]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/arm64/kernel/head.S
Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / arch / arm64 / kernel / head.S
1 /*
2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
4 *
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors: Catalin Marinas <catalin.marinas@arm.com>
8 * Will Deacon <will.deacon@arm.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/linkage.h>
24 #include <linux/init.h>
25 #include <linux/irqchip/arm-gic-v3.h>
26
27 #include <asm/assembler.h>
28 #include <asm/boot.h>
29 #include <asm/ptrace.h>
30 #include <asm/asm-offsets.h>
31 #include <asm/cache.h>
32 #include <asm/cputype.h>
33 #include <asm/elf.h>
34 #include <asm/image.h>
35 #include <asm/kernel-pgtable.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/memory.h>
38 #include <asm/pgtable-hwdef.h>
39 #include <asm/pgtable.h>
40 #include <asm/page.h>
41 #include <asm/smp.h>
42 #include <asm/sysreg.h>
43 #include <asm/thread_info.h>
44 #include <asm/virt.h>
45
46 #include "efi-header.S"
47
48 #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
49
50 #if (TEXT_OFFSET & 0xfff) != 0
51 #error TEXT_OFFSET must be at least 4KB aligned
52 #elif (PAGE_OFFSET & 0x1fffff) != 0
53 #error PAGE_OFFSET must be at least 2MB aligned
54 #elif TEXT_OFFSET > 0x1fffff
55 #error TEXT_OFFSET must be less than 2MB
56 #endif
57
58 /*
59 * Kernel startup entry point.
60 * ---------------------------
61 *
62 * The requirements are:
63 * MMU = off, D-cache = off, I-cache = on or off,
64 * x0 = physical address to the FDT blob.
65 *
66 * This code is mostly position independent so you call this at
67 * __pa(PAGE_OFFSET + TEXT_OFFSET).
68 *
69 * Note that the callee-saved registers are used for storing variables
70 * that are useful before the MMU is enabled. The allocations are described
71 * in the entry routines.
72 */
73 __HEAD
74 _head:
75 /*
76 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
77 */
78 #ifdef CONFIG_EFI
79 /*
80 * This add instruction has no meaningful effect except that
81 * its opcode forms the magic "MZ" signature required by UEFI.
82 */
83 add x13, x18, #0x16
84 b stext
85 #else
86 b stext // branch to kernel start, magic
87 .long 0 // reserved
88 #endif
89 le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian
90 le64sym _kernel_size_le // Effective size of kernel image, little-endian
91 le64sym _kernel_flags_le // Informative flags, little-endian
92 .quad 0 // reserved
93 .quad 0 // reserved
94 .quad 0 // reserved
95 .ascii ARM64_IMAGE_MAGIC // Magic number
96 #ifdef CONFIG_EFI
97 .long pe_header - _head // Offset to the PE header.
98
99 pe_header:
100 __EFI_PE_HEADER
101 #else
102 .long 0 // reserved
103 #endif
104
105 __INIT
106
107 /*
108 * The following callee saved general purpose registers are used on the
109 * primary lowlevel boot path:
110 *
111 * Register Scope Purpose
112 * x21 stext() .. start_kernel() FDT pointer passed at boot in x0
113 * x23 stext() .. start_kernel() physical misalignment/KASLR offset
114 * x28 __create_page_tables() callee preserved temp register
115 * x19/x20 __primary_switch() callee preserved temp registers
116 */
117 ENTRY(stext)
118 bl preserve_boot_args
119 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
120 adrp x23, __PHYS_OFFSET
121 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
122 bl set_cpu_boot_mode_flag
123 bl __create_page_tables
124 /*
125 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
126 * details.
127 * On return, the CPU will be ready for the MMU to be turned on and
128 * the TCR will have been set.
129 */
130 bl __cpu_setup // initialise processor
131 b __primary_switch
132 ENDPROC(stext)
133
134 /*
135 * Preserve the arguments passed by the bootloader in x0 .. x3
136 */
137 preserve_boot_args:
138 mov x21, x0 // x21=FDT
139
140 adr_l x0, boot_args // record the contents of
141 stp x21, x1, [x0] // x0 .. x3 at kernel entry
142 stp x2, x3, [x0, #16]
143
144 dmb sy // needed before dc ivac with
145 // MMU off
146
147 mov x1, #0x20 // 4 x 8 bytes
148 b __inval_dcache_area // tail call
149 ENDPROC(preserve_boot_args)
150
151 /*
152 * Macro to create a table entry to the next page.
