]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/arm64/kernel/cpufeature.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/mmu_context.h>
31 #include <asm/processor.h>
32 #include <asm/sysreg.h>
33 #include <asm/traps.h>
34 #include <asm/virt.h>
35
36 unsigned long elf_hwcap __read_mostly;
37 EXPORT_SYMBOL_GPL(elf_hwcap);
38
39 #ifdef CONFIG_COMPAT
40 #define COMPAT_ELF_HWCAP_DEFAULT \
41 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
42 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
43 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
44 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
45 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
46 COMPAT_HWCAP_LPAE)
47 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
48 unsigned int compat_elf_hwcap2 __read_mostly;
49 #endif
50
51 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
52 EXPORT_SYMBOL(cpu_hwcaps);
53
54 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
55 {
56 /* file-wide pr_fmt adds "CPU features: " prefix */
57 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
58 return 0;
59 }
60
61 static struct notifier_block cpu_hwcaps_notifier = {
62 .notifier_call = dump_cpu_hwcaps
63 };
64
65 static int __init register_cpu_hwcaps_dumper(void)
66 {
67 atomic_notifier_chain_register(&panic_notifier_list,
68 &cpu_hwcaps_notifier);
69 return 0;
70 }
71 __initcall(register_cpu_hwcaps_dumper);
72
73 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
74 EXPORT_SYMBOL(cpu_hwcap_keys);
75
76 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
77 { \
78 .sign = SIGNED, \
79 .visible = VISIBLE, \
80 .strict = STRICT, \
81 .type = TYPE, \
82 .shift = SHIFT, \
83 .width = WIDTH, \
84 .safe_val = SAFE_VAL, \
85 }
86
87 /* Define a feature with unsigned values */
88 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
89 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
90
91 /* Define a feature with a signed value */
92 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
94
95 #define ARM64_FTR_END \
96 { \
97 .width = 0, \
98 }
99
100 /* meta feature for alternatives */
101 static bool __maybe_unused
102 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
103
104
105 /*
106 * NOTE: Any changes to the visibility of features should be kept in
107 * sync with the documentation of the CPU feature register ABI.
108 */
109 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
110 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
111 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
112 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
113 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
114 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
115 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
116 ARM64_FTR_END,
117 };
118
119 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
120 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
121 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
122 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
123 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
124 ARM64_FTR_END,
125 };
126
127 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
128 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
129 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
130 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
131 /* Linux doesn't care about the EL3 */
132 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
135 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
136 ARM64_FTR_END,
137 };
138
139 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
140 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
141 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
142 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
143 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
144 /* Linux shouldn't care about secure memory */
145 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
146 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
147 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
148 /*
149 * Differing PARange is fine as long as all peripherals and memory are mapped
150 * within the minimum PARange of all CPUs
151 */
152 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
153 ARM64_FTR_END,
154 };
155
156 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
157 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
158 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
159 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
160 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
161 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
162 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
163 ARM64_FTR_END,
164 };
165
166 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
167 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
170 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
172 ARM64_FTR_END,
173 };
174
175 static const struct arm64_ftr_bits ftr_ctr[] = {
176 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
177 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
178 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
179 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
180 /*
181 * Linux can handle differing I-cache policies. Userspace JITs will
182 * make use of *minLine.
183 * If we have differing I-cache policies, report it as the weakest - VIPT.
184 */
185 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
186 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
187 ARM64_FTR_END,
188 };
189
190 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
191 .name = "SYS_CTR_EL0",
192 .ftr_bits = ftr_ctr
193 };
194
195 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
196 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
197 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
198 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
199 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
200 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
201 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
202 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
203 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
204 ARM64_FTR_END,
205 };
206
207 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
208 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
209 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
211 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
213 /*
214 * We can instantiate multiple PMU instances with different levels
215 * of support.
