 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
368 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
369
370 /* Op1 = 0, CRn = 0, CRm = 6 */
371 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
372 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
373
374 /* Op1 = 0, CRn = 0, CRm = 7 */
375 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
376 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
377 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
378
379 /* Op1 = 0, CRn = 1, CRm = 2 */
380 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
381
382 /* Op1 = 3, CRn = 0, CRm = 0 */
383 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
384 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
385
386 /* Op1 = 3, CRn = 14, CRm = 0 */
387 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
388 };
389
390 static int search_cmp_ftr_reg(const void *id, const void *regp)
391 {
392 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
393 }
394
395 /*
396 * get_arm64_ftr_reg - Lookup a feature register entry using its
397 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
398 * ascending order of sys_id , we use binary search to find a matching
399 * entry.
400 *
401 * returns - Upon success, matching ftr_reg entry for id.
402 * - NULL on failure. It is upto the caller to decide
403 * the impact of a failure.
404 */
405 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
406 {
407 const struct __ftr_reg_entry *ret;
408
409 ret = bsearch((const void *)(unsigned long)sys_id,
410 arm64_ftr_regs,
411 ARRAY_SIZE(arm64_ftr_regs),
412 sizeof(arm64_ftr_regs[0]),
413 search_cmp_ftr_reg);
414 if (ret)
415 return ret->reg;
416 return NULL;
417 }
418
419 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
420 s64 ftr_val)
421 {
422 u64 mask = arm64_ftr_mask(ftrp);
423
424 reg &= ~mask;
425 reg |= (ftr_val << ftrp->shift) & mask;
426 return reg;
427 }
428
429 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
430 s64 cur)
431 {
432 s64 ret = 0;
433
434 switch (ftrp->type) {
435 case FTR_EXACT:
436 ret = ftrp->safe_val;
437 break;
438 case FTR_LOWER_SAFE:
439 ret = new < cur ? new : cur;
440 break;
441 case FTR_HIGHER_SAFE:
442 ret = new > cur ? new : cur;
443 break;
444 default:
445 BUG();
446 }
447
448 return ret;
449 }
450
451 static void __init sort_ftr_regs(void)
452 {
453 int i;
454
455 /* Check that the array is sorted so that we can do the binary search */
456 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
457 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
458 }
459
460 /*
461 * Initialise the CPU feature register from Boot CPU values.
462 * Also initiliases the strict_mask for the register.
463 * Any bits that are not covered by an arm64_ftr_bits entry are considered
464 * RES0 for the system-wide value, and must strictly match.
465 */
466 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
467 {
468 u64 val = 0;
469 u64 strict_mask = ~0x0ULL;
470 u64 user_mask = 0;
471 u64 valid_mask = 0;
472
473 const struct arm64_ftr_bits *ftrp;
474 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
475
476 BUG_ON(!reg);
477
478 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
479 u64 ftr_mask = arm64_ftr_mask(ftrp);
480 s64 ftr_new = arm64_ftr_value(ftrp, new);
481
482 val = arm64_ftr_set_value(ftrp, val, ftr_new);
483
484 valid_mask |= ftr_mask;
485 if (!ftrp->strict)
486 strict_mask &= ~ftr_mask;
487 if (ftrp->visible)
488 user_mask |= ftr_mask;
489 else
490 reg->user_val = arm64_ftr_set_value(ftrp,
491 reg->user_val,
492 ftrp->safe_val);
493 }
494
495 val &= valid_mask;
496
497 reg->sys_val = val;
498 reg->strict_mask = strict_mask;
499 reg->user_mask = user_mask;
500 }
501
502 void __init init_cpu_features(struct cpuinfo_arm64 *info)
503 {
504 /* Before we start using the tables, make sure it is sorted */
505 sort_ftr_regs();
506
507 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
508 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
509 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
510 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
511 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
512 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
513 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
514 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
515 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
516 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
517 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
518 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
519 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
520
521 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
522 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
523 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
524 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
525 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
526 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
527 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
528 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
529 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
530 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
531 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
532 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
533 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
534 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
535 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
536 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
537 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
538 }
539
540 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
541 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
542 sve_init_vq_map();
543 }
544 }
545
546 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
547 {
548 const struct arm64_ftr_bits *ftrp;
549
550 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
551 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
552 s64 ftr_new = arm64_ftr_value(ftrp, new);
553
554 if (ftr_cur == ftr_new)
555 continue;
556 /* Find a safe value */
557 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
558 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
559 }
560
561 }
562
563 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
564 {
565 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
566
567 BUG_ON(!regp);
568 update_cpu_ftr_reg(regp, val);
569 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
570 return 0;
571 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
572 regp->name, boot, cpu, val);
573 return 1;
574 }
575
576 /*
577 * Update system wide CPU feature registers with the values from a
578 * non-boot CPU. Also performs SANITY checks to make sure that there
579 * aren't any insane variations from that of the boot CPU.
