]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kernel/cpufeature.c
Merge tag 'microblaze-4.10-rc1' of git://git.monstr.eu/linux-2.6-microblaze
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2 * Contains CPU feature definitions
3 *
4 * Copyright (C) 2015 ARM Ltd.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <asm/cpu.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/mmu_context.h>
30 #include <asm/processor.h>
31 #include <asm/sysreg.h>
32 #include <asm/virt.h>
33
34 unsigned long elf_hwcap __read_mostly;
35 EXPORT_SYMBOL_GPL(elf_hwcap);
36
37 #ifdef CONFIG_COMPAT
38 #define COMPAT_ELF_HWCAP_DEFAULT \
39 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
40 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
41 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
42 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
43 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
44 COMPAT_HWCAP_LPAE)
45 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
46 unsigned int compat_elf_hwcap2 __read_mostly;
47 #endif
48
49 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
50 EXPORT_SYMBOL(cpu_hwcaps);
51
52 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcap_keys);
54
55 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
56 { \
57 .sign = SIGNED, \
58 .strict = STRICT, \
59 .type = TYPE, \
60 .shift = SHIFT, \
61 .width = WIDTH, \
62 .safe_val = SAFE_VAL, \
63 }
64
65 /* Define a feature with unsigned values */
66 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
67 __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
68
69 /* Define a feature with a signed value */
70 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
71 __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
72
73 #define ARM64_FTR_END \
74 { \
75 .width = 0, \
76 }
77
78 /* meta feature for alternatives */
79 static bool __maybe_unused
80 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
81
82
83 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
84 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
85 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
86 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
87 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
88 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
89 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
90 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
91 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
92 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
93 ARM64_FTR_END,
94 };
95
96 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
97 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
98 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
99 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
100 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
101 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
102 /* Linux doesn't care about the EL3 */
103 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
104 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
105 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
106 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
107 ARM64_FTR_END,
108 };
109
110 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
111 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
112 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
113 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
114 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
115 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
116 /* Linux shouldn't care about secure memory */
117 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
118 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
119 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
120 /*
121 * Differing PARange is fine as long as all peripherals and memory are mapped
122 * within the minimum PARange of all CPUs
123 */
124 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
125 ARM64_FTR_END,
126 };
127
128 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
129 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
130 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
136 ARM64_FTR_END,
137 };
138
139 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
140 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
141 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
142 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
143 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
144 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
145 ARM64_FTR_END,
146 };
147
148 static const struct arm64_ftr_bits ftr_ctr[] = {
149 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RAO */
150 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
151 ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0), /* CWG */
152 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
153 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
154 /*
155 * Linux can handle differing I-cache policies. Userspace JITs will
156 * make use of *minLine.
157 * If we have differing I-cache policies, report it as the weakest - AIVIVT.
158 */
159 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_AIVIVT), /* L1Ip */
160 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0), /* RAZ */
161 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* IminLine */
162 ARM64_FTR_END,
163 };
164
165 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
166 .name = "SYS_CTR_EL0",
167 .ftr_bits = ftr_ctr
168 };
169
170 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
171 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf), /* InnerShr */
172 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0), /* FCSE */
173 ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
174 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0), /* TCM */
175 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* ShareLvl */
176 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf), /* OuterShr */
177 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
178 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
179 ARM64_FTR_END,
180 };
181
182 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
183 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
184 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
185 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
186 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
187 S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
188 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
189 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
190 ARM64_FTR_END,
191 };
192
193 static const struct arm64_ftr_bits ftr_mvfr2[] = {
194 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
195 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* FPMisc */
196 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* SIMDMisc */
197 ARM64_FTR_END,
198 };
199
200 static const struct arm64_ftr_bits ftr_dczid[] = {
201 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0), /* RAZ */
202 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
203 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
204 ARM64_FTR_END,
205 };
206
207