153 *
154 * tbl: page table address
155 * virt: virtual address
156 * shift: #imm page table shift
157 * ptrs: #imm pointers per table page
158 *
159 * Preserves: virt
160 * Corrupts: ptrs, tmp1, tmp2
161 * Returns: tbl -> next level table page address
162 */
163 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
164 add \tmp1, \tbl, #PAGE_SIZE
165 phys_to_pte \tmp2, \tmp1
166 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
167 lsr \tmp1, \virt, #\shift
168 sub \ptrs, \ptrs, #1
169 and \tmp1, \tmp1, \ptrs // table index
170 str \tmp2, [\tbl, \tmp1, lsl #3]
171 add \tbl, \tbl, #PAGE_SIZE // next level table page
172 .endm
173
174 /*
175 * Macro to populate page table entries, these entries can be pointers to the next level
176 * or last level entries pointing to physical memory.
177 *
178 * tbl: page table address
179 * rtbl: pointer to page table or physical memory
180 * index: start index to write
181 * eindex: end index to write - [index, eindex] written to
182 * flags: flags for pagetable entry to or in
183 * inc: increment to rtbl between each entry
184 * tmp1: temporary variable
185 *
186 * Preserves: tbl, eindex, flags, inc
187 * Corrupts: index, tmp1
188 * Returns: rtbl
189 */
190 .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
191 .Lpe\@: phys_to_pte \tmp1, \rtbl
192 orr \tmp1, \tmp1, \flags // tmp1 = table entry
193 str \tmp1, [\tbl, \index, lsl #3]
194 add \rtbl, \rtbl, \inc // rtbl = pa next level
195 add \index, \index, #1
196 cmp \index, \eindex
197 b.ls .Lpe\@
198 .endm
199
200 /*
201 * Compute indices of table entries from virtual address range. If multiple entries
202 * were needed in the previous page table level then the next page table level is assumed
203 * to be composed of multiple pages. (This effectively scales the end index).
204 *
205 * vstart: virtual address of start of range
206 * vend: virtual address of end of range
207 * shift: shift used to transform virtual address into index
208 * ptrs: number of entries in page table
209 * istart: index in table corresponding to vstart
210 * iend: index in table corresponding to vend
211 * count: On entry: how many extra entries were required in previous level, scales
212 * our end index.
213 * On exit: returns how many extra entries required for next page table level
214 *
215 * Preserves: vstart, vend, shift, ptrs
216 * Returns: istart, iend, count
217 */
218 .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
219 lsr \iend, \vend, \shift
220 mov \istart, \ptrs
221 sub \istart, \istart, #1
222 and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1)
223 mov \istart, \ptrs
224 mul \istart, \istart, \count
225 add \iend, \iend, \istart // iend += (count - 1) * ptrs
226 // our entries span multiple tables
227
228 lsr \istart, \vstart, \shift
229 mov \count, \ptrs
230 sub \count, \count, #1
231 and \istart, \istart, \count
232
233 sub \count, \iend, \istart
234 .endm
235
236 /*
237 * Map memory for specified virtual address range. Each level of page table needed supports
238 * multiple entries. If a level requires n entries the next page table level is assumed to be
239 * formed from n pages.