216 */
217 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
218 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
219 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
220 ARM64_FTR_END,
221 };
222
223 static const struct arm64_ftr_bits ftr_mvfr2[] = {
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
226 ARM64_FTR_END,
227 };
228
229 static const struct arm64_ftr_bits ftr_dczid[] = {
230 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
231 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
232 ARM64_FTR_END,
233 };
234
235
236 static const struct arm64_ftr_bits ftr_id_isar5[] = {
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
242 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
243 ARM64_FTR_END,
244 };
245
246 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
248 ARM64_FTR_END,
249 };
250
251 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
252 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
254 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
255 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
256 ARM64_FTR_END,
257 };
258
259 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
260 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
261 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
262 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
263 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
264 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
265 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
266 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
267 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
268 ARM64_FTR_END,
269 };
270
271 /*
272 * Common ftr bits for a 32bit register with all hidden, strict
273 * attributes, with 4bit feature fields and a default safe value of
274 * 0. Covers the following 32bit registers:
275 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
276 */
277 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
278 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
279 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
280 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
285 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
286 ARM64_FTR_END,
287 };
288
289 /* Table for a single 32bit feature value */
290 static const struct arm64_ftr_bits ftr_single32[] = {
291 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
292 ARM64_FTR_END,
293 };
294
295 static const struct arm64_ftr_bits ftr_raz[] = {
296 ARM64_FTR_END,
297 };
298
299 #define ARM64_FTR_REG(id, table) { \
300 .sys_id = id, \
301 .reg = &(struct arm64_ftr_reg){ \
302 .name = #id, \
303 .ftr_bits = &((table)[0]), \
304 }}
305
306 static const struct __ftr_reg_entry {
307 u32 sys_id;
308 struct arm64_ftr_reg *reg;
309 } arm64_ftr_regs[] = {
310
311 /* Op1 = 0, CRn = 0, CRm = 1 */
312 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
313 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
314 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
315 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
316 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
317 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
318 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
319
320 /* Op1 = 0, CRn = 0, CRm = 2 */
321 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
322 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
323 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
324 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
325 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
326 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
327 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
328
329 /* Op1 = 0, CRn = 0, CRm = 3 */
330 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
331 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
332 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
333
334 /* Op1 = 0, CRn = 0, CRm = 4 */
335 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
336 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
337
338 /* Op1 = 0, CRn = 0, CRm = 5 */
339 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
340 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
341
342 /* Op1 = 0, CRn = 0, CRm = 6 */
343 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
344 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
345
346 /* Op1 = 0, CRn = 0, CRm = 7 */
347 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
348 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
349 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
350
351 /* Op1 = 3, CRn = 0, CRm = 0 */
352 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
353 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
354
355 /* Op1 = 3, CRn = 14, CRm = 0 */
356 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
357 };
358
359 static int search_cmp_ftr_reg(const void *id, const void *regp)
360 {
361 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
362 }
363
364 /*
365 * get_arm64_ftr_reg - Lookup a feature register entry using its
366 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
367 * ascending order of sys_id , we use binary search to find a matching
368 * entry.
369 *
370 * returns - Upon success, matching ftr_reg entry for id.
371 * - NULL on failure. It is upto the caller to decide
372 * the impact of a failure.
373 */
374 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
375 {
376 const struct __ftr_reg_entry *ret;
377
378 ret = bsearch((const void *)(unsigned long)sys_id,
379 arm64_ftr_regs,
380 ARRAY_SIZE(arm64_ftr_regs),
381 sizeof(arm64_ftr_regs[0]),
382 search_cmp_ftr_reg);
383 if (ret)
384 return ret->reg;
385 return NULL;
386 }
387
388 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
389 s64 ftr_val)
390 {
391 u64 mask = arm64_ftr_mask(ftrp);
392
393 reg &= ~mask;
394 reg |= (ftr_val << ftrp->shift) & mask;
395 return reg;
396 }
397
398 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
399 s64 cur)
400 {
401 s64 ret = 0;
402
403 switch (ftrp->type) {
404 case FTR_EXACT:
405 ret = ftrp->safe_val;
406 break;
407 case FTR_LOWER_SAFE:
408 ret = new < cur ? new : cur;
409 break;
410 case FTR_HIGHER_SAFE:
411 ret = new > cur ? new : cur;
412 break;
413 default:
414 BUG();
415 }
416
417 return ret;
418 }
419
420 static void __init sort_ftr_regs(void)
421 {
422 int i;
423
424 /* Check that the array is sorted so that we can do the binary search */
425 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
426 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
427 }
428
429 /*
430 * Initialise the CPU feature register from Boot CPU values.