208 static const struct arm64_ftr_bits ftr_id_isar5[] = {
209 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
210 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0), /* RAZ */
211 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
212 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
213 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
214 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
215 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
216 ARM64_FTR_END,
217 };
218
219 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
220 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0), /* RAZ */
221 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* ac2 */
222 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
223 ARM64_FTR_END,
224 };
225
226 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
227 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0), /* RAZ */
228 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0), /* State3 */
229 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* State2 */
230 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* State1 */
231 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* State0 */
232 ARM64_FTR_END,
233 };
234
235 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
236 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
237 S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
238 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
239 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
240 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
241 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
242 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
243 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
244 ARM64_FTR_END,
245 };
246
247 /*
248 * Common ftr bits for a 32bit register with all hidden, strict
249 * attributes, with 4bit feature fields and a default safe value of
250 * 0. Covers the following 32bit registers:
251 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
252 */
253 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
254 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
255 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
256 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
257 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
258 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
259 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
260 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
261 ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
262 ARM64_FTR_END,
263 };
264
265 static const struct arm64_ftr_bits ftr_generic[] = {
266 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
267 ARM64_FTR_END,
268 };
269
270 static const struct arm64_ftr_bits ftr_generic32[] = {
271 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
272 ARM64_FTR_END,
273 };
274
275 static const struct arm64_ftr_bits ftr_aa64raz[] = {
276 ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
277 ARM64_FTR_END,
278 };
279
280 #define ARM64_FTR_REG(id, table) { \
281 .sys_id = id, \
282 .reg = &(struct arm64_ftr_reg){ \
283 .name = #id, \
284 .ftr_bits = &((table)[0]), \
285 }}
286
287 static const struct __ftr_reg_entry {
288 u32 sys_id;
289 struct arm64_ftr_reg *reg;
290 } arm64_ftr_regs[] = {
291
292 /* Op1 = 0, CRn = 0, CRm = 1 */
293 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
294 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
295 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
296 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
297 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
298 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
299 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
300
301 /* Op1 = 0, CRn = 0, CRm = 2 */
302 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
303 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
304 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
305 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
306 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
307 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
308 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
309
310 /* Op1 = 0, CRn = 0, CRm = 3 */
311 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
312 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
313 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
314
315 /* Op1 = 0, CRn = 0, CRm = 4 */
316 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
317 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
318
319 /* Op1 = 0, CRn = 0, CRm = 5 */
320 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
321 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
322
323 /* Op1 = 0, CRn = 0, CRm = 6 */
324 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
325 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
326
327 /* Op1 = 0, CRn = 0, CRm = 7 */
328 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
329 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
330 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
331
332 /* Op1 = 3, CRn = 0, CRm = 0 */
333 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
334 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
335
336 /* Op1 = 3, CRn = 14, CRm = 0 */
337 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
338 };
339
340 static int search_cmp_ftr_reg(const void *id, const void *regp)
341 {
342 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
343 }
344
345 /*
346 * get_arm64_ftr_reg - Lookup a feature register entry using its
347 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
348 * ascending order of sys_id , we use binary search to find a matching
349 * entry.
350 *
351 * returns - Upon success, matching ftr_reg entry for id.
352 * - NULL on failure. It is upto the caller to decide
353 * the impact of a failure.
354 */
355 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
356 {
357 const struct __ftr_reg_entry *ret;
358
359 ret = bsearch((const void *)(unsigned long)sys_id,
360 arm64_ftr_regs,
361 ARRAY_SIZE(arm64_ftr_regs),
362 sizeof(arm64_ftr_regs[0]),
363 search_cmp_ftr_reg);
364 if (ret)
365 return ret->reg;
366 return NULL;
367 }
368
369 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
370 s64 ftr_val)
371 {
372 u64 mask = arm64_ftr_mask(ftrp);
373
374 reg &= ~mask;
375 reg |= (ftr_val << ftrp->shift) & mask;
376 return reg;
377 }
378
379 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
380 s64 cur)
381 {
382 s64 ret = 0;
383
384 switch (ftrp->type) {
385 case FTR_EXACT:
386 ret = ftrp->safe_val;
387 break;
388 case FTR_LOWER_SAFE:
389 ret = new < cur ? new : cur;
390 break;
391 case FTR_HIGHER_SAFE:
392 ret = new > cur ? new : cur;
393 break;
394 default:
395 BUG();
396 }
397
398 return ret;
399 }
400
401 static void __init sort_ftr_regs(void)
402 {
403 int i;
404
405 /* Check that the array is sorted so that we can do the binary search */
406 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
407 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
408 }
409
410 /*
411 * Initialise the CPU feature register from Boot CPU values.
412 * Also initiliases the strict_mask for the register.