580 */
581 void update_cpu_features(int cpu,
582 struct cpuinfo_arm64 *info,
583 struct cpuinfo_arm64 *boot)
584 {
585 int taint = 0;
586
587 /*
588 * The kernel can handle differing I-cache policies, but otherwise
589 * caches should look identical. Userspace JITs will make use of
590 * *minLine.
591 */
592 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
593 info->reg_ctr, boot->reg_ctr);
594
595 /*
596 * Userspace may perform DC ZVA instructions. Mismatched block sizes
597 * could result in too much or too little memory being zeroed if a
598 * process is preempted and migrated between CPUs.
599 */
600 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
601 info->reg_dczid, boot->reg_dczid);
602
603 /* If different, timekeeping will be broken (especially with KVM) */
604 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
605 info->reg_cntfrq, boot->reg_cntfrq);
606
607 /*
608 * The kernel uses self-hosted debug features and expects CPUs to
609 * support identical debug features. We presently need CTX_CMPs, WRPs,
610 * and BRPs to be identical.
611 * ID_AA64DFR1 is currently RES0.
612 */
613 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
614 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
615 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
616 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
617 /*
618 * Even in big.LITTLE, processors should be identical instruction-set
619 * wise.
620 */
621 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
622 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
623 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
624 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
625
626 /*
627 * Differing PARange support is fine as long as all peripherals and
628 * memory are mapped within the minimum PARange of all CPUs.
629 * Linux should not care about secure memory.
630 */
631 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
632 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
633 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
634 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
635 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
636 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
637
638 /*
639 * EL3 is not our concern.
640 * ID_AA64PFR1 is currently RES0.
641 */
642 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
643 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
644 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
645 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
646
647 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
648 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
649
650 /*
651 * If we have AArch32, we care about 32-bit features for compat.
652 * If the system doesn't support AArch32, don't update them.
653 */
654 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
655 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
656
657 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
658 info->reg_id_dfr0, boot->reg_id_dfr0);
659 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
660 info->reg_id_isar0, boot->reg_id_isar0);
661 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
662 info->reg_id_isar1, boot->reg_id_isar1);
663 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
664 info->reg_id_isar2, boot->reg_id_isar2);
665 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
666 info->reg_id_isar3, boot->reg_id_isar3);
667 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
668 info->reg_id_isar4, boot->reg_id_isar4);
669 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
670 info->reg_id_isar5, boot->reg_id_isar5);
671
672 /*
673 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
674 * ACTLR formats could differ across CPUs and therefore would have to
675 * be trapped for virtualization anyway.
676 */
677 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
678 info->reg_id_mmfr0, boot->reg_id_mmfr0);
679 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
680 info->reg_id_mmfr1, boot->reg_id_mmfr1);
681 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
682 info->reg_id_mmfr2, boot->reg_id_mmfr2);
683 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
684 info->reg_id_mmfr3, boot->reg_id_mmfr3);
685 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
686 info->reg_id_pfr0, boot->reg_id_pfr0);
687 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
688 info->reg_id_pfr1, boot->reg_id_pfr1);
689 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
690 info->reg_mvfr0, boot->reg_mvfr0);
691 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
692 info->reg_mvfr1, boot->reg_mvfr1);
693 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
694 info->reg_mvfr2, boot->reg_mvfr2);
695 }
696
697 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
698 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
699 info->reg_zcr, boot->reg_zcr);
700
701 /* Probe vector lengths, unless we already gave up on SVE */
702 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
703 !sys_caps_initialised)
704 sve_update_vq_map();
705 }
706
707 /*
708 * Mismatched CPU features are a recipe for disaster. Don't even
709 * pretend to support them.