240 *
241 * tbl: location of page table
242 * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
243 * vstart: start address to map
244 * vend: end address to map - we map [vstart, vend]
245 * flags: flags to use to map last level entries
246 * phys: physical address corresponding to vstart - physical memory is contiguous
247 * pgds: the number of pgd entries
248 *
249 * Temporaries: istart, iend, tmp, count, sv - these need to be different registers
250 * Preserves: vstart, vend, flags
251 * Corrupts: tbl, rtbl, istart, iend, tmp, count, sv
252 */
253 .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
254 add \rtbl, \tbl, #PAGE_SIZE
255 mov \sv, \rtbl
256 mov \count, #0
257 compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
258 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
259 mov \tbl, \sv
260 mov \sv, \rtbl
261
262 #if SWAPPER_PGTABLE_LEVELS > 3
263 compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
264 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
265 mov \tbl, \sv
266 mov \sv, \rtbl
267 #endif
268
269 #if SWAPPER_PGTABLE_LEVELS > 2
270 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
271 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
272 mov \tbl, \sv
273 #endif
274
275 compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
276 bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
277 populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
278 .endm
279
280 /*
281 * Setup the initial page tables. We only setup the barest amount which is
282 * required to get the kernel running. The following sections are required:
283 * - identity mapping to enable the MMU (low address, TTBR0)
284 * - first few MB of the kernel linear mapping to jump to once the MMU has
285 * been enabled
286 */
287 __create_page_tables:
288 mov x28, lr
289
290 /*
291 * Invalidate the init page tables to avoid potential dirty cache lines
292 * being evicted. Other page tables are allocated in rodata as part of
293 * the kernel image, and thus are clean to the PoC per the boot
294 * protocol.
295 */
296 adrp x0, init_pg_dir
297 adrp x1, init_pg_end
298 sub x1, x1, x0
299 bl __inval_dcache_area
300
301 /*
302 * Clear the init page tables.
303 */
304 adrp x0, init_pg_dir
305 adrp x1, init_pg_end
306 sub x1, x1, x0
307 1: stp xzr, xzr, [x0], #16
308 stp xzr, xzr, [x0], #16
309 stp xzr, xzr, [x0], #16
310 stp xzr, xzr, [x0], #16
311 subs x1, x1, #64
312 b.ne 1b
313
314 mov x7, SWAPPER_MM_MMUFLAGS
315
316 /*
317 * Create the identity mapping.
318 */
319 adrp x0, idmap_pg_dir
320 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
321
322 #ifdef CONFIG_ARM64_USER_VA_BITS_52
323 mrs_s x6, SYS_ID_AA64MMFR2_EL1
324 and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
325 mov x5, #52
326 cbnz x6, 1f
327 #endif
328 mov x5, #VA_BITS
329 1:
330 adr_l x6, vabits_user
331 str x5, [x6]
332 dmb sy
333 dc ivac, x6 // Invalidate potentially stale cache line
334
335 /*
336 * VA_BITS may be too small to allow for an ID mapping to be created
337 * that covers system RAM if that is located sufficiently high in the
338 * physical address space. So for the ID map, use an extended virtual
339 * range in that case, and configure an additional translation level
340 * if needed.
341 *
342 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
343 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
344 * this number conveniently equals the number of leading zeroes in
345 * the physical address of __idmap_text_end.
346 */
347 adrp x5, __idmap_text_end
348 clz x5, x5
349 cmp x5, TCR_T0SZ(VA_BITS) // default T0SZ small enough?
350 b.ge 1f // .. then skip VA range extension
351
352 adr_l x6, idmap_t0sz
353 str x5, [x6]
354 dmb sy
355 dc ivac, x6 // Invalidate potentially stale cache line
356
357 #if (VA_BITS < 48)
358 #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
359 #define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
360
361 /*
362 * If VA_BITS < 48, we have to configure an additional table level.
363 * First, we have to verify our assumption that the current value of
364 * VA_BITS was chosen such that all translation levels are fully
365 * utilised, and that lowering T0SZ will always result in an additional
366 * translation level to be configured.
367 */
368 #if VA_BITS != EXTRA_SHIFT
369 #error "Mismatch between VA_BITS and page size/number of translation levels"
370 #endif
371
372 mov x4, EXTRA_PTRS
373 create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
374 #else
375 /*
376 * If VA_BITS == 48, we don't have to configure an additional
377 * translation level, but the top-level table has more entries.
378 */
379 mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
380 str_l x4, idmap_ptrs_per_pgd, x5
381 #endif
382 1:
383 ldr_l x4, idmap_ptrs_per_pgd
384 mov x5, x3 // __pa(__idmap_text_start)
385 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
386
387 map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
388
389 /*
390 * Map the kernel image (starting with PHYS_OFFSET).