413 */
414 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
415 {
416 u64 val = 0;
417 u64 strict_mask = ~0x0ULL;
418 const struct arm64_ftr_bits *ftrp;
419 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
420
421 BUG_ON(!reg);
422
423 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
424 s64 ftr_new = arm64_ftr_value(ftrp, new);
425
426 val = arm64_ftr_set_value(ftrp, val, ftr_new);
427 if (!ftrp->strict)
428 strict_mask &= ~arm64_ftr_mask(ftrp);
429 }
430 reg->sys_val = val;
431 reg->strict_mask = strict_mask;
432 }
433
434 void __init init_cpu_features(struct cpuinfo_arm64 *info)
435 {
436 /* Before we start using the tables, make sure it is sorted */
437 sort_ftr_regs();
438
439 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
440 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
441 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
442 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
443 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
444 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
445 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
446 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
447 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
448 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
449 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
450 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
451
452 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
453 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
454 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
455 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
456 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
457 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
458 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
459 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
460 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
461 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
462 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
463 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
464 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
465 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
466 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
467 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
468 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
469 }
470
471 }
472
473 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
474 {
475 const struct arm64_ftr_bits *ftrp;
476
477 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
478 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
479 s64 ftr_new = arm64_ftr_value(ftrp, new);
480
481 if (ftr_cur == ftr_new)
482 continue;
483 /* Find a safe value */
484 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
485 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
486 }
487
488 }
489
490 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
491 {
492 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
493
494 BUG_ON(!regp);
495 update_cpu_ftr_reg(regp, val);
496 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
497 return 0;
498 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
499 regp->name, boot, cpu, val);
500 return 1;
501 }
502
503 /*
504 * Update system wide CPU feature registers with the values from a
505 * non-boot CPU. Also performs SANITY checks to make sure that there
506 * aren't any insane variations from that of the boot CPU.
507 */
508 void update_cpu_features(int cpu,
509 struct cpuinfo_arm64 *info,
510 struct cpuinfo_arm64 *boot)
511 {
512 int taint = 0;
513
514 /*
515 * The kernel can handle differing I-cache policies, but otherwise
516 * caches should look identical. Userspace JITs will make use of
517 * *minLine.
518 */
519 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
520 info->reg_ctr, boot->reg_ctr);
521
522 /*
523 * Userspace may perform DC ZVA instructions. Mismatched block sizes
524 * could result in too much or too little memory being zeroed if a
525 * process is preempted and migrated between CPUs.
526 */
527 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
528 info->reg_dczid, boot->reg_dczid);
529
530 /* If different, timekeeping will be broken (especially with KVM) */
531 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
532 info->reg_cntfrq, boot->reg_cntfrq);
533
534 /*
535 * The kernel uses self-hosted debug features and expects CPUs to
536 * support identical debug features. We presently need CTX_CMPs, WRPs,
537 * and BRPs to be identical.
538 * ID_AA64DFR1 is currently RES0.
539 */
540 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
541 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
542 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
543 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
544 /*
545 * Even in big.LITTLE, processors should be identical instruction-set
546 * wise.
547 */
548 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
549 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
550 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
551 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
552
553 /*
554 * Differing PARange support is fine as long as all peripherals and
555 * memory are mapped within the minimum PARange of all CPUs.
556 * Linux should not care about secure memory.
557 */
558 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
559 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
560 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
561 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
562 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
563 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
564
565 /*
566 * EL3 is not our concern.
567 * ID_AA64PFR1 is currently RES0.
568 */
569 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
570 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
571 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
572 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
573
574 /*
575 * If we have AArch32, we care about 32-bit features for compat.
576 * If the system doesn't support AArch32, don't update them.
577 */
578 if (id_aa64pfr0_32bit_el0(read_system_reg(SYS_ID_AA64PFR0_EL1)) &&
579 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
580
581 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
582 info->reg_id_dfr0, boot->reg_id_dfr0);
583 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
584 info->reg_id_isar0, boot->reg_id_isar0);
585 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
586 info->reg_id_isar1, boot->reg_id_isar1);
587 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
588 info->reg_id_isar2, boot->reg_id_isar2);
589 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
590 info->reg_id_isar3, boot->reg_id_isar3);
591 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
592 info->reg_id_isar4, boot->reg_id_isar4);
593 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
594 info->reg_id_isar5, boot->reg_id_isar5);
595
596 /*
597 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
598 * ACTLR formats could differ across CPUs and therefore would have to
599 * be trapped for virtualization anyway.