710 */
711 if (taint) {
712 pr_warn_once("Unsupported CPU feature variation detected.\n");
713 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
714 }
715 }
716
717 u64 read_sanitised_ftr_reg(u32 id)
718 {
719 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
720
721 /* We shouldn't get a request for an unsupported register */
722 BUG_ON(!regp);
723 return regp->sys_val;
724 }
725
726 #define read_sysreg_case(r) \
727 case r: return read_sysreg_s(r)
728
729 /*
730 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
731 * Read the system register on the current CPU
732 */
733 static u64 __read_sysreg_by_encoding(u32 sys_id)
734 {
735 switch (sys_id) {
736 read_sysreg_case(SYS_ID_PFR0_EL1);
737 read_sysreg_case(SYS_ID_PFR1_EL1);
738 read_sysreg_case(SYS_ID_DFR0_EL1);
739 read_sysreg_case(SYS_ID_MMFR0_EL1);
740 read_sysreg_case(SYS_ID_MMFR1_EL1);
741 read_sysreg_case(SYS_ID_MMFR2_EL1);
742 read_sysreg_case(SYS_ID_MMFR3_EL1);
743 read_sysreg_case(SYS_ID_ISAR0_EL1);
744 read_sysreg_case(SYS_ID_ISAR1_EL1);
745 read_sysreg_case(SYS_ID_ISAR2_EL1);
746 read_sysreg_case(SYS_ID_ISAR3_EL1);
747 read_sysreg_case(SYS_ID_ISAR4_EL1);
748 read_sysreg_case(SYS_ID_ISAR5_EL1);
749 read_sysreg_case(SYS_MVFR0_EL1);
750 read_sysreg_case(SYS_MVFR1_EL1);
751 read_sysreg_case(SYS_MVFR2_EL1);
752
753 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
754 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
755 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
756 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
757 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
758 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
759 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
760 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
761 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
762
763 read_sysreg_case(SYS_CNTFRQ_EL0);
764 read_sysreg_case(SYS_CTR_EL0);
765 read_sysreg_case(SYS_DCZID_EL0);
766
767 default:
768 BUG();
769 return 0;
770 }
771 }
772
773 #include <linux/irqchip/arm-gic-v3.h>
774
775 static bool
776 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
777 {
778 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
779
780 return val >= entry->min_field_value;
781 }
782
783 static bool
784 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
785 {
786 u64 val;
787
788 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
789 if (scope == SCOPE_SYSTEM)
790 val = read_sanitised_ftr_reg(entry->sys_reg);
791 else
792 val = __read_sysreg_by_encoding(entry->sys_reg);
793
794 return feature_matches(val, entry);
795 }
796
797 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
798 {
799 bool has_sre;
800
801 if (!has_cpuid_feature(entry, scope))
802 return false;
803
804 has_sre = gic_enable_sre();
805 if (!has_sre)
806 pr_warn_once("%s present but disabled by higher exception level\n",
807 entry->desc);
808
809 return has_sre;
810 }
811
812 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
813 {
814 u32 midr = read_cpuid_id();
815
816 /* Cavium ThunderX pass 1.x and 2.x */
817 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
818 MIDR_CPU_VAR_REV(0, 0),
819 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
820 }
821
822 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
823 {
824 return is_kernel_in_hyp_mode();
825 }
826
827 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
828 int __unused)
829 {
830 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
831
832 /*
833 * Activate the lower HYP offset only if:
834 * - the idmap doesn't clash with it,
835 * - the kernel is not running at EL2.