431 * Also initiliases the strict_mask for the register.
432 * Any bits that are not covered by an arm64_ftr_bits entry are considered
433 * RES0 for the system-wide value, and must strictly match.
434 */
435 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
436 {
437 u64 val = 0;
438 u64 strict_mask = ~0x0ULL;
439 u64 user_mask = 0;
440 u64 valid_mask = 0;
441
442 const struct arm64_ftr_bits *ftrp;
443 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
444
445 BUG_ON(!reg);
446
447 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
448 u64 ftr_mask = arm64_ftr_mask(ftrp);
449 s64 ftr_new = arm64_ftr_value(ftrp, new);
450
451 val = arm64_ftr_set_value(ftrp, val, ftr_new);
452
453 valid_mask |= ftr_mask;
454 if (!ftrp->strict)
455 strict_mask &= ~ftr_mask;
456 if (ftrp->visible)
457 user_mask |= ftr_mask;
458 else
459 reg->user_val = arm64_ftr_set_value(ftrp,
460 reg->user_val,
461 ftrp->safe_val);
462 }
463
464 val &= valid_mask;
465
466 reg->sys_val = val;
467 reg->strict_mask = strict_mask;
468 reg->user_mask = user_mask;
469 }
470
471 void __init init_cpu_features(struct cpuinfo_arm64 *info)
472 {
473 /* Before we start using the tables, make sure it is sorted */
474 sort_ftr_regs();
475
476 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
477 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
478 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
479 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
480 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
481 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
482 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
483 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
484 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
485 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
486 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
487 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
488
489 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
490 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
491 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
492 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
493 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
494 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
495 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
496 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
497 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
498 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
499 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
500 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
501 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
502 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
503 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
504 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
505 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
506 }
507
508 }
509
510 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
511 {
512 const struct arm64_ftr_bits *ftrp;
513
514 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
515 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
516 s64 ftr_new = arm64_ftr_value(ftrp, new);
517
518 if (ftr_cur == ftr_new)
519 continue;
520 /* Find a safe value */
521 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
522 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
523 }
524
525 }
526
527 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
528 {
529 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
530
531 BUG_ON(!regp);
532 update_cpu_ftr_reg(regp, val);
533 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
534 return 0;
535 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
536 regp->name, boot, cpu, val);
537 return 1;
538 }
539
540 /*
541 * Update system wide CPU feature registers with the values from a
542 * non-boot CPU. Also performs SANITY checks to make sure that there
543 * aren't any insane variations from that of the boot CPU.
544 */
545 void update_cpu_features(int cpu,
546 struct cpuinfo_arm64 *info,
547 struct cpuinfo_arm64 *boot)
548 {
549 int taint = 0;
550
551 /*
552 * The kernel can handle differing I-cache policies, but otherwise
553 * caches should look identical. Userspace JITs will make use of
554 * *minLine.
555 */
556 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
557 info->reg_ctr, boot->reg_ctr);
558
559 /*
560 * Userspace may perform DC ZVA instructions. Mismatched block sizes
561 * could result in too much or too little memory being zeroed if a
562 * process is preempted and migrated between CPUs.
563 */
564 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
565 info->reg_dczid, boot->reg_dczid);
566
567 /* If different, timekeeping will be broken (especially with KVM) */
568 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
569 info->reg_cntfrq, boot->reg_cntfrq);
570
571 /*
572 * The kernel uses self-hosted debug features and expects CPUs to
573 * support identical debug features. We presently need CTX_CMPs, WRPs,
574 * and BRPs to be identical.
575 * ID_AA64DFR1 is currently RES0.
576 */
577 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
578 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
579 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
580 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
581 /*
582 * Even in big.LITTLE, processors should be identical instruction-set
583 * wise.
584 */
585 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
586 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
587 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
588 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
589
590 /*
591 * Differing PARange support is fine as long as all peripherals and
592 * memory are mapped within the minimum PARange of all CPUs.
593 * Linux should not care about secure memory.
594 */
595 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
596 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
597 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
598 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
599 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
600 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
601
602 /*
603 * EL3 is not our concern.
604 * ID_AA64PFR1 is currently RES0.
605 */
606 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
607 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
608 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
609 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
610
611 /*
612 * If we have AArch32, we care about 32-bit features for compat.