600 */
601 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
602 info->reg_id_mmfr0, boot->reg_id_mmfr0);
603 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
604 info->reg_id_mmfr1, boot->reg_id_mmfr1);
605 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
606 info->reg_id_mmfr2, boot->reg_id_mmfr2);
607 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
608 info->reg_id_mmfr3, boot->reg_id_mmfr3);
609 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
610 info->reg_id_pfr0, boot->reg_id_pfr0);
611 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
612 info->reg_id_pfr1, boot->reg_id_pfr1);
613 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
614 info->reg_mvfr0, boot->reg_mvfr0);
615 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
616 info->reg_mvfr1, boot->reg_mvfr1);
617 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
618 info->reg_mvfr2, boot->reg_mvfr2);
619 }
620
621 /*
622 * Mismatched CPU features are a recipe for disaster. Don't even
623 * pretend to support them.
624 */
625 WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
626 "Unsupported CPU feature variation.\n");
627 }
628
629 u64 read_system_reg(u32 id)
630 {
631 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
632
633 /* We shouldn't get a request for an unsupported register */
634 BUG_ON(!regp);
635 return regp->sys_val;
636 }
637
638 /*
639 * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
640 * Read the system register on the current CPU
641 */
642 static u64 __raw_read_system_reg(u32 sys_id)
643 {
644 switch (sys_id) {
645 case SYS_ID_PFR0_EL1: return read_cpuid(ID_PFR0_EL1);
646 case SYS_ID_PFR1_EL1: return read_cpuid(ID_PFR1_EL1);
647 case SYS_ID_DFR0_EL1: return read_cpuid(ID_DFR0_EL1);
648 case SYS_ID_MMFR0_EL1: return read_cpuid(ID_MMFR0_EL1);
649 case SYS_ID_MMFR1_EL1: return read_cpuid(ID_MMFR1_EL1);
650 case SYS_ID_MMFR2_EL1: return read_cpuid(ID_MMFR2_EL1);
651 case SYS_ID_MMFR3_EL1: return read_cpuid(ID_MMFR3_EL1);
652 case SYS_ID_ISAR0_EL1: return read_cpuid(ID_ISAR0_EL1);
653 case SYS_ID_ISAR1_EL1: return read_cpuid(ID_ISAR1_EL1);
654 case SYS_ID_ISAR2_EL1: return read_cpuid(ID_ISAR2_EL1);
655 case SYS_ID_ISAR3_EL1: return read_cpuid(ID_ISAR3_EL1);
656 case SYS_ID_ISAR4_EL1: return read_cpuid(ID_ISAR4_EL1);
657 case SYS_ID_ISAR5_EL1: return read_cpuid(ID_ISAR4_EL1);
658 case SYS_MVFR0_EL1: return read_cpuid(MVFR0_EL1);
659 case SYS_MVFR1_EL1: return read_cpuid(MVFR1_EL1);
660 case SYS_MVFR2_EL1: return read_cpuid(MVFR2_EL1);
661
662 case SYS_ID_AA64PFR0_EL1: return read_cpuid(ID_AA64PFR0_EL1);
663 case SYS_ID_AA64PFR1_EL1: return read_cpuid(ID_AA64PFR0_EL1);
664 case SYS_ID_AA64DFR0_EL1: return read_cpuid(ID_AA64DFR0_EL1);
665 case SYS_ID_AA64DFR1_EL1: return read_cpuid(ID_AA64DFR0_EL1);
666 case SYS_ID_AA64MMFR0_EL1: return read_cpuid(ID_AA64MMFR0_EL1);
667 case SYS_ID_AA64MMFR1_EL1: return read_cpuid(ID_AA64MMFR1_EL1);
668 case SYS_ID_AA64MMFR2_EL1: return read_cpuid(ID_AA64MMFR2_EL1);
669 case SYS_ID_AA64ISAR0_EL1: return read_cpuid(ID_AA64ISAR0_EL1);
670 case SYS_ID_AA64ISAR1_EL1: return read_cpuid(ID_AA64ISAR1_EL1);
671
672 case SYS_CNTFRQ_EL0: return read_cpuid(CNTFRQ_EL0);
673 case SYS_CTR_EL0: return read_cpuid(CTR_EL0);
674 case SYS_DCZID_EL0: return read_cpuid(DCZID_EL0);
675 default:
676 BUG();
677 return 0;
678 }
679 }
680
681 #include <linux/irqchip/arm-gic-v3.h>
682
683 static bool
684 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
685 {
686 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
687
688 return val >= entry->min_field_value;
689 }
690
691 static bool
692 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
693 {
694 u64 val;
695
696 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
697 if (scope == SCOPE_SYSTEM)
698 val = read_system_reg(entry->sys_reg);
699 else
700 val = __raw_read_system_reg(entry->sys_reg);
701
702 return feature_matches(val, entry);