391 */
392 adrp x0, init_pg_dir
393 mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text)
394 add x5, x5, x23 // add KASLR displacement
395 mov x4, PTRS_PER_PGD
396 adrp x6, _end // runtime __pa(_end)
397 adrp x3, _text // runtime __pa(_text)
398 sub x6, x6, x3 // _end - _text
399 add x6, x6, x5 // runtime __va(_end)
400
401 map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
402
403 /*
404 * Since the page tables have been populated with non-cacheable
405 * accesses (MMU disabled), invalidate the idmap and swapper page
406 * tables again to remove any speculatively loaded cache lines.
407 */
408 adrp x0, idmap_pg_dir
409 adrp x1, init_pg_end
410 sub x1, x1, x0
411 dmb sy
412 bl __inval_dcache_area
413
414 ret x28
415 ENDPROC(__create_page_tables)
416 .ltorg
417
418 /*
419 * The following fragment of code is executed with the MMU enabled.
420 *
421 * x0 = __PHYS_OFFSET
422 */
423 __primary_switched:
424 adrp x4, init_thread_union
425 add sp, x4, #THREAD_SIZE
426 adr_l x5, init_task
427 msr sp_el0, x5 // Save thread_info
428
429 adr_l x8, vectors // load VBAR_EL1 with virtual
430 msr vbar_el1, x8 // vector table address
431 isb
432
433 stp xzr, x30, [sp, #-16]!
434 mov x29, sp
435
436 str_l x21, __fdt_pointer, x5 // Save FDT pointer
437
438 ldr_l x4, kimage_vaddr // Save the offset between
439 sub x4, x4, x0 // the kernel virtual and
440 str_l x4, kimage_voffset, x5 // physical mappings
441
442 // Clear BSS
443 adr_l x0, __bss_start
444 mov x1, xzr
445 adr_l x2, __bss_stop
446 sub x2, x2, x0
447 bl __pi_memset
448 dsb ishst // Make zero page visible to PTW
449
450 #ifdef CONFIG_KASAN
451 bl kasan_early_init
452 #endif
453 #ifdef CONFIG_RANDOMIZE_BASE
454 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
455 b.ne 0f
456 mov x0, x21 // pass FDT address in x0
457 bl kaslr_early_init // parse FDT for KASLR options
458 cbz x0, 0f // KASLR disabled? just proceed
459 orr x23, x23, x0 // record KASLR offset
460 ldp x29, x30, [sp], #16 // we must enable KASLR, return
461 ret // to __primary_switch()
462 0:
463 #endif
464 add sp, sp, #16
465 mov x29, #0
466 mov x30, #0
467 b start_kernel
468 ENDPROC(__primary_switched)
469
470 /*
471 * end early head section, begin head code that is also used for
472 * hotplug and needs to have the same protections as the text region
473 */
474 .section ".idmap.text","awx"
475
476 ENTRY(kimage_vaddr)
477 .quad _text - TEXT_OFFSET
478 EXPORT_SYMBOL(kimage_vaddr)
479
480 /*
481 * If we're fortunate enough to boot at EL2, ensure that the world is
482 * sane before dropping to EL1.
483 *
484 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
485 * booted in EL1 or EL2 respectively.
486 */
487 ENTRY(el2_setup)
488 msr SPsel, #1 // We want to use SP_EL{1,2}
489 mrs x0, CurrentEL
490 cmp x0, #CurrentEL_EL2
491 b.eq 1f
492 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
493 msr sctlr_el1, x0
494 mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
495 isb
496 ret
497
498 1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
499 msr sctlr_el2, x0
500
501 #ifdef CONFIG_ARM64_VHE
502 /*
503 * Check for VHE being present. For the rest of the EL2 setup,
504 * x2 being non-zero indicates that we do have VHE, and that the
505 * kernel is intended to run at EL2.
506 */
507 mrs x2, id_aa64mmfr1_el1
508 ubfx x2, x2, #8, #4
509 #else
510 mov x2, xzr
511 #endif
512
513 /* Hyp configuration. */
514 mov_q x0, HCR_HOST_NVHE_FLAGS
515 cbz x2, set_hcr
516 mov_q x0, HCR_HOST_VHE_FLAGS
517 set_hcr:
518 msr hcr_el2, x0
519 isb
520
521 /*
522 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
523 * This is not necessary for VHE, since the host kernel runs in EL2,
524 * and EL0 accesses are configured in the later stage of boot process.