613 * If the system doesn't support AArch32, don't update them.
614 */
615 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
616 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
617
618 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
619 info->reg_id_dfr0, boot->reg_id_dfr0);
620 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
621 info->reg_id_isar0, boot->reg_id_isar0);
622 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
623 info->reg_id_isar1, boot->reg_id_isar1);
624 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
625 info->reg_id_isar2, boot->reg_id_isar2);
626 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
627 info->reg_id_isar3, boot->reg_id_isar3);
628 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
629 info->reg_id_isar4, boot->reg_id_isar4);
630 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
631 info->reg_id_isar5, boot->reg_id_isar5);
632
633 /*
634 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
635 * ACTLR formats could differ across CPUs and therefore would have to
636 * be trapped for virtualization anyway.
637 */
638 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
639 info->reg_id_mmfr0, boot->reg_id_mmfr0);
640 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
641 info->reg_id_mmfr1, boot->reg_id_mmfr1);
642 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
643 info->reg_id_mmfr2, boot->reg_id_mmfr2);
644 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
645 info->reg_id_mmfr3, boot->reg_id_mmfr3);
646 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
647 info->reg_id_pfr0, boot->reg_id_pfr0);
648 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
649 info->reg_id_pfr1, boot->reg_id_pfr1);
650 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
651 info->reg_mvfr0, boot->reg_mvfr0);
652 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
653 info->reg_mvfr1, boot->reg_mvfr1);
654 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
655 info->reg_mvfr2, boot->reg_mvfr2);
656 }
657
658 /*
659 * Mismatched CPU features are a recipe for disaster. Don't even
660 * pretend to support them.
661 */
662 if (taint) {
663 pr_warn_once("Unsupported CPU feature variation detected.\n");
664 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
665 }
666 }
667
668 u64 read_sanitised_ftr_reg(u32 id)
669 {
670 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
671
672 /* We shouldn't get a request for an unsupported register */
673 BUG_ON(!regp);
674 return regp->sys_val;
675 }
676
677 #define read_sysreg_case(r) \
678 case r: return read_sysreg_s(r)
679
680 /*
681 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
682 * Read the system register on the current CPU
683 */
684 static u64 __read_sysreg_by_encoding(u32 sys_id)
685 {
686 switch (sys_id) {
687 read_sysreg_case(SYS_ID_PFR0_EL1);
688 read_sysreg_case(SYS_ID_PFR1_EL1);
689 read_sysreg_case(SYS_ID_DFR0_EL1);
690 read_sysreg_case(SYS_ID_MMFR0_EL1);
691 read_sysreg_case(SYS_ID_MMFR1_EL1);
692 read_sysreg_case(SYS_ID_MMFR2_EL1);
693 read_sysreg_case(SYS_ID_MMFR3_EL1);
694 read_sysreg_case(SYS_ID_ISAR0_EL1);
695 read_sysreg_case(SYS_ID_ISAR1_EL1);
696 read_sysreg_case(SYS_ID_ISAR2_EL1);
697 read_sysreg_case(SYS_ID_ISAR3_EL1);
698 read_sysreg_case(SYS_ID_ISAR4_EL1);
699 read_sysreg_case(SYS_ID_ISAR5_EL1);
700 read_sysreg_case(SYS_MVFR0_EL1);
701 read_sysreg_case(SYS_MVFR1_EL1);
702 read_sysreg_case(SYS_MVFR2_EL1);
703
704 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
705 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
706 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
707 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
708 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
709 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
710 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
711 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
712 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
713
714 read_sysreg_case(SYS_CNTFRQ_EL0);
715 read_sysreg_case(SYS_CTR_EL0);
716 read_sysreg_case(SYS_DCZID_EL0);
717
718 default:
719 BUG();
720 return 0;
721 }
722 }
723
724 #include <linux/irqchip/arm-gic-v3.h>
725
726 static bool
727 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
728 {
729 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
730
731 return val >= entry->min_field_value;
732 }
733
734 static bool
735 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
736 {
737 u64 val;
738
739 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
740 if (scope == SCOPE_SYSTEM)
741 val = read_sanitised_ftr_reg(entry->sys_reg);
742 else
743 val = __read_sysreg_by_encoding(entry->sys_reg);
744
745 return feature_matches(val, entry);
746 }
747
748 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
749 {
750 bool has_sre;
751
752 if (!has_cpuid_feature(entry, scope))
753 return false;
754
755 has_sre = gic_enable_sre();
756 if (!has_sre)
757 pr_warn_once("%s present but disabled by higher exception level\n",
758 entry->desc);
759
760 return has_sre;
761 }
762
763 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
764 {
765 u32 midr = read_cpuid_id();
766
767 /* Cavium ThunderX pass 1.x and 2.x */
768 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
769 MIDR_CPU_VAR_REV(0, 0),
770 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
771 }
772
773 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
774 {
775 return is_kernel_in_hyp_mode();
776 }
777
778 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
779 int __unused)
780 {
781 phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
782
783 /*
784 * Activate the lower HYP offset only if:
785 * - the idmap doesn't clash with it,
786 * - the kernel is not running at EL2.