703 }
704
705 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
706 {
707 bool has_sre;
708
709 if (!has_cpuid_feature(entry, scope))
710 return false;
711
712 has_sre = gic_enable_sre();
713 if (!has_sre)
714 pr_warn_once("%s present but disabled by higher exception level\n",
715 entry->desc);
716
717 return has_sre;
718 }
719
720 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
721 {
722 u32 midr = read_cpuid_id();
723 u32 rv_min, rv_max;
724
725 /* Cavium ThunderX pass 1.x and 2.x */
726 rv_min = 0;
727 rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
728
729 return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
730 }
731
732 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
733 {
734 return is_kernel_in_hyp_mode();
735 }
736
737 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
738 int __unused)
739 {
740 phys_addr_t idmap_addr = virt_to_phys(__hyp_idmap_text_start);
741
742 /*
743 * Activate the lower HYP offset only if:
744 * - the idmap doesn't clash with it,
745 * - the kernel is not running at EL2.
746 */
747 return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
748 }
749
750 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
751 {
752 u64 pfr0 = read_system_reg(SYS_ID_AA64PFR0_EL1);
753
754 return cpuid_feature_extract_signed_field(pfr0,
755 ID_AA64PFR0_FP_SHIFT) < 0;
756 }
757
758 static const struct arm64_cpu_capabilities arm64_features[] = {
759 {
760 .desc = "GIC system register CPU interface",
761 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
762 .def_scope = SCOPE_SYSTEM,
763 .matches = has_useable_gicv3_cpuif,
764 .sys_reg = SYS_ID_AA64PFR0_EL1,
765 .field_pos = ID_AA64PFR0_GIC_SHIFT,
766 .sign = FTR_UNSIGNED,
767 .min_field_value = 1,
768 },
769 #ifdef CONFIG_ARM64_PAN
770 {
771 .desc = "Privileged Access Never",
772 .capability = ARM64_HAS_PAN,
773 .def_scope = SCOPE_SYSTEM,
774 .matches = has_cpuid_feature,
775 .sys_reg = SYS_ID_AA64MMFR1_EL1,
776 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
777 .sign = FTR_UNSIGNED,
778 .min_field_value = 1,
779 .enable = cpu_enable_pan,
780 },
781 #endif /* CONFIG_ARM64_PAN */
782 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
783 {
784 .desc = "LSE atomic instructions",
785 .capability = ARM64_HAS_LSE_ATOMICS,
786 .def_scope = SCOPE_SYSTEM,
787 .matches = has_cpuid_feature,
788 .sys_reg = SYS_ID_AA64ISAR0_EL1,
789 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
790 .sign = FTR_UNSIGNED,
791 .min_field_value = 2,
792 },
793 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
794 {
795 .desc = "Software prefetching using PRFM",
796 .capability = ARM64_HAS_NO_HW_PREFETCH,
797 .def_scope = SCOPE_SYSTEM,
798 .matches = has_no_hw_prefetch,
799 },
800 #ifdef CONFIG_ARM64_UAO
801 {
802 .desc = "User Access Override",
803 .capability = ARM64_HAS_UAO,
804 .def_scope = SCOPE_SYSTEM,
805 .matches = has_cpuid_feature,
806 .sys_reg = SYS_ID_AA64MMFR2_EL1,
807 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
808 .min_field_value = 1,
809 .enable = cpu_enable_uao,
810 },
811 #endif /* CONFIG_ARM64_UAO */
812 #ifdef CONFIG_ARM64_PAN
813 {
814 .capability = ARM64_ALT_PAN_NOT_UAO,
815 .def_scope = SCOPE_SYSTEM,
816 .matches = cpufeature_pan_not_uao,
817 },
818 #endif /* CONFIG_ARM64_PAN */
819 {
820 .desc = "Virtualization Host Extensions",
821 .capability = ARM64_HAS_VIRT_HOST_EXTN,
822 .def_scope = SCOPE_SYSTEM,
823 .matches = runs_at_el2,
824 },
825 {
826 .desc = "32-bit EL0 Support",
827 .capability = ARM64_HAS_32BIT_EL0,
828 .def_scope = SCOPE_SYSTEM,
829 .matches = has_cpuid_feature,
830 .sys_reg = SYS_ID_AA64PFR0_EL1,
831 .sign = FTR_UNSIGNED,
832 .field_pos = ID_AA64PFR0_EL0_SHIFT,
833 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
834 },
835 {
836 .desc = "Reduced HYP mapping offset",
837 .capability = ARM64_HYP_OFFSET_LOW,
838 .def_scope = SCOPE_SYSTEM,
839 .matches = hyp_offset_low,
840 },
841 {
