]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/kernel/fpsimd.c
Merge tag 'sound-4.15-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / kernel / fpsimd.c
1 /*
2 * FP/SIMD context switching and fault handling
3 *
4 * Copyright (C) 2012 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/bitmap.h>
21 #include <linux/bottom_half.h>
22 #include <linux/bug.h>
23 #include <linux/cache.h>
24 #include <linux/compat.h>
25 #include <linux/cpu.h>
26 #include <linux/cpu_pm.h>
27 #include <linux/kernel.h>
28 #include <linux/linkage.h>
29 #include <linux/irqflags.h>
30 #include <linux/init.h>
31 #include <linux/percpu.h>
32 #include <linux/prctl.h>
33 #include <linux/preempt.h>
34 #include <linux/prctl.h>
35 #include <linux/ptrace.h>
36 #include <linux/sched/signal.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/signal.h>
39 #include <linux/slab.h>
40 #include <linux/sysctl.h>
41
42 #include <asm/fpsimd.h>
43 #include <asm/cputype.h>
44 #include <asm/simd.h>
45 #include <asm/sigcontext.h>
46 #include <asm/sysreg.h>
47 #include <asm/traps.h>
48
49 #define FPEXC_IOF (1 << 0)
50 #define FPEXC_DZF (1 << 1)
51 #define FPEXC_OFF (1 << 2)
52 #define FPEXC_UFF (1 << 3)
53 #define FPEXC_IXF (1 << 4)
54 #define FPEXC_IDF (1 << 7)
55
56 /*
57 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
58 *
59 * In order to reduce the number of times the FPSIMD state is needlessly saved
60 * and restored, we need to keep track of two things:
61 * (a) for each task, we need to remember which CPU was the last one to have
62 * the task's FPSIMD state loaded into its FPSIMD registers;
63 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
64 * been loaded into its FPSIMD registers most recently, or whether it has
65 * been used to perform kernel mode NEON in the meantime.
66 *
67 * For (a), we add a 'cpu' field to struct fpsimd_state, which gets updated to
68 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
69 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
70 * address of the userland FPSIMD state of the task that was loaded onto the CPU
71 * the most recently, or NULL if kernel mode NEON has been performed after that.
72 *
73 * With this in place, we no longer have to restore the next FPSIMD state right
74 * when switching between tasks. Instead, we can defer this check to userland
75 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
76 * task's fpsimd_state.cpu are still mutually in sync. If this is the case, we
77 * can omit the FPSIMD restore.
78 *
79 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
80 * indicate whether or not the userland FPSIMD state of the current task is
81 * present in the registers. The flag is set unless the FPSIMD registers of this
82 * CPU currently contain the most recent userland FPSIMD state of the current
83 * task.
84 *
85 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
86 * save the task's FPSIMD context back to task_struct from softirq context.
87 * To prevent this from racing with the manipulation of the task's FPSIMD state
88 * from task context and thereby corrupting the state, it is necessary to
89 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
90 * flag with local_bh_disable() unless softirqs are already masked.
91 *
92 * For a certain task, the sequence may look something like this:
93 * - the task gets scheduled in; if both the task's fpsimd_state.cpu field
94 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
95 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
96 * cleared, otherwise it is set;
97 *
98 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
99 * userland FPSIMD state is copied from memory to the registers, the task's
100 * fpsimd_state.cpu field is set to the id of the current CPU, the current
101 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
102 * TIF_FOREIGN_FPSTATE flag is cleared;
103 *
104 * - the task executes an ordinary syscall; upon return to userland, the
105 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
106 * restored;
107 *
108 * - the task executes a syscall which executes some NEON instructions; this is
109 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
110 * register contents to memory, clears the fpsimd_last_state per-cpu variable
111 * and sets the TIF_FOREIGN_FPSTATE flag;
112 *
113 * - the task gets preempted after kernel_neon_end() is called; as we have not
114 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
115 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
116 */
117 static DEFINE_PER_CPU(struct fpsimd_state *, fpsimd_last_state);
118
119 /* Default VL for tasks that don't set it explicitly: */
120 static int sve_default_vl = -1;
121
122 #ifdef CONFIG_ARM64_SVE
123
124 /* Maximum supported vector length across all CPUs (initially poisoned) */
125 int __ro_after_init sve_max_vl = -1;
126 /* Set of available vector lengths, as vq_to_bit(vq): */
127 static __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
128 static void __percpu *efi_sve_state;
129
130 #else /* ! CONFIG_ARM64_SVE */
131
132 /* Dummy declaration for code that will be optimised out: */
133 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
134 extern void __percpu *efi_sve_state;
135
136 #endif /* ! CONFIG_ARM64_SVE */
137
138 /*
139 * Call __sve_free() directly only if you know task can't be scheduled
140 * or preempted.