525 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
526 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
527 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
528 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
529 * EL2.
530 */
531 cbnz x2, 1f
532 mrs x0, cnthctl_el2
533 orr x0, x0, #3 // Enable EL1 physical timers
534 msr cnthctl_el2, x0
535 1:
536 msr cntvoff_el2, xzr // Clear virtual offset
537
538 #ifdef CONFIG_ARM_GIC_V3
539 /* GICv3 system register access */
540 mrs x0, id_aa64pfr0_el1
541 ubfx x0, x0, #24, #4
542 cmp x0, #1
543 b.ne 3f
544
545 mrs_s x0, SYS_ICC_SRE_EL2
546 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
547 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
548 msr_s SYS_ICC_SRE_EL2, x0
549 isb // Make sure SRE is now set
550 mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back,
551 tbz x0, #0, 3f // and check that it sticks
552 msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
553
554 3:
555 #endif
556
557 /* Populate ID registers. */
558 mrs x0, midr_el1
559 mrs x1, mpidr_el1
560 msr vpidr_el2, x0
561 msr vmpidr_el2, x1
562
563 #ifdef CONFIG_COMPAT
564 msr hstr_el2, xzr // Disable CP15 traps to EL2
565 #endif
566
567 /* EL2 debug */
568 mrs x1, id_aa64dfr0_el1 // Check ID_AA64DFR0_EL1 PMUVer
569 sbfx x0, x1, #8, #4
570 cmp x0, #1
571 b.lt 4f // Skip if no PMU present
572 mrs x0, pmcr_el0 // Disable debug access traps
573 ubfx x0, x0, #11, #5 // to EL2 and allow access to
574 4:
575 csel x3, xzr, x0, lt // all PMU counters from EL1
576
577 /* Statistical profiling */
578 ubfx x0, x1, #32, #4 // Check ID_AA64DFR0_EL1 PMSVer
579 cbz x0, 7f // Skip if SPE not present
580 cbnz x2, 6f // VHE?
581 mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2,
582 and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
583 cbnz x4, 5f // then permit sampling of physical
584 mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
585 1 << SYS_PMSCR_EL2_PA_SHIFT)
586 msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter
587 5:
588 mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
589 orr x3, x3, x1 // If we don't have VHE, then
590 b 7f // use EL1&0 translation.
591 6: // For VHE, use EL2 translation
592 orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1
593 7:
594 msr mdcr_el2, x3 // Configure debug traps
595
596 /* LORegions */
597 mrs x1, id_aa64mmfr1_el1
598 ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
599 cbz x0, 1f
600 msr_s SYS_LORC_EL1, xzr
601 1:
602
603 /* Stage-2 translation */
604 msr vttbr_el2, xzr
605
606 cbz x2, install_el2_stub
607
608 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
609 isb
610 ret
611
612 install_el2_stub:
613 /*
614 * When VHE is not in use, early init of EL2 and EL1 needs to be
615 * done here.
616 * When VHE _is_ in use, EL1 will not be used in the host and
617 * requires no configuration, and all non-hyp-specific EL2 setup
618 * will be done via the _EL1 system register aliases in __cpu_setup.
619 */
620 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
621 msr sctlr_el1, x0
622
623 /* Coprocessor traps. */
624 mov x0, #0x33ff
625 msr cptr_el2, x0 // Disable copro. traps to EL2
626
627 /* SVE register access */
628 mrs x1, id_aa64pfr0_el1
629 ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
630 cbz x1, 7f
631
632 bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps
633 msr cptr_el2, x0 // Disable copro. traps to EL2
634 isb
635 mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector
636 msr_s SYS_ZCR_EL2, x1 // length for EL1.
637
638 /* Hypervisor stub */
639 7: adr_l x0, __hyp_stub_vectors
640 msr vbar_el2, x0
641
642 /* spsr */
643 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
644 PSR_MODE_EL1h)
645 msr spsr_el2, x0
646 msr elr_el2, lr
647 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
648 eret
649 ENDPROC(el2_setup)
650
651 /*
652 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
653 * in w0. See arch/arm64/include/asm/virt.h for more info.