787 */
788 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
789 }
790
791 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
792 {
793 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
794
795 return cpuid_feature_extract_signed_field(pfr0,
796 ID_AA64PFR0_FP_SHIFT) < 0;
797 }
798
799 static const struct arm64_cpu_capabilities arm64_features[] = {
800 {
801 .desc = "GIC system register CPU interface",
802 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
803 .def_scope = SCOPE_SYSTEM,
804 .matches = has_useable_gicv3_cpuif,
805 .sys_reg = SYS_ID_AA64PFR0_EL1,
806 .field_pos = ID_AA64PFR0_GIC_SHIFT,
807 .sign = FTR_UNSIGNED,
808 .min_field_value = 1,
809 },
810 #ifdef CONFIG_ARM64_PAN
811 {
812 .desc = "Privileged Access Never",
813 .capability = ARM64_HAS_PAN,
814 .def_scope = SCOPE_SYSTEM,
815 .matches = has_cpuid_feature,
816 .sys_reg = SYS_ID_AA64MMFR1_EL1,
817 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
818 .sign = FTR_UNSIGNED,
819 .min_field_value = 1,
820 .enable = cpu_enable_pan,
821 },
822 #endif /* CONFIG_ARM64_PAN */
823 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
824 {
825 .desc = "LSE atomic instructions",
826 .capability = ARM64_HAS_LSE_ATOMICS,
827 .def_scope = SCOPE_SYSTEM,
828 .matches = has_cpuid_feature,
829 .sys_reg = SYS_ID_AA64ISAR0_EL1,
830 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
831 .sign = FTR_UNSIGNED,
832 .min_field_value = 2,
833 },
834 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
835 {
836 .desc = "Software prefetching using PRFM",
837 .capability = ARM64_HAS_NO_HW_PREFETCH,
838 .def_scope = SCOPE_SYSTEM,
839 .matches = has_no_hw_prefetch,
840 },
841 #ifdef CONFIG_ARM64_UAO
842 {
843 .desc = "User Access Override",
844 .capability = ARM64_HAS_UAO,
845 .def_scope = SCOPE_SYSTEM,
846 .matches = has_cpuid_feature,
847 .sys_reg = SYS_ID_AA64MMFR2_EL1,
848 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
849 .min_field_value = 1,
850 /*
851 * We rely on stop_machine() calling uao_thread_switch() to set
852 * UAO immediately after patching.