141 */
142 static void __sve_free(struct task_struct *task)
143 {
144 kfree(task->thread.sve_state);
145 task->thread.sve_state = NULL;
146 }
147
148 static void sve_free(struct task_struct *task)
149 {
150 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
151
152 __sve_free(task);
153 }
154
155
156 /* Offset of FFR in the SVE register dump */
157 static size_t sve_ffr_offset(int vl)
158 {
159 return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
160 }
161
162 static void *sve_pffr(struct task_struct *task)
163 {
164 return (char *)task->thread.sve_state +
165 sve_ffr_offset(task->thread.sve_vl);
166 }
167
168 static void change_cpacr(u64 val, u64 mask)
169 {
170 u64 cpacr = read_sysreg(CPACR_EL1);
171 u64 new = (cpacr & ~mask) | val;
172
173 if (new != cpacr)
174 write_sysreg(new, CPACR_EL1);
175 }
176
177 static void sve_user_disable(void)
178 {
179 change_cpacr(0, CPACR_EL1_ZEN_EL0EN);
180 }
181
182 static void sve_user_enable(void)
183 {
184 change_cpacr(CPACR_EL1_ZEN_EL0EN, CPACR_EL1_ZEN_EL0EN);
185 }
186
187 /*
188 * TIF_SVE controls whether a task can use SVE without trapping while
189 * in userspace, and also the way a task's FPSIMD/SVE state is stored
190 * in thread_struct.
191 *
192 * The kernel uses this flag to track whether a user task is actively
193 * using SVE, and therefore whether full SVE register state needs to
194 * be tracked. If not, the cheaper FPSIMD context handling code can
195 * be used instead of the more costly SVE equivalents.
196 *
197 * * TIF_SVE set:
198 *
199 * The task can execute SVE instructions while in userspace without
200 * trapping to the kernel.
201 *
202 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
203 * corresponding Zn), P0-P15 and FFR are encoded in in
204 * task->thread.sve_state, formatted appropriately for vector
205 * length task->thread.sve_vl.
206 *
207 * task->thread.sve_state must point to a valid buffer at least
208 * sve_state_size(task) bytes in size.
209 *
210 * During any syscall, the kernel may optionally clear TIF_SVE and
211 * discard the vector state except for the FPSIMD subset.
212 *
213 * * TIF_SVE clear:
214 *
215 * An attempt by the user task to execute an SVE instruction causes
216 * do_sve_acc() to be called, which does some preparation and then
217 * sets TIF_SVE.
218 *
219 * When stored, FPSIMD registers V0-V31 are encoded in
220 * task->fpsimd_state; bits [max : 128] for each of Z0-Z31 are
221 * logically zero but not stored anywhere; P0-P15 and FFR are not
222 * stored and have unspecified values from userspace's point of
223 * view. For hygiene purposes, the kernel zeroes them on next use,
224 * but userspace is discouraged from relying on this.
225 *
226 * task->thread.sve_state does not need to be non-NULL, valid or any
227 * particular size: it must not be dereferenced.
228 *
229 * * FPSR and FPCR are always stored in task->fpsimd_state irrespctive of
230 * whether TIF_SVE is clear or set, since these are not vector length
231 * dependent.
232 */
233
234 /*
235 * Update current's FPSIMD/SVE registers from thread_struct.
236 *
237 * This function should be called only when the FPSIMD/SVE state in
238 * thread_struct is known to be up to date, when preparing to enter
239 * userspace.
240 *
241 * Softirqs (and preemption) must be disabled.
242 */
243 static void task_fpsimd_load(void)
244 {
245 WARN_ON(!in_softirq() && !irqs_disabled());
246
247 if (system_supports_sve() && test_thread_flag(TIF_SVE))
248 sve_load_state(sve_pffr(current),
249 &current->thread.fpsimd_state.fpsr,
250 sve_vq_from_vl(current->thread.sve_vl) - 1);
251 else
252 fpsimd_load_state(&current->thread.fpsimd_state);
253
254 if (system_supports_sve()) {
255 /* Toggle SVE trapping for userspace if needed */
256 if (test_thread_flag(TIF_SVE))
257 sve_user_enable();
258 else
259 sve_user_disable();
260
261 /* Serialised by exception return to user */
262 }
263 }
264
265 /*
266 * Ensure current's FPSIMD/SVE storage in thread_struct is up to date
267 * with respect to the CPU registers.
268 *
269 * Softirqs (and preemption) must be disabled.
270 */
271 static void task_fpsimd_save(void)
272 {
273 WARN_ON(!in_softirq() && !irqs_disabled());
274
275 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
276 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
277 if (WARN_ON(sve_get_vl() != current->thread.sve_vl)) {
278 /*
279 * Can't save the user regs, so current would
280 * re-enter user with corrupt state.
281 * There's no way to recover, so kill it:
282 */
283 force_signal_inject(
284 SIGKILL, 0, current_pt_regs(), 0);
285 return;
286 }
287
288 sve_save_state(sve_pffr(current),
289 &current->thread.fpsimd_state.fpsr);
290 } else
291 fpsimd_save_state(&current->thread.fpsimd_state);
292 }
293 }
294
295 /*
296 * Helpers to translate bit indices in sve_vq_map to VQ values (and
297 * vice versa). This allows find_next_bit() to be used to find the
298 * _maximum_ VQ not exceeding a certain value.