654 */
655 set_cpu_boot_mode_flag:
656 adr_l x1, __boot_cpu_mode
657 cmp w0, #BOOT_CPU_MODE_EL2
658 b.ne 1f
659 add x1, x1, #4
660 1: str w0, [x1] // This CPU has booted in EL1
661 dmb sy
662 dc ivac, x1 // Invalidate potentially stale cache line
663 ret
664 ENDPROC(set_cpu_boot_mode_flag)
665
666 /*
667 * These values are written with the MMU off, but read with the MMU on.
668 * Writers will invalidate the corresponding address, discarding up to a
669 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
670 * sufficient alignment that the CWG doesn't overlap another section.
671 */
672 .pushsection ".mmuoff.data.write", "aw"
673 /*
674 * We need to find out the CPU boot mode long after boot, so we need to
675 * store it in a writable variable.
676 *
677 * This is not in .bss, because we set it sufficiently early that the boot-time
678 * zeroing of .bss would clobber it.
679 */
680 ENTRY(__boot_cpu_mode)
681 .long BOOT_CPU_MODE_EL2
682 .long BOOT_CPU_MODE_EL1
683 /*
684 * The booting CPU updates the failed status @__early_cpu_boot_status,
685 * with MMU turned off.
686 */
687 ENTRY(__early_cpu_boot_status)
688 .long 0
689
690 .popsection
691
692 /*
693 * This provides a "holding pen" for platforms to hold all secondary
694 * cores are held until we're ready for them to initialise.
695 */
696 ENTRY(secondary_holding_pen)
697 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
698 bl set_cpu_boot_mode_flag
699 mrs x0, mpidr_el1
700 mov_q x1, MPIDR_HWID_BITMASK
701 and x0, x0, x1
702 adr_l x3, secondary_holding_pen_release
703 pen: ldr x4, [x3]
704 cmp x4, x0
705 b.eq secondary_startup
706 wfe
707 b pen
708 ENDPROC(secondary_holding_pen)
709
710 /*
711 * Secondary entry point that jumps straight into the kernel. Only to
712 * be used where CPUs are brought online dynamically by the kernel.
713 */
714 ENTRY(secondary_entry)
715 bl el2_setup // Drop to EL1
716 bl set_cpu_boot_mode_flag
717 b secondary_startup
718 ENDPROC(secondary_entry)
719
720 secondary_startup:
721 /*
722 * Common entry point for secondary CPUs.
723 */
724 bl __cpu_secondary_check52bitva
725 bl __cpu_setup // initialise processor
726 adrp x1, swapper_pg_dir
727 bl __enable_mmu
728 ldr x8, =__secondary_switched
729 br x8
730 ENDPROC(secondary_startup)
731
732 __secondary_switched:
733 adr_l x5, vectors
734 msr vbar_el1, x5
735 isb
736
737 adr_l x0, secondary_data
738 ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
739 mov sp, x1
740 ldr x2, [x0, #CPU_BOOT_TASK]
741 msr sp_el0, x2
742 mov x29, #0
743 mov x30, #0
744 b secondary_start_kernel
745 ENDPROC(__secondary_switched)
746
747 /*
748 * The booting CPU updates the failed status @__early_cpu_boot_status,
749 * with MMU turned off.
750 *
751 * update_early_cpu_boot_status tmp, status
752 * - Corrupts tmp1, tmp2
753 * - Writes 'status' to __early_cpu_boot_status and makes sure
754 * it is committed to memory.
755 */
756
757 .macro update_early_cpu_boot_status status, tmp1, tmp2
758 mov \tmp2, #\status
759 adr_l \tmp1, __early_cpu_boot_status
760 str \tmp2, [\tmp1]
761 dmb sy
762 dc ivac, \tmp1 // Invalidate potentially stale cache line
763 .endm
764
765 /*
766 * Enable the MMU.
767 *
768 * x0 = SCTLR_EL1 value for turning on the MMU.
769 * x1 = TTBR1_EL1 value
770 *
771 * Returns to the caller via x30/lr. This requires the caller to be covered
772 * by the .idmap.text section.