842 /* FP/SIMD is not implemented */
843 .capability = ARM64_HAS_NO_FPSIMD,
844 .def_scope = SCOPE_SYSTEM,
845 .min_field_value = 0,
846 .matches = has_no_fpsimd,
847 },
848 {},
849 };
850
851 #define HWCAP_CAP(reg, field, s, min_value, type, cap) \
852 { \
853 .desc = #cap, \
854 .def_scope = SCOPE_SYSTEM, \
855 .matches = has_cpuid_feature, \
856 .sys_reg = reg, \
857 .field_pos = field, \
858 .sign = s, \
859 .min_field_value = min_value, \
860 .hwcap_type = type, \
861 .hwcap = cap, \
862 }
863
864 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
865 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
866 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
867 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
868 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
869 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
870 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
871 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
872 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
873 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
874 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
875 {},
876 };
877
878 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
879 #ifdef CONFIG_COMPAT
880 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
881 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
882 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
883 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
884 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
885 #endif
886 {},
887 };
888
889 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
890 {
891 switch (cap->hwcap_type) {
892 case CAP_HWCAP:
893 elf_hwcap |= cap->hwcap;
894 break;
895 #ifdef CONFIG_COMPAT
896 case CAP_COMPAT_HWCAP:
897 compat_elf_hwcap |= (u32)cap->hwcap;
898 break;
899 case CAP_COMPAT_HWCAP2:
900 compat_elf_hwcap2 |= (u32)cap->hwcap;
901 break;
902 #endif
903 default:
904 WARN_ON(1);
905 break;
906 }
907 }
908
909 /* Check if we have a particular HWCAP enabled */
910 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
911 {
912 bool rc;
913
914 switch (cap->hwcap_type) {
915 case CAP_HWCAP:
916 rc = (elf_hwcap & cap->hwcap) != 0;
917 break;
918 #ifdef CONFIG_COMPAT
919 case CAP_COMPAT_HWCAP:
920 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
921 break;
922 case CAP_COMPAT_HWCAP2:
923 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
924 break;
925 #endif
926 default:
927 WARN_ON(1);
928 rc = false;
929 }
930
931 return rc;
932 }
933
934 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
935 {
936 for (; hwcaps->matches; hwcaps++)
937 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
938 cap_set_elf_hwcap(hwcaps);
939 }
940
941 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
942 const char *info)
943 {
944 for (; caps->matches; caps++) {
945 if (!caps->matches(caps, caps->def_scope))
946 continue;
947
948 if (!cpus_have_cap(caps->capability) && caps->desc)
949 pr_info("%s %s\n", info, caps->desc);
950 cpus_set_cap(caps->capability);
951 }
952 }
953
954 /*
955 * Run through the enabled capabilities and enable() it on all active
956 * CPUs
957 */
958 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
959 {
960 for (; caps->matches; caps++)
961 if (caps->enable && cpus_have_cap(caps->capability))
962 /*
963 * Use stop_machine() as it schedules the work allowing
964 * us to modify PSTATE, instead of on_each_cpu() which
965 * uses an IPI, giving us a PSTATE that disappears when
966 * we return.
967 */
968 stop_machine(caps->enable, NULL, cpu_online_mask);
969 }
970
971 /*
972 * Flag to indicate if we have computed the system wide
973 * capabilities based on the boot time active CPUs. This
974 * will be used to determine if a new booting CPU should
975 * go through the verification process to make sure that it
976 * supports the system capabilities, without using a hotplug
977 * notifier.