299 */
300
301 static unsigned int vq_to_bit(unsigned int vq)
302 {
303 return SVE_VQ_MAX - vq;
304 }
305
306 static unsigned int bit_to_vq(unsigned int bit)
307 {
308 if (WARN_ON(bit >= SVE_VQ_MAX))
309 bit = SVE_VQ_MAX - 1;
310
311 return SVE_VQ_MAX - bit;
312 }
313
314 /*
315 * All vector length selection from userspace comes through here.
316 * We're on a slow path, so some sanity-checks are included.
317 * If things go wrong there's a bug somewhere, but try to fall back to a
318 * safe choice.
319 */
320 static unsigned int find_supported_vector_length(unsigned int vl)
321 {
322 int bit;
323 int max_vl = sve_max_vl;
324
325 if (WARN_ON(!sve_vl_valid(vl)))
326 vl = SVE_VL_MIN;
327
328 if (WARN_ON(!sve_vl_valid(max_vl)))
329 max_vl = SVE_VL_MIN;
330
331 if (vl > max_vl)
332 vl = max_vl;
333
334 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
335 vq_to_bit(sve_vq_from_vl(vl)));
336 return sve_vl_from_vq(bit_to_vq(bit));
337 }
338
339 #ifdef CONFIG_SYSCTL
340
341 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
342 void __user *buffer, size_t *lenp,
343 loff_t *ppos)
344 {
345 int ret;
346 int vl = sve_default_vl;
347 struct ctl_table tmp_table = {
348 .data = &vl,
349 .maxlen = sizeof(vl),
350 };
351
352 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
353 if (ret || !write)
354 return ret;
355
356 /* Writing -1 has the special meaning "set to max": */
357 if (vl == -1) {
358 /* Fail safe if sve_max_vl wasn't initialised */
359 if (WARN_ON(!sve_vl_valid(sve_max_vl)))
360 vl = SVE_VL_MIN;
361 else
362 vl = sve_max_vl;
363
364 goto chosen;
365 }
366
367 if (!sve_vl_valid(vl))
368 return -EINVAL;
369
370 vl = find_supported_vector_length(vl);
371 chosen:
372 sve_default_vl = vl;
373 return 0;
374 }
375
376 static struct ctl_table sve_default_vl_table[] = {
377 {
378 .procname = "sve_default_vector_length",
379 .mode = 0644,
380 .proc_handler = sve_proc_do_default_vl,
381 },
382 { }
383 };
384
385 static int __init sve_sysctl_init(void)
386 {
387 if (system_supports_sve())
388 if (!register_sysctl("abi", sve_default_vl_table))
389 return -EINVAL;
390
391 return 0;
392 }
393
394 #else /* ! CONFIG_SYSCTL */
395 static int __init sve_sysctl_init(void) { return 0; }
396 #endif /* ! CONFIG_SYSCTL */
397
398 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
399 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
400
401 /*
402 * Transfer the FPSIMD state in task->thread.fpsimd_state to
403 * task->thread.sve_state.
404 *
405 * Task can be a non-runnable task, or current. In the latter case,
406 * softirqs (and preemption) must be disabled.
407 * task->thread.sve_state must point to at least sve_state_size(task)
408 * bytes of allocated kernel memory.
409 * task->thread.fpsimd_state must be up to date before calling this function.
410 */
411 static void fpsimd_to_sve(struct task_struct *task)
412 {
413 unsigned int vq;
414 void *sst = task->thread.sve_state;
415 struct fpsimd_state const *fst = &task->thread.fpsimd_state;
416 unsigned int i;
417
418 if (!system_supports_sve())
419 return;
420
421 vq = sve_vq_from_vl(task->thread.sve_vl);
422 for (i = 0; i < 32; ++i)
423 memcpy(ZREG(sst, vq, i), &fst->vregs[i],
424 sizeof(fst->vregs[i]));
425 }
426
427 /*
428 * Transfer the SVE state in task->thread.sve_state to
429 * task->thread.fpsimd_state.
430 *
431 * Task can be a non-runnable task, or current. In the latter case,
432 * softirqs (and preemption) must be disabled.
433 * task->thread.sve_state must point to at least sve_state_size(task)
434 * bytes of allocated kernel memory.
435 * task->thread.sve_state must be up to date before calling this function.
436 */
437 static void sve_to_fpsimd(struct task_struct *task)
438 {
439 unsigned int vq;
440 void const *sst = task->thread.sve_state;
441 struct fpsimd_state *fst = &task->thread.fpsimd_state;
442 unsigned int i;
443
444 if (!system_supports_sve())
445 return;
446
447 vq = sve_vq_from_vl(task->thread.sve_vl);
448 for (i = 0; i < 32; ++i)
449 memcpy(&fst->vregs[i], ZREG(sst, vq, i),
450 sizeof(fst->vregs[i]));
451 }
452
453 #ifdef CONFIG_ARM64_SVE
454
455 /*
456 * Return how many bytes of memory are required to store the full SVE
457 * state for task, given task's currently configured vector length.
458 */
459 size_t sve_state_size(struct task_struct const *task)
460 {
461 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
462 }
463
464 /*
465 * Ensure that task->thread.sve_state is allocated and sufficiently large.