853 */
854 },
855 #endif /* CONFIG_ARM64_UAO */
856 #ifdef CONFIG_ARM64_PAN
857 {
858 .capability = ARM64_ALT_PAN_NOT_UAO,
859 .def_scope = SCOPE_SYSTEM,
860 .matches = cpufeature_pan_not_uao,
861 },
862 #endif /* CONFIG_ARM64_PAN */
863 {
864 .desc = "Virtualization Host Extensions",
865 .capability = ARM64_HAS_VIRT_HOST_EXTN,
866 .def_scope = SCOPE_SYSTEM,
867 .matches = runs_at_el2,
868 },
869 {
870 .desc = "32-bit EL0 Support",
871 .capability = ARM64_HAS_32BIT_EL0,
872 .def_scope = SCOPE_SYSTEM,
873 .matches = has_cpuid_feature,
874 .sys_reg = SYS_ID_AA64PFR0_EL1,
875 .sign = FTR_UNSIGNED,
876 .field_pos = ID_AA64PFR0_EL0_SHIFT,
877 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
878 },
879 {
880 .desc = "Reduced HYP mapping offset",
881 .capability = ARM64_HYP_OFFSET_LOW,
882 .def_scope = SCOPE_SYSTEM,
883 .matches = hyp_offset_low,
884 },
885 {
886 /* FP/SIMD is not implemented */
887 .capability = ARM64_HAS_NO_FPSIMD,
888 .def_scope = SCOPE_SYSTEM,
889 .min_field_value = 0,
890 .matches = has_no_fpsimd,
891 },
892 #ifdef CONFIG_ARM64_PMEM
893 {
894 .desc = "Data cache clean to Point of Persistence",
895 .capability = ARM64_HAS_DCPOP,
896 .def_scope = SCOPE_SYSTEM,
897 .matches = has_cpuid_feature,
898 .sys_reg = SYS_ID_AA64ISAR1_EL1,
899 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
900 .min_field_value = 1,
901 },
902 #endif
903 {},
904 };
905
906 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
907 { \
908 .desc = #cap, \
909 .def_scope = SCOPE_SYSTEM, \
910 .matches = has_cpuid_feature, \
911 .sys_reg = reg, \
912 .field_pos = field, \
913 .sign = s, \
914 .min_field_value = min_value, \
915 .hwcap_type = type, \
916 .hwcap = cap, \
917 }
918
919 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
920 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
921 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
922 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
923 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
924 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
925 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
926 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
927 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
928 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
929 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
930 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
931 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
932 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
933 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
934 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
935 {},
936 };
937
938 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
939 #ifdef CONFIG_COMPAT
940 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
941 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
942 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
943 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
944 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
945 #endif
946 {},
947 };
948
949 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
950 {
951 switch (cap->hwcap_type) {
952 case CAP_HWCAP:
953 elf_hwcap |= cap->hwcap;
954 break;
955 #ifdef CONFIG_COMPAT
956 case CAP_COMPAT_HWCAP:
957 compat_elf_hwcap |= (u32)cap->hwcap;
958 break;
959 case CAP_COMPAT_HWCAP2:
960 compat_elf_hwcap2 |= (u32)cap->hwcap;
961 break;
962 #endif
963 default:
964 WARN_ON(1);
965 break;
966 }
967 }
968
969 /* Check if we have a particular HWCAP enabled */
970 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
971 {
972 bool rc;
973
974 switch (cap->hwcap_type) {
975 case CAP_HWCAP:
976 rc = (elf_hwcap & cap->hwcap) != 0;
977 break;
978 #ifdef CONFIG_COMPAT
979 case CAP_COMPAT_HWCAP:
980 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
981 break;
982 case CAP_COMPAT_HWCAP2:
983 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
984 break;
985 #endif
986 default:
987 WARN_ON(1);
988 rc = false;
989 }
990
991 return rc;
992 }
993
994 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
995 {
996 /* We support emulation of accesses to CPU ID feature registers */
997 elf_hwcap |= HWCAP_CPUID;
998 for (; hwcaps->matches; hwcaps++)
999 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1000 cap_set_elf_hwcap(hwcaps);
1001 }
1002
1003 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1004 const char *info)
1005 {
1006 for (; caps->matches; caps++) {
1007 if (!caps->matches(caps, caps->def_scope))
1008 continue;
1009
1010 if (!cpus_have_cap(caps->capability) && caps->desc)
1011 pr_info("%s %s\n", info, caps->desc);
1012 cpus_set_cap(caps->capability);
1013 }
1014 }
1015
1016 /*
1017 * Run through the enabled capabilities and enable() it on all active
1018 * CPUs
1019 */
1020 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1021 {
1022 for (; caps->matches; caps++) {
1023 unsigned int num = caps->capability;
1024
1025 if (!cpus_have_cap(num))
1026 continue;
1027
1028 /* Ensure cpus_have_const_cap(num) works */
1029 static_branch_enable(&cpu_hwcap_keys[num]);
1030
1031 if (caps->enable) {
1032 /*
1033 * Use stop_machine() as it schedules the work allowing
1034 * us to modify PSTATE, instead of on_each_cpu() which
1035 * uses an IPI, giving us a PSTATE that disappears when
1036 * we return.