836 */
837 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
838 }
839
840 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
841 {
842 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
843
844 return cpuid_feature_extract_signed_field(pfr0,
845 ID_AA64PFR0_FP_SHIFT) < 0;
846 }
847
848 static const struct arm64_cpu_capabilities arm64_features[] = {
849 {
850 .desc = "GIC system register CPU interface",
851 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
852 .def_scope = SCOPE_SYSTEM,
853 .matches = has_useable_gicv3_cpuif,
854 .sys_reg = SYS_ID_AA64PFR0_EL1,
855 .field_pos = ID_AA64PFR0_GIC_SHIFT,
856 .sign = FTR_UNSIGNED,
857 .min_field_value = 1,
858 },
859 #ifdef CONFIG_ARM64_PAN
860 {
861 .desc = "Privileged Access Never",
862 .capability = ARM64_HAS_PAN,
863 .def_scope = SCOPE_SYSTEM,
864 .matches = has_cpuid_feature,
865 .sys_reg = SYS_ID_AA64MMFR1_EL1,
866 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
867 .sign = FTR_UNSIGNED,
868 .min_field_value = 1,
869 .enable = cpu_enable_pan,
870 },
871 #endif /* CONFIG_ARM64_PAN */
872 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
873 {
874 .desc = "LSE atomic instructions",
875 .capability = ARM64_HAS_LSE_ATOMICS,
876 .def_scope = SCOPE_SYSTEM,
877 .matches = has_cpuid_feature,
878 .sys_reg = SYS_ID_AA64ISAR0_EL1,
879 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
880 .sign = FTR_UNSIGNED,
881 .min_field_value = 2,
882 },
883 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
884 {
885 .desc = "Software prefetching using PRFM",
886 .capability = ARM64_HAS_NO_HW_PREFETCH,
887 .def_scope = SCOPE_SYSTEM,
888 .matches = has_no_hw_prefetch,
889 },
890 #ifdef CONFIG_ARM64_UAO
891 {
892 .desc = "User Access Override",
893 .capability = ARM64_HAS_UAO,
894 .def_scope = SCOPE_SYSTEM,
895 .matches = has_cpuid_feature,
896 .sys_reg = SYS_ID_AA64MMFR2_EL1,
897 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
898 .min_field_value = 1,
899 /*
900 * We rely on stop_machine() calling uao_thread_switch() to set
901 * UAO immediately after patching.
902 */
903 },
904 #endif /* CONFIG_ARM64_UAO */
905 #ifdef CONFIG_ARM64_PAN
906 {
907 .capability = ARM64_ALT_PAN_NOT_UAO,
908 .def_scope = SCOPE_SYSTEM,
909 .matches = cpufeature_pan_not_uao,
910 },
911 #endif /* CONFIG_ARM64_PAN */
912 {
913 .desc = "Virtualization Host Extensions",
914 .capability = ARM64_HAS_VIRT_HOST_EXTN,
915 .def_scope = SCOPE_SYSTEM,
916 .matches = runs_at_el2,
917 },
918 {
919 .desc = "32-bit EL0 Support",
920 .capability = ARM64_HAS_32BIT_EL0,
921 .def_scope = SCOPE_SYSTEM,
922 .matches = has_cpuid_feature,
923 .sys_reg = SYS_ID_AA64PFR0_EL1,
924 .sign = FTR_UNSIGNED,
925 .field_pos = ID_AA64PFR0_EL0_SHIFT,
926 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
927 },
928 {
929 .desc = "Reduced HYP mapping offset",
930 .capability = ARM64_HYP_OFFSET_LOW,
931 .def_scope = SCOPE_SYSTEM,
932 .matches = hyp_offset_low,
933 },
934 {
935 /* FP/SIMD is not implemented */
936 .capability = ARM64_HAS_NO_FPSIMD,
937 .def_scope = SCOPE_SYSTEM,
938 .min_field_value = 0,
939 .matches = has_no_fpsimd,
940 },
941 #ifdef CONFIG_ARM64_PMEM
942 {
943 .desc = "Data cache clean to Point of Persistence",
944 .capability = ARM64_HAS_DCPOP,
945 .def_scope = SCOPE_SYSTEM,
946 .matches = has_cpuid_feature,
947 .sys_reg = SYS_ID_AA64ISAR1_EL1,
948 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
949 .min_field_value = 1,
950 },
951 #endif
952 #ifdef CONFIG_ARM64_SVE
953 {
954 .desc = "Scalable Vector Extension",
955 .capability = ARM64_SVE,
956 .def_scope = SCOPE_SYSTEM,
957 .sys_reg = SYS_ID_AA64PFR0_EL1,
958 .sign = FTR_UNSIGNED,
959 .field_pos = ID_AA64PFR0_SVE_SHIFT,
960 .min_field_value = ID_AA64PFR0_SVE,
961 .matches = has_cpuid_feature,
962 .enable = sve_kernel_enable,
963 },
964 #endif /* CONFIG_ARM64_SVE */
965 {},
966 };
967
968 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
969 { \
970 .desc = #cap, \
971 .def_scope = SCOPE_SYSTEM, \
972 .matches = has_cpuid_feature, \
973 .sys_reg = reg, \
974 .field_pos = field, \
975 .sign = s, \
976 .min_field_value = min_value, \