466 *
467 * This function should be used only in preparation for replacing
468 * task->thread.sve_state with new data. The memory is always zeroed
469 * here to prevent stale data from showing through: this is done in
470 * the interest of testability and predictability: except in the
471 * do_sve_acc() case, there is no ABI requirement to hide stale data
472 * written previously be task.
473 */
474 void sve_alloc(struct task_struct *task)
475 {
476 if (task->thread.sve_state) {
477 memset(task->thread.sve_state, 0, sve_state_size(current));
478 return;
479 }
480
481 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
482 task->thread.sve_state =
483 kzalloc(sve_state_size(task), GFP_KERNEL);
484
485 /*
486 * If future SVE revisions can have larger vectors though,
487 * this may cease to be true:
488 */
489 BUG_ON(!task->thread.sve_state);
490 }
491
492
493 /*
494 * Ensure that task->thread.sve_state is up to date with respect to
495 * the user task, irrespective of when SVE is in use or not.
496 *
497 * This should only be called by ptrace. task must be non-runnable.
498 * task->thread.sve_state must point to at least sve_state_size(task)
499 * bytes of allocated kernel memory.
500 */
501 void fpsimd_sync_to_sve(struct task_struct *task)
502 {
503 if (!test_tsk_thread_flag(task, TIF_SVE))
504 fpsimd_to_sve(task);
505 }
506
507 /*
508 * Ensure that task->thread.fpsimd_state is up to date with respect to
509 * the user task, irrespective of whether SVE is in use or not.
510 *
511 * This should only be called by ptrace. task must be non-runnable.
512 * task->thread.sve_state must point to at least sve_state_size(task)
513 * bytes of allocated kernel memory.
514 */
515 void sve_sync_to_fpsimd(struct task_struct *task)
516 {
517 if (test_tsk_thread_flag(task, TIF_SVE))
518 sve_to_fpsimd(task);
519 }
520
521 /*
522 * Ensure that task->thread.sve_state is up to date with respect to
523 * the task->thread.fpsimd_state.
524 *
525 * This should only be called by ptrace to merge new FPSIMD register
526 * values into a task for which SVE is currently active.
527 * task must be non-runnable.
528 * task->thread.sve_state must point to at least sve_state_size(task)
529 * bytes of allocated kernel memory.
530 * task->thread.fpsimd_state must already have been initialised with
531 * the new FPSIMD register values to be merged in.
532 */
533 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
534 {
535 unsigned int vq;
536 void *sst = task->thread.sve_state;
537 struct fpsimd_state const *fst = &task->thread.fpsimd_state;
538 unsigned int i;
539
540 if (!test_tsk_thread_flag(task, TIF_SVE))
541 return;
542
543 vq = sve_vq_from_vl(task->thread.sve_vl);
544
545 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
546
547 for (i = 0; i < 32; ++i)
548 memcpy(ZREG(sst, vq, i), &fst->vregs[i],
549 sizeof(fst->vregs[i]));
550 }
551
552 int sve_set_vector_length(struct task_struct *task,
553 unsigned long vl, unsigned long flags)
554 {
555 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
556 PR_SVE_SET_VL_ONEXEC))
557 return -EINVAL;
558
559 if (!sve_vl_valid(vl))
560 return -EINVAL;
561
562 /*
563 * Clamp to the maximum vector length that VL-agnostic SVE code can
564 * work with. A flag may be assigned in the future to allow setting
565 * of larger vector lengths without confusing older software.
566 */
567 if (vl > SVE_VL_ARCH_MAX)
568 vl = SVE_VL_ARCH_MAX;
569
570 vl = find_supported_vector_length(vl);
571
572 if (flags & (PR_SVE_VL_INHERIT |
573 PR_SVE_SET_VL_ONEXEC))
574 task->thread.sve_vl_onexec = vl;
575 else
576 /* Reset VL to system default on next exec: */
577 task->thread.sve_vl_onexec = 0;
578
579 /* Only actually set the VL if not deferred: */
580 if (flags & PR_SVE_SET_VL_ONEXEC)
581 goto out;
582
583 if (vl == task->thread.sve_vl)
584 goto out;
585
586 /*
587 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
588 * write any live register state back to task_struct, and convert to a
589 * non-SVE thread.
590 */
591 if (task == current) {
592 local_bh_disable();
593
594 task_fpsimd_save();
595 set_thread_flag(TIF_FOREIGN_FPSTATE);
596 }
597
598 fpsimd_flush_task_state(task);
599 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
600 sve_to_fpsimd(task);
601
602 if (task == current)
603 local_bh_enable();
604
605 /*
606 * Force reallocation of task SVE state to the correct size
607 * on next use:
608 */
609 sve_free(task);
610
611 task->thread.sve_vl = vl;
612
613 out:
614 if (flags & PR_SVE_VL_INHERIT)
615 set_tsk_thread_flag(task, TIF_SVE_VL_INHERIT);
616 else
617 clear_tsk_thread_flag(task, TIF_SVE_VL_INHERIT);
618
619 return 0;
620 }
621
622 /*
623 * Encode the current vector length and flags for return.