978 */
979 static bool sys_caps_initialised;
980
981 static inline void set_sys_caps_initialised(void)
982 {
983 sys_caps_initialised = true;
984 }
985
986 /*
987 * Check for CPU features that are used in early boot
988 * based on the Boot CPU value.
989 */
990 static void check_early_cpu_features(void)
991 {
992 verify_cpu_run_el();
993 verify_cpu_asid_bits();
994 }
995
996 static void
997 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
998 {
999
1000 for (; caps->matches; caps++)
1001 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1002 pr_crit("CPU%d: missing HWCAP: %s\n",
1003 smp_processor_id(), caps->desc);
1004 cpu_die_early();
1005 }
1006 }
1007
1008 static void
1009 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1010 {
1011 for (; caps->matches; caps++) {
1012 if (!cpus_have_cap(caps->capability))
1013 continue;
1014 /*
1015 * If the new CPU misses an advertised feature, we cannot proceed
1016 * further, park the cpu.
1017 */
1018 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1019 pr_crit("CPU%d: missing feature: %s\n",
1020 smp_processor_id(), caps->desc);
1021 cpu_die_early();
1022 }
1023 if (caps->enable)
1024 caps->enable(NULL);
1025 }
1026 }
1027
1028 /*
1029 * Run through the enabled system capabilities and enable() it on this CPU.
1030 * The capabilities were decided based on the available CPUs at the boot time.
1031 * Any new CPU should match the system wide status of the capability. If the
1032 * new CPU doesn't have a capability which the system now has enabled, we
1033 * cannot do anything to fix it up and could cause unexpected failures. So
1034 * we park the CPU.
1035 */
1036 static void verify_local_cpu_capabilities(void)
1037 {
1038 verify_local_cpu_errata_workarounds();
1039 verify_local_cpu_features(arm64_features);
1040 verify_local_elf_hwcaps(arm64_elf_hwcaps);
1041 if (system_supports_32bit_el0())
1042 verify_local_elf_hwcaps(compat_elf_hwcaps);
1043 }
1044
1045 void check_local_cpu_capabilities(void)
1046 {
1047 /*
1048 * All secondary CPUs should conform to the early CPU features
1049 * in use by the kernel based on boot CPU.
1050 */
1051 check_early_cpu_features();
1052
1053 /*
1054 * If we haven't finalised the system capabilities, this CPU gets
1055 * a chance to update the errata work arounds.
1056 * Otherwise, this CPU should verify that it has all the system
1057 * advertised capabilities.
1058 */
1059 if (!sys_caps_initialised)
1060 update_cpu_errata_workarounds();
1061 else
1062 verify_local_cpu_capabilities();
1063 }
1064
1065 static void __init setup_feature_capabilities(void)
1066 {
1067 update_cpu_capabilities(arm64_features, "detected feature:");
1068 enable_cpu_capabilities(arm64_features);
1069 }
1070
1071 /*
1072 * Check if the current CPU has a given feature capability.
1073 * Should be called from non-preemptible context.
1074 */
1075 bool this_cpu_has_cap(unsigned int cap)
1076 {
1077 const struct arm64_cpu_capabilities *caps;
1078
1079 if (WARN_ON(preemptible()))
1080 return false;
1081
1082 for (caps = arm64_features; caps->desc; caps++)
1083 if (caps->capability == cap && caps->matches)
1084 return caps->matches(caps, SCOPE_LOCAL_CPU);
1085
1086 return false;
1087 }
1088
1089 void __init setup_cpu_features(void)
1090 {
1091 u32 cwg;
1092 int cls;
1093
1094 /* Set the CPU feature capabilies */
1095 setup_feature_capabilities();
1096 enable_errata_workarounds();
1097 setup_elf_hwcaps(arm64_elf_hwcaps);
1098
1099 if (system_supports_32bit_el0())
1100 setup_elf_hwcaps(compat_elf_hwcaps);
1101
1102 /* Advertise that we have computed the system capabilities */
1103 set_sys_caps_initialised();
1104
1105 /*
1106 * Check for sane CTR_EL0.CWG value.
1107 */
1108 cwg = cache_type_cwg();
1109 cls = cache_line_size();
1110 if (!cwg)
1111 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1112 cls);
1113 if (L1_CACHE_BYTES < cls)
1114 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1115 L1_CACHE_BYTES, cls);
1116 }
1117
1118 static bool __maybe_unused
1119 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1120 {
1121 return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1122 }