977 .hwcap_type = type, \
978 .hwcap = cap, \
979 }
980
981 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
982 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
983 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
984 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
985 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
986 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
987 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
988 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
989 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
990 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
991 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
992 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
993 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
994 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
995 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
996 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
997 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
998 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
999 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1000 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1001 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1002 #ifdef CONFIG_ARM64_SVE
1003 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1004 #endif
1005 {},
1006 };
1007
1008 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1009 #ifdef CONFIG_COMPAT
1010 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1011 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1012 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1013 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1014 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1015 #endif
1016 {},
1017 };
1018
1019 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1020 {
1021 switch (cap->hwcap_type) {
1022 case CAP_HWCAP:
1023 elf_hwcap |= cap->hwcap;
1024 break;
1025 #ifdef CONFIG_COMPAT
1026 case CAP_COMPAT_HWCAP:
1027 compat_elf_hwcap |= (u32)cap->hwcap;
1028 break;
1029 case CAP_COMPAT_HWCAP2:
1030 compat_elf_hwcap2 |= (u32)cap->hwcap;
1031 break;
1032 #endif
1033 default:
1034 WARN_ON(1);
1035 break;
1036 }
1037 }
1038
1039 /* Check if we have a particular HWCAP enabled */
1040 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1041 {
1042 bool rc;
1043
1044 switch (cap->hwcap_type) {
1045 case CAP_HWCAP:
1046 rc = (elf_hwcap & cap->hwcap) != 0;
1047 break;
1048 #ifdef CONFIG_COMPAT
1049 case CAP_COMPAT_HWCAP:
1050 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1051 break;
1052 case CAP_COMPAT_HWCAP2:
1053 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1054 break;
1055 #endif
1056 default:
1057 WARN_ON(1);
1058 rc = false;
1059 }
1060
1061 return rc;
1062 }
1063
1064 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1065 {
1066 /* We support emulation of accesses to CPU ID feature registers */
1067 elf_hwcap |= HWCAP_CPUID;
1068 for (; hwcaps->matches; hwcaps++)
1069 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1070 cap_set_elf_hwcap(hwcaps);
1071 }
1072
1073 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1074 const char *info)
1075 {
1076 for (; caps->matches; caps++) {
1077 if (!caps->matches(caps, caps->def_scope))
1078 continue;
1079
1080 if (!cpus_have_cap(caps->capability) && caps->desc)
1081 pr_info("%s %s\n", info, caps->desc);
1082 cpus_set_cap(caps->capability);
1083 }
1084 }
1085
1086 /*
1087 * Run through the enabled capabilities and enable() it on all active
1088 * CPUs
1089 */
1090 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1091 {
1092 for (; caps->matches; caps++) {
1093 unsigned int num = caps->capability;
1094
1095 if (!cpus_have_cap(num))
1096 continue;
1097
1098 /* Ensure cpus_have_const_cap(num) works */
1099 static_branch_enable(&cpu_hwcap_keys[num]);
1100
1101 if (caps->enable) {
1102 /*
1103 * Use stop_machine() as it schedules the work allowing
1104 * us to modify PSTATE, instead of on_each_cpu() which
1105 * uses an IPI, giving us a PSTATE that disappears when
1106 * we return.