624 * This is only required for prctl(): ptrace has separate fields
625 *
626 * flags are as for sve_set_vector_length().
627 */
628 static int sve_prctl_status(unsigned long flags)
629 {
630 int ret;
631
632 if (flags & PR_SVE_SET_VL_ONEXEC)
633 ret = current->thread.sve_vl_onexec;
634 else
635 ret = current->thread.sve_vl;
636
637 if (test_thread_flag(TIF_SVE_VL_INHERIT))
638 ret |= PR_SVE_VL_INHERIT;
639
640 return ret;
641 }
642
643 /* PR_SVE_SET_VL */
644 int sve_set_current_vl(unsigned long arg)
645 {
646 unsigned long vl, flags;
647 int ret;
648
649 vl = arg & PR_SVE_VL_LEN_MASK;
650 flags = arg & ~vl;
651
652 if (!system_supports_sve())
653 return -EINVAL;
654
655 ret = sve_set_vector_length(current, vl, flags);
656 if (ret)
657 return ret;
658
659 return sve_prctl_status(flags);
660 }
661
662 /* PR_SVE_GET_VL */
663 int sve_get_current_vl(void)
664 {
665 if (!system_supports_sve())
666 return -EINVAL;
667
668 return sve_prctl_status(0);
669 }
670
671 /*
672 * Bitmap for temporary storage of the per-CPU set of supported vector lengths
673 * during secondary boot.
674 */
675 static DECLARE_BITMAP(sve_secondary_vq_map, SVE_VQ_MAX);
676
677 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
678 {
679 unsigned int vq, vl;
680 unsigned long zcr;
681
682 bitmap_zero(map, SVE_VQ_MAX);
683
684 zcr = ZCR_ELx_LEN_MASK;
685 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
686
687 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
688 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
689 vl = sve_get_vl();
690 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
691 set_bit(vq_to_bit(vq), map);
692 }
693 }
694
695 void __init sve_init_vq_map(void)
696 {
697 sve_probe_vqs(sve_vq_map);
698 }
699
700 /*
701 * If we haven't committed to the set of supported VQs yet, filter out
702 * those not supported by the current CPU.
703 */
704 void sve_update_vq_map(void)
705 {
706 sve_probe_vqs(sve_secondary_vq_map);
707 bitmap_and(sve_vq_map, sve_vq_map, sve_secondary_vq_map, SVE_VQ_MAX);
708 }
709
710 /* Check whether the current CPU supports all VQs in the committed set */
711 int sve_verify_vq_map(void)
712 {
713 int ret = 0;
714
715 sve_probe_vqs(sve_secondary_vq_map);
716 bitmap_andnot(sve_secondary_vq_map, sve_vq_map, sve_secondary_vq_map,
717 SVE_VQ_MAX);
718 if (!bitmap_empty(sve_secondary_vq_map, SVE_VQ_MAX)) {
719 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
720 smp_processor_id());
721 ret = -EINVAL;
722 }
723
724 return ret;
725 }
726
727 static void __init sve_efi_setup(void)
728 {
729 if (!IS_ENABLED(CONFIG_EFI))
730 return;
731
732 /*
733 * alloc_percpu() warns and prints a backtrace if this goes wrong.
734 * This is evidence of a crippled system and we are returning void,
735 * so no attempt is made to handle this situation here.
736 */
737 if (!sve_vl_valid(sve_max_vl))
738 goto fail;
739
740 efi_sve_state = __alloc_percpu(
741 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
742 if (!efi_sve_state)
743 goto fail;
744
745 return;
746
747 fail:
748 panic("Cannot allocate percpu memory for EFI SVE save/restore");
749 }
750
751 /*
752 * Enable SVE for EL1.
753 * Intended for use by the cpufeatures code during CPU boot.
754 */
755 int sve_kernel_enable(void *__always_unused p)
756 {
757 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
758 isb();
759
760 return 0;
761 }
762
763 void __init sve_setup(void)
764 {
765 u64 zcr;
766
767 if (!system_supports_sve())
768 return;
769
770 /*
771 * The SVE architecture mandates support for 128-bit vectors,
772 * so sve_vq_map must have at least SVE_VQ_MIN set.
773 * If something went wrong, at least try to patch it up:
774 */
775 if (WARN_ON(!test_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
776 set_bit(vq_to_bit(SVE_VQ_MIN), sve_vq_map);
777
778 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
779 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
780
781 /*
782 * Sanity-check that the max VL we determined through CPU features
783 * corresponds properly to sve_vq_map. If not, do our best:
784 */
785 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
786 sve_max_vl = find_supported_vector_length(sve_max_vl);
787
788 /*
789 * For the default VL, pick the maximum supported value <= 64.
790 * VL == 64 is guaranteed not to grow the signal frame.
791 */
792 sve_default_vl = find_supported_vector_length(64);
793
794 pr_info("SVE: maximum available vector length %u bytes per vector\n",
795 sve_max_vl);
796 pr_info("SVE: default vector length %u bytes per vector\n",
797 sve_default_vl);
798
799 sve_efi_setup();
800 }
801
802 /*
803 * Called from the put_task_struct() path, which cannot get here
804 * unless dead_task is really dead and not schedulable.