773 *
774 * Checks if the selected granule size is supported by the CPU.
775 * If it isn't, park the CPU
776 */
777 ENTRY(__enable_mmu)
778 mrs x2, ID_AA64MMFR0_EL1
779 ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
780 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
781 b.ne __no_granule_support
782 update_early_cpu_boot_status 0, x2, x3
783 adrp x2, idmap_pg_dir
784 phys_to_ttbr x1, x1
785 phys_to_ttbr x2, x2
786 msr ttbr0_el1, x2 // load TTBR0
787 offset_ttbr1 x1
788 msr ttbr1_el1, x1 // load TTBR1
789 isb
790 msr sctlr_el1, x0
791 isb
792 /*
793 * Invalidate the local I-cache so that any instructions fetched
794 * speculatively from the PoC are discarded, since they may have
795 * been dynamically patched at the PoU.
796 */
797 ic iallu
798 dsb nsh
799 isb
800 ret
801 ENDPROC(__enable_mmu)
802
803 ENTRY(__cpu_secondary_check52bitva)
804 #ifdef CONFIG_ARM64_USER_VA_BITS_52
805 ldr_l x0, vabits_user
806 cmp x0, #52
807 b.ne 2f
808
809 mrs_s x0, SYS_ID_AA64MMFR2_EL1
810 and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
811 cbnz x0, 2f
812
813 update_early_cpu_boot_status \
814 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
815 1: wfe
816 wfi
817 b 1b
818
819 #endif
820 2: ret
821 ENDPROC(__cpu_secondary_check52bitva)
822
823 __no_granule_support:
824 /* Indicate that this CPU can't boot and is stuck in the kernel */
825 update_early_cpu_boot_status \
826 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
827 1:
828 wfe
829 wfi
830 b 1b
831 ENDPROC(__no_granule_support)
832
833 #ifdef CONFIG_RELOCATABLE
834 __relocate_kernel:
835 /*
836 * Iterate over each entry in the relocation table, and apply the
837 * relocations in place.
838 */
839 ldr w9, =__rela_offset // offset to reloc table
840 ldr w10, =__rela_size // size of reloc table
841
842 mov_q x11, KIMAGE_VADDR // default virtual offset
843 add x11, x11, x23 // actual virtual offset
844 add x9, x9, x11 // __va(.rela)
845 add x10, x9, x10 // __va(.rela) + sizeof(.rela)
846
847 0: cmp x9, x10
848 b.hs 1f
849 ldp x11, x12, [x9], #24
850 ldr x13, [x9, #-8]
851 cmp w12, #R_AARCH64_RELATIVE
852 b.ne 0b
853 add x13, x13, x23 // relocate
854 str x13, [x11, x23]
855 b 0b
856 1: ret
857 ENDPROC(__relocate_kernel)
858 #endif
859
860 __primary_switch:
861 #ifdef CONFIG_RANDOMIZE_BASE
862 mov x19, x0 // preserve new SCTLR_EL1 value
863 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
864 #endif
865
866 adrp x1, init_pg_dir
867 bl __enable_mmu
868 #ifdef CONFIG_RELOCATABLE
869 bl __relocate_kernel
870 #ifdef CONFIG_RANDOMIZE_BASE
871 ldr x8, =__primary_switched
872 adrp x0, __PHYS_OFFSET
873 blr x8
874
875 /*
876 * If we return here, we have a KASLR displacement in x23 which we need
877 * to take into account by discarding the current kernel mapping and
878 * creating a new one.
879 */
880 pre_disable_mmu_workaround
881 msr sctlr_el1, x20 // disable the MMU
882 isb
883 bl __create_page_tables // recreate kernel mapping
884
885 tlbi vmalle1 // Remove any stale TLB entries
886 dsb nsh
887
888 msr sctlr_el1, x19 // re-enable the MMU
889 isb
890 ic iallu // flush instructions fetched
891 dsb nsh // via old mapping
892 isb
893
894 bl __relocate_kernel
895 #endif
896 #endif
897 ldr x8, =__primary_switched
898 adrp x0, __PHYS_OFFSET
899 br x8
900 ENDPROC(__primary_switch)