1107 */
1108 stop_machine(caps->enable, NULL, cpu_online_mask);
1109 }
1110 }
1111 }
1112
1113 /*
1114 * Check for CPU features that are used in early boot
1115 * based on the Boot CPU value.
1116 */
1117 static void check_early_cpu_features(void)
1118 {
1119 verify_cpu_run_el();
1120 verify_cpu_asid_bits();
1121 }
1122
1123 static void
1124 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1125 {
1126
1127 for (; caps->matches; caps++)
1128 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1129 pr_crit("CPU%d: missing HWCAP: %s\n",
1130 smp_processor_id(), caps->desc);
1131 cpu_die_early();
1132 }
1133 }
1134
1135 static void
1136 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1137 {
1138 for (; caps->matches; caps++) {
1139 if (!cpus_have_cap(caps->capability))
1140 continue;
1141 /*
1142 * If the new CPU misses an advertised feature, we cannot proceed
1143 * further, park the cpu.
1144 */
1145 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1146 pr_crit("CPU%d: missing feature: %s\n",
1147 smp_processor_id(), caps->desc);
1148 cpu_die_early();
1149 }
1150 if (caps->enable)
1151 caps->enable(NULL);
1152 }
1153 }
1154
1155 static void verify_sve_features(void)
1156 {
1157 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1158 u64 zcr = read_zcr_features();
1159
1160 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1161 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1162
1163 if (len < safe_len || sve_verify_vq_map()) {
1164 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1165 smp_processor_id());
1166 cpu_die_early();
1167 }
1168
1169 /* Add checks on other ZCR bits here if necessary */
1170 }
1171
1172 /*
1173 * Run through the enabled system capabilities and enable() it on this CPU.
1174 * The capabilities were decided based on the available CPUs at the boot time.
1175 * Any new CPU should match the system wide status of the capability. If the
1176 * new CPU doesn't have a capability which the system now has enabled, we
1177 * cannot do anything to fix it up and could cause unexpected failures. So
1178 * we park the CPU.
1179 */
1180 static void verify_local_cpu_capabilities(void)
1181 {
1182 verify_local_cpu_errata_workarounds();
1183 verify_local_cpu_features(arm64_features);
1184 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1185
1186 if (system_supports_32bit_el0())
1187 verify_local_elf_hwcaps(compat_elf_hwcaps);
1188
1189 if (system_supports_sve())
1190 verify_sve_features();
1191 }
1192
1193 void check_local_cpu_capabilities(void)
1194 {
1195 /*
1196 * All secondary CPUs should conform to the early CPU features
1197 * in use by the kernel based on boot CPU.
1198 */
1199 check_early_cpu_features();
1200
1201 /*
1202 * If we haven't finalised the system capabilities, this CPU gets
1203 * a chance to update the errata work arounds.
1204 * Otherwise, this CPU should verify that it has all the system
1205 * advertised capabilities.
1206 */
1207 if (!sys_caps_initialised)
1208 update_cpu_errata_workarounds();
1209 else
1210 verify_local_cpu_capabilities();
1211 }
1212
1213 static void __init setup_feature_capabilities(void)
1214 {
1215 update_cpu_capabilities(arm64_features, "detected feature:");
1216 enable_cpu_capabilities(arm64_features);
1217 }
1218
1219 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1220 EXPORT_SYMBOL(arm64_const_caps_ready);
1221
1222 static void __init mark_const_caps_ready(void)
1223 {
1224 static_branch_enable(&arm64_const_caps_ready);
1225 }
1226
1227 /*
1228 * Check if the current CPU has a given feature capability.
1229 * Should be called from non-preemptible context.