805 */
806 void fpsimd_release_task(struct task_struct *dead_task)
807 {
808 __sve_free(dead_task);
809 }
810
811 #endif /* CONFIG_ARM64_SVE */
812
813 /*
814 * Trapped SVE access
815 *
816 * Storage is allocated for the full SVE state, the current FPSIMD
817 * register contents are migrated across, and TIF_SVE is set so that
818 * the SVE access trap will be disabled the next time this task
819 * reaches ret_to_user.
820 *
821 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
822 * would have disabled the SVE access trap for userspace during
823 * ret_to_user, making an SVE access trap impossible in that case.
824 */
825 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
826 {
827 /* Even if we chose not to use SVE, the hardware could still trap: */
828 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
829 force_signal_inject(SIGILL, ILL_ILLOPC, regs, 0);
830 return;
831 }
832
833 sve_alloc(current);
834
835 local_bh_disable();
836
837 task_fpsimd_save();
838 fpsimd_to_sve(current);
839
840 /* Force ret_to_user to reload the registers: */
841 fpsimd_flush_task_state(current);
842 set_thread_flag(TIF_FOREIGN_FPSTATE);
843
844 if (test_and_set_thread_flag(TIF_SVE))
845 WARN_ON(1); /* SVE access shouldn't have trapped */
846
847 local_bh_enable();
848 }
849
850 /*
851 * Trapped FP/ASIMD access.
852 */
853 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
854 {
855 /* TODO: implement lazy context saving/restoring */
856 WARN_ON(1);
857 }
858
859 /*
860 * Raise a SIGFPE for the current process.
861 */
862 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
863 {
864 siginfo_t info;
865 unsigned int si_code = 0;
866
867 if (esr & FPEXC_IOF)
868 si_code = FPE_FLTINV;
869 else if (esr & FPEXC_DZF)
870 si_code = FPE_FLTDIV;
871 else if (esr & FPEXC_OFF)
872 si_code = FPE_FLTOVF;
873 else if (esr & FPEXC_UFF)
874 si_code = FPE_FLTUND;
875 else if (esr & FPEXC_IXF)
876 si_code = FPE_FLTRES;
877
878 memset(&info, 0, sizeof(info));
879 info.si_signo = SIGFPE;
880 info.si_code = si_code;
881 info.si_addr = (void __user *)instruction_pointer(regs);
882
883 send_sig_info(SIGFPE, &info, current);
884 }
885
886 void fpsimd_thread_switch(struct task_struct *next)
887 {
888 if (!system_supports_fpsimd())
889 return;
890 /*
891 * Save the current FPSIMD state to memory, but only if whatever is in
892 * the registers is in fact the most recent userland FPSIMD state of
893 * 'current'.
894 */
895 if (current->mm)
896 task_fpsimd_save();
897
898 if (next->mm) {
899 /*
900 * If we are switching to a task whose most recent userland
901 * FPSIMD state is already in the registers of *this* cpu,
902 * we can skip loading the state from memory. Otherwise, set
903 * the TIF_FOREIGN_FPSTATE flag so the state will be loaded
904 * upon the next return to userland.
905 */
906 struct fpsimd_state *st = &next->thread.fpsimd_state;
907
908 if (__this_cpu_read(fpsimd_last_state) == st
909 && st->cpu == smp_processor_id())
910 clear_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
911 else
912 set_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE);
913 }
914 }
915
916 void fpsimd_flush_thread(void)
917 {
918 int vl, supported_vl;
919
920 if (!system_supports_fpsimd())
921 return;
922
923 local_bh_disable();
924
925 memset(&current->thread.fpsimd_state, 0, sizeof(struct fpsimd_state));
926 fpsimd_flush_task_state(current);
927
928 if (system_supports_sve()) {
929 clear_thread_flag(TIF_SVE);
930 sve_free(current);
931
932 /*
933 * Reset the task vector length as required.
934 * This is where we ensure that all user tasks have a valid
935 * vector length configured: no kernel task can become a user
936 * task without an exec and hence a call to this function.
937 * By the time the first call to this function is made, all
938 * early hardware probing is complete, so sve_default_vl
939 * should be valid.
940 * If a bug causes this to go wrong, we make some noise and
941 * try to fudge thread.sve_vl to a safe value here.
942 */
943 vl = current->thread.sve_vl_onexec ?