1037 */
1038 stop_machine(caps->enable, NULL, cpu_online_mask);
1039 }
1040 }
1041 }
1042
1043 /*
1044 * Flag to indicate if we have computed the system wide
1045 * capabilities based on the boot time active CPUs. This
1046 * will be used to determine if a new booting CPU should
1047 * go through the verification process to make sure that it
1048 * supports the system capabilities, without using a hotplug
1049 * notifier.
1050 */
1051 static bool sys_caps_initialised;
1052
1053 static inline void set_sys_caps_initialised(void)
1054 {
1055 sys_caps_initialised = true;
1056 }
1057
1058 /*
1059 * Check for CPU features that are used in early boot
1060 * based on the Boot CPU value.
1061 */
1062 static void check_early_cpu_features(void)
1063 {
1064 verify_cpu_run_el();
1065 verify_cpu_asid_bits();
1066 }
1067
1068 static void
1069 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1070 {
1071
1072 for (; caps->matches; caps++)
1073 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1074 pr_crit("CPU%d: missing HWCAP: %s\n",
1075 smp_processor_id(), caps->desc);
1076 cpu_die_early();
1077 }
1078 }
1079
1080 static void
1081 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1082 {
1083 for (; caps->matches; caps++) {
1084 if (!cpus_have_cap(caps->capability))
1085 continue;
1086 /*
1087 * If the new CPU misses an advertised feature, we cannot proceed
1088 * further, park the cpu.
1089 */
1090 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1091 pr_crit("CPU%d: missing feature: %s\n",
1092 smp_processor_id(), caps->desc);
1093 cpu_die_early();
1094 }
1095 if (caps->enable)
1096 caps->enable(NULL);
1097 }
1098 }
1099
1100 /*
1101 * Run through the enabled system capabilities and enable() it on this CPU.
1102 * The capabilities were decided based on the available CPUs at the boot time.
1103 * Any new CPU should match the system wide status of the capability. If the
1104 * new CPU doesn't have a capability which the system now has enabled, we
1105 * cannot do anything to fix it up and could cause unexpected failures. So
1106 * we park the CPU.
1107 */
1108 static void verify_local_cpu_capabilities(void)
1109 {
1110 verify_local_cpu_errata_workarounds();
1111 verify_local_cpu_features(arm64_features);
1112 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1113 if (system_supports_32bit_el0())
1114 verify_local_elf_hwcaps(compat_elf_hwcaps);
1115 }
1116
1117 void check_local_cpu_capabilities(void)
1118 {
1119 /*
1120 * All secondary CPUs should conform to the early CPU features
1121 * in use by the kernel based on boot CPU.
1122 */
1123 check_early_cpu_features();
1124
1125 /*
1126 * If we haven't finalised the system capabilities, this CPU gets
1127 * a chance to update the errata work arounds.
1128 * Otherwise, this CPU should verify that it has all the system
1129 * advertised capabilities.
1130 */
1131 if (!sys_caps_initialised)
1132 update_cpu_errata_workarounds();
1133 else
1134 verify_local_cpu_capabilities();
1135 }
1136
1137 static void __init setup_feature_capabilities(void)
1138 {
1139 update_cpu_capabilities(arm64_features, "detected feature:");
1140 enable_cpu_capabilities(arm64_features);
1141 }
1142
1143 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1144 EXPORT_SYMBOL(arm64_const_caps_ready);
1145
1146 static void __init mark_const_caps_ready(void)
1147 {
1148 static_branch_enable(&arm64_const_caps_ready);
1149 }
1150
1151 /*
1152 * Check if the current CPU has a given feature capability.
1153 * Should be called from non-preemptible context.