1230 */
1231 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1232 unsigned int cap)
1233 {
1234 const struct arm64_cpu_capabilities *caps;
1235
1236 if (WARN_ON(preemptible()))
1237 return false;
1238
1239 for (caps = cap_array; caps->desc; caps++)
1240 if (caps->capability == cap && caps->matches)
1241 return caps->matches(caps, SCOPE_LOCAL_CPU);
1242
1243 return false;
1244 }
1245
1246 extern const struct arm64_cpu_capabilities arm64_errata[];
1247
1248 bool this_cpu_has_cap(unsigned int cap)
1249 {
1250 return (__this_cpu_has_cap(arm64_features, cap) ||
1251 __this_cpu_has_cap(arm64_errata, cap));
1252 }
1253
1254 void __init setup_cpu_features(void)
1255 {
1256 u32 cwg;
1257 int cls;
1258
1259 /* Set the CPU feature capabilies */
1260 setup_feature_capabilities();
1261 enable_errata_workarounds();
1262 mark_const_caps_ready();
1263 setup_elf_hwcaps(arm64_elf_hwcaps);
1264
1265 if (system_supports_32bit_el0())
1266 setup_elf_hwcaps(compat_elf_hwcaps);
1267
1268 sve_setup();
1269
1270 /* Advertise that we have computed the system capabilities */
1271 set_sys_caps_initialised();
1272
1273 /*
1274 * Check for sane CTR_EL0.CWG value.
1275 */
1276 cwg = cache_type_cwg();
1277 cls = cache_line_size();
1278 if (!cwg)
1279 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1280 cls);
1281 if (L1_CACHE_BYTES < cls)
1282 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1283 L1_CACHE_BYTES, cls);
1284 }
1285
1286 static bool __maybe_unused
1287 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1288 {
1289 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1290 }
1291
1292 /*
1293 * We emulate only the following system register space.
1294 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1295 * See Table C5-6 System instruction encodings for System register accesses,
1296 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1297 */
1298 static inline bool __attribute_const__ is_emulated(u32 id)
1299 {
1300 return (sys_reg_Op0(id) == 0x3 &&
1301 sys_reg_CRn(id) == 0x0 &&
1302 sys_reg_Op1(id) == 0x0 &&
1303 (sys_reg_CRm(id) == 0 ||
1304 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1305 }
1306
1307 /*
1308 * With CRm == 0, reg should be one of :
1309 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1310 */
1311 static inline int emulate_id_reg(u32 id, u64 *valp)
1312 {
1313 switch (id) {
1314 case SYS_MIDR_EL1:
1315 *valp = read_cpuid_id();
1316 break;
1317 case SYS_MPIDR_EL1:
1318 *valp = SYS_MPIDR_SAFE_VAL;
1319 break;
1320 case SYS_REVIDR_EL1:
1321 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1322 *valp = 0;
1323 break;
1324 default:
1325 return -EINVAL;
1326 }
1327
1328 return 0;
1329 }
1330
1331 static int emulate_sys_reg(u32 id, u64 *valp)
1332 {
1333 struct arm64_ftr_reg *regp;
1334
1335 if (!is_emulated(id))
1336 return -EINVAL;
1337
1338 if (sys_reg_CRm(id) == 0)
1339 return emulate_id_reg(id, valp);
1340
1341 regp = get_arm64_ftr_reg(id);
1342 if (regp)
1343 *valp = arm64_ftr_reg_user_value(regp);
1344 else
1345 /*
1346 * The untracked registers are either IMPLEMENTATION DEFINED
1347 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1348 */
1349 *valp = 0;
1350 return 0;
1351 }
1352
1353 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1354 {
1355 int rc;
1356 u32 sys_reg, dst;
1357 u64 val;
1358
1359 /*
1360 * sys_reg values are defined as used in mrs/msr instruction.
1361 * shift the imm value to get the encoding.
1362 */
1363 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1364 rc = emulate_sys_reg(sys_reg, &val);
1365 if (!rc) {
1366 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1367 pt_regs_write_reg(regs, dst, val);
1368 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1369 }
1370
1371 return rc;
1372 }
1373
1374 static struct undef_hook mrs_hook = {
1375 .instr_mask = 0xfff00000,
1376 .instr_val = 0xd5300000,
1377 .pstate_mask = COMPAT_PSR_MODE_MASK,
1378 .pstate_val = PSR_MODE_EL0t,
1379 .fn = emulate_mrs,
1380 };
1381
1382 static int __init enable_mrs_emulation(void)
1383 {
1384 register_undef_hook(&mrs_hook);
1385 return 0;
1386 }
1387
1388 core_initcall(enable_mrs_emulation);