944 current->thread.sve_vl_onexec : sve_default_vl;
945
946 if (WARN_ON(!sve_vl_valid(vl)))
947 vl = SVE_VL_MIN;
948
949 supported_vl = find_supported_vector_length(vl);
950 if (WARN_ON(supported_vl != vl))
951 vl = supported_vl;
952
953 current->thread.sve_vl = vl;
954
955 /*
956 * If the task is not set to inherit, ensure that the vector
957 * length will be reset by a subsequent exec:
958 */
959 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
960 current->thread.sve_vl_onexec = 0;
961 }
962
963 set_thread_flag(TIF_FOREIGN_FPSTATE);
964
965 local_bh_enable();
966 }
967
968 /*
969 * Save the userland FPSIMD state of 'current' to memory, but only if the state
970 * currently held in the registers does in fact belong to 'current'
971 */
972 void fpsimd_preserve_current_state(void)
973 {
974 if (!system_supports_fpsimd())
975 return;
976
977 local_bh_disable();
978 task_fpsimd_save();
979 local_bh_enable();
980 }
981
982 /*
983 * Like fpsimd_preserve_current_state(), but ensure that
984 * current->thread.fpsimd_state is updated so that it can be copied to
985 * the signal frame.
986 */
987 void fpsimd_signal_preserve_current_state(void)
988 {
989 fpsimd_preserve_current_state();
990 if (system_supports_sve() && test_thread_flag(TIF_SVE))
991 sve_to_fpsimd(current);
992 }
993
994 /*
995 * Load the userland FPSIMD state of 'current' from memory, but only if the
996 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
997 * state of 'current'
998 */
999 void fpsimd_restore_current_state(void)
1000 {
1001 if (!system_supports_fpsimd())
1002 return;
1003
1004 local_bh_disable();
1005
1006 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1007 struct fpsimd_state *st = &current->thread.fpsimd_state;
1008
1009 task_fpsimd_load();
1010 __this_cpu_write(fpsimd_last_state, st);
1011 st->cpu = smp_processor_id();
1012 }
1013
1014 local_bh_enable();
1015 }
1016
1017 /*
1018 * Load an updated userland FPSIMD state for 'current' from memory and set the
1019 * flag that indicates that the FPSIMD register contents are the most recent
1020 * FPSIMD state of 'current'
1021 */
1022 void fpsimd_update_current_state(struct fpsimd_state *state)
1023 {
1024 if (!system_supports_fpsimd())
1025 return;
1026
1027 local_bh_disable();
1028
1029 current->thread.fpsimd_state = *state;
1030 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1031 fpsimd_to_sve(current);
1032
1033 task_fpsimd_load();
1034
1035 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1036 struct fpsimd_state *st = &current->thread.fpsimd_state;
1037
1038 __this_cpu_write(fpsimd_last_state, st);
1039 st->cpu = smp_processor_id();
1040 }
1041
1042 local_bh_enable();
1043 }
1044
1045 /*
1046 * Invalidate live CPU copies of task t's FPSIMD state
1047 */
1048 void fpsimd_flush_task_state(struct task_struct *t)
1049 {
1050 t->thread.fpsimd_state.cpu = NR_CPUS;
1051 }
1052
1053 static inline void fpsimd_flush_cpu_state(void)
1054 {
1055 __this_cpu_write(fpsimd_last_state, NULL);
1056 }
1057
1058 /*
1059 * Invalidate any task SVE state currently held in this CPU's regs.
1060 *
1061 * This is used to prevent the kernel from trying to reuse SVE register data
1062 * that is detroyed by KVM guest enter/exit. This function should go away when
1063 * KVM SVE support is implemented. Don't use it for anything else.
1064 */
1065 #ifdef CONFIG_ARM64_SVE
1066 void sve_flush_cpu_state(void)
1067 {
1068 struct fpsimd_state *const fpstate = __this_cpu_read(fpsimd_last_state);
1069 struct task_struct *tsk;
1070
1071 if (!fpstate)
1072 return;
1073
1074 tsk = container_of(fpstate, struct task_struct, thread.fpsimd_state);
1075 if (test_tsk_thread_flag(tsk, TIF_SVE))
1076 fpsimd_flush_cpu_state();
1077 }
1078 #endif /* CONFIG_ARM64_SVE */
1079
1080 #ifdef CONFIG_KERNEL_MODE_NEON
1081
1082 DEFINE_PER_CPU(bool, kernel_neon_busy);
1083 EXPORT_PER_CPU_SYMBOL(kernel_neon_busy);
1084
1085 /*
1086 * Kernel-side NEON support functions
1087 */
1088
1089 /*
1090 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1091 * context
1092 *
1093 * Must not be called unless may_use_simd() returns true.
1094 * Task context in the FPSIMD registers is saved back to memory as necessary.
1095 *
1096 * A matching call to kernel_neon_end() must be made before returning from the
1097 * calling context.
1098 *
1099 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1100 * called.
1101 */
1102 void kernel_neon_begin(void)
1103 {
1104 if (WARN_ON(!system_supports_fpsimd()))
1105 return;
1106
1107 BUG_ON(!may_use_simd());
1108
1109 local_bh_disable();
1110
1111 __this_cpu_write(kernel_neon_busy, true);
1112
1113 /* Save unsaved task fpsimd state, if any: */
1114 if (current->mm) {
1115 task_fpsimd_save();
1116 set_thread_flag(TIF_FOREIGN_FPSTATE);
1117 }
1118
1119 /* Invalidate any task state remaining in the fpsimd regs: */
1120 fpsimd_flush_cpu_state();
1121
1122 preempt_disable();
1123
1124 local_bh_enable();
1125 }
1126 EXPORT_SYMBOL(kernel_neon_begin);
1127
1128 /*
1129 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1130 *
1131 * Must be called from a context in which kernel_neon_begin() was previously
1132 * called, with no call to kernel_neon_end() in the meantime.