1154 */
1155 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1156 unsigned int cap)
1157 {
1158 const struct arm64_cpu_capabilities *caps;
1159
1160 if (WARN_ON(preemptible()))
1161 return false;
1162
1163 for (caps = cap_array; caps->desc; caps++)
1164 if (caps->capability == cap && caps->matches)
1165 return caps->matches(caps, SCOPE_LOCAL_CPU);
1166
1167 return false;
1168 }
1169
1170 extern const struct arm64_cpu_capabilities arm64_errata[];
1171
1172 bool this_cpu_has_cap(unsigned int cap)
1173 {
1174 return (__this_cpu_has_cap(arm64_features, cap) ||
1175 __this_cpu_has_cap(arm64_errata, cap));
1176 }
1177
1178 void __init setup_cpu_features(void)
1179 {
1180 u32 cwg;
1181 int cls;
1182
1183 /* Set the CPU feature capabilies */
1184 setup_feature_capabilities();
1185 enable_errata_workarounds();
1186 mark_const_caps_ready();
1187 setup_elf_hwcaps(arm64_elf_hwcaps);
1188
1189 if (system_supports_32bit_el0())
1190 setup_elf_hwcaps(compat_elf_hwcaps);
1191
1192 /* Advertise that we have computed the system capabilities */
1193 set_sys_caps_initialised();
1194
1195 /*
1196 * Check for sane CTR_EL0.CWG value.
1197 */
1198 cwg = cache_type_cwg();
1199 cls = cache_line_size();
1200 if (!cwg)
1201 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1202 cls);
1203 if (L1_CACHE_BYTES < cls)
1204 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1205 L1_CACHE_BYTES, cls);
1206 }
1207
1208 static bool __maybe_unused
1209 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1210 {
1211 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1212 }
1213
1214 /*
1215 * We emulate only the following system register space.
1216 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1217 * See Table C5-6 System instruction encodings for System register accesses,
1218 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1219 */
1220 static inline bool __attribute_const__ is_emulated(u32 id)
1221 {
1222 return (sys_reg_Op0(id) == 0x3 &&
1223 sys_reg_CRn(id) == 0x0 &&
1224 sys_reg_Op1(id) == 0x0 &&
1225 (sys_reg_CRm(id) == 0 ||
1226 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1227 }
1228
1229 /*
1230 * With CRm == 0, reg should be one of :
1231 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1232 */
1233 static inline int emulate_id_reg(u32 id, u64 *valp)
1234 {
1235 switch (id) {
1236 case SYS_MIDR_EL1:
1237 *valp = read_cpuid_id();
1238 break;
1239 case SYS_MPIDR_EL1:
1240 *valp = SYS_MPIDR_SAFE_VAL;
1241 break;
1242 case SYS_REVIDR_EL1:
1243 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1244 *valp = 0;
1245 break;
1246 default:
1247 return -EINVAL;
1248 }
1249
1250 return 0;
1251 }
1252
1253 static int emulate_sys_reg(u32 id, u64 *valp)
1254 {
1255 struct arm64_ftr_reg *regp;
1256
1257 if (!is_emulated(id))
1258 return -EINVAL;
1259
1260 if (sys_reg_CRm(id) == 0)
1261 return emulate_id_reg(id, valp);
1262
1263 regp = get_arm64_ftr_reg(id);
1264 if (regp)
1265 *valp = arm64_ftr_reg_user_value(regp);
1266 else
1267 /*
1268 * The untracked registers are either IMPLEMENTATION DEFINED
1269 * (e.g, ID_AFR0_EL1) or reserved RAZ.
1270 */
1271 *valp = 0;
1272 return 0;
1273 }
1274
1275 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1276 {
1277 int rc;
1278 u32 sys_reg, dst;
1279 u64 val;
1280
1281 /*
1282 * sys_reg values are defined as used in mrs/msr instruction.
1283 * shift the imm value to get the encoding.
1284 */
1285 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1286 rc = emulate_sys_reg(sys_reg, &val);
1287 if (!rc) {
1288 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1289 pt_regs_write_reg(regs, dst, val);
1290 regs->pc += 4;
1291 }
1292
1293 return rc;
1294 }
1295
1296 static struct undef_hook mrs_hook = {
1297 .instr_mask = 0xfff00000,
1298 .instr_val = 0xd5300000,
1299 .pstate_mask = COMPAT_PSR_MODE_MASK,
1300 .pstate_val = PSR_MODE_EL0t,
1301 .fn = emulate_mrs,
1302 };
1303
1304 static int __init enable_mrs_emulation(void)
1305 {
1306 register_undef_hook(&mrs_hook);
1307 return 0;
1308 }
1309
1310 late_initcall(enable_mrs_emulation);