1133 *
1134 * The caller must not use the FPSIMD registers after this function is called,
1135 * unless kernel_neon_begin() is called again in the meantime.
1136 */
1137 void kernel_neon_end(void)
1138 {
1139 bool busy;
1140
1141 if (!system_supports_fpsimd())
1142 return;
1143
1144 busy = __this_cpu_xchg(kernel_neon_busy, false);
1145 WARN_ON(!busy); /* No matching kernel_neon_begin()? */
1146
1147 preempt_enable();
1148 }
1149 EXPORT_SYMBOL(kernel_neon_end);
1150
1151 #ifdef CONFIG_EFI
1152
1153 static DEFINE_PER_CPU(struct fpsimd_state, efi_fpsimd_state);
1154 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1155 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1156
1157 /*
1158 * EFI runtime services support functions
1159 *
1160 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1161 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1162 * is always used rather than being an optional accelerator.
1163 *
1164 * These functions provide the necessary support for ensuring FPSIMD
1165 * save/restore in the contexts from which EFI is used.
1166 *
1167 * Do not use them for any other purpose -- if tempted to do so, you are
1168 * either doing something wrong or you need to propose some refactoring.
1169 */
1170
1171 /*
1172 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1173 */
1174 void __efi_fpsimd_begin(void)
1175 {
1176 if (!system_supports_fpsimd())
1177 return;
1178
1179 WARN_ON(preemptible());
1180
1181 if (may_use_simd()) {
1182 kernel_neon_begin();
1183 } else {
1184 /*
1185 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1186 * preserving:
1187 */
1188 if (system_supports_sve() && likely(efi_sve_state)) {
1189 char *sve_state = this_cpu_ptr(efi_sve_state);
1190
1191 __this_cpu_write(efi_sve_state_used, true);
1192
1193 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1194 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1195 } else {
1196 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1197 }
1198
1199 __this_cpu_write(efi_fpsimd_state_used, true);
1200 }
1201 }
1202
1203 /*
1204 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1205 */
1206 void __efi_fpsimd_end(void)
1207 {
1208 if (!system_supports_fpsimd())
1209 return;
1210
1211 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1212 kernel_neon_end();
1213 } else {
1214 if (system_supports_sve() &&
1215 likely(__this_cpu_read(efi_sve_state_used))) {
1216 char const *sve_state = this_cpu_ptr(efi_sve_state);
1217
1218 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1219 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1220 sve_vq_from_vl(sve_get_vl()) - 1);
1221
1222 __this_cpu_write(efi_sve_state_used, false);
1223 } else {
1224 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1225 }
1226 }
1227 }
1228
1229 #endif /* CONFIG_EFI */
1230
1231 #endif /* CONFIG_KERNEL_MODE_NEON */
1232
1233 #ifdef CONFIG_CPU_PM
1234 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1235 unsigned long cmd, void *v)
1236 {
1237 switch (cmd) {
1238 case CPU_PM_ENTER:
1239 if (current->mm)
1240 task_fpsimd_save();
1241 fpsimd_flush_cpu_state();
1242 break;
1243 case CPU_PM_EXIT:
1244 if (current->mm)
1245 set_thread_flag(TIF_FOREIGN_FPSTATE);
1246 break;
1247 case CPU_PM_ENTER_FAILED:
1248 default:
1249 return NOTIFY_DONE;
1250 }
1251 return NOTIFY_OK;
1252 }
1253
1254 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1255 .notifier_call = fpsimd_cpu_pm_notifier,
1256 };
1257
1258 static void __init fpsimd_pm_init(void)
1259 {
1260 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1261 }
1262
1263 #else
1264 static inline void fpsimd_pm_init(void) { }
1265 #endif /* CONFIG_CPU_PM */
1266
1267 #ifdef CONFIG_HOTPLUG_CPU
1268 static int fpsimd_cpu_dead(unsigned int cpu)
1269 {
1270 per_cpu(fpsimd_last_state, cpu) = NULL;
1271 return 0;
1272 }
1273
1274 static inline void fpsimd_hotplug_init(void)
1275 {
1276 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1277 NULL, fpsimd_cpu_dead);
1278 }
1279
1280 #else
1281 static inline void fpsimd_hotplug_init(void) { }
1282 #endif
1283
1284 /*
1285 * FP/SIMD support code initialisation.
1286 */
1287 static int __init fpsimd_init(void)
1288 {
1289 if (elf_hwcap & HWCAP_FP) {
1290 fpsimd_pm_init();
1291 fpsimd_hotplug_init();
1292 } else {
1293 pr_notice("Floating-point is not implemented\n");
1294 }
1295
1296 if (!(elf_hwcap & HWCAP_ASIMD))
1297 pr_notice("Advanced SIMD is not implemented\n");
1298
1299 return sve_sysctl_init();
1300 }
1301 core_initcall(fpsimd_init);