]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/hibernate.c
arm64: hibernate: preserve kdump image around hibernation
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / hibernate.c
1 /*:
2 * Hibernate support specific for ARM64
3 *
4 * Derived from work on ARM hibernation support by:
5 *
6 * Ubuntu project, hibernation support for mach-dove
7 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
8 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
9 * https://lkml.org/lkml/2010/6/18/4
10 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
11 * https://patchwork.kernel.org/patch/96442/
12 *
13 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
14 *
15 * License terms: GNU General Public License (GPL) version 2
16 */
17 #define pr_fmt(x) "hibernate: " x
18 #include <linux/cpu.h>
19 #include <linux/kvm_host.h>
20 #include <linux/mm.h>
21 #include <linux/pm.h>
22 #include <linux/sched.h>
23 #include <linux/suspend.h>
24 #include <linux/utsname.h>
25 #include <linux/version.h>
26
27 #include <asm/barrier.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/irqflags.h>
31 #include <asm/kexec.h>
32 #include <asm/memory.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgtable-hwdef.h>
37 #include <asm/sections.h>
38 #include <asm/smp.h>
39 #include <asm/smp_plat.h>
40 #include <asm/suspend.h>
41 #include <asm/sysreg.h>
42 #include <asm/virt.h>
43
44 /*
45 * Hibernate core relies on this value being 0 on resume, and marks it
46 * __nosavedata assuming it will keep the resume kernel's '0' value. This
47 * doesn't happen with either KASLR.
48 *
49 * defined as "__visible int in_suspend __nosavedata" in
50 * kernel/power/hibernate.c
51 */
52 extern int in_suspend;
53
54 /* Do we need to reset el2? */
55 #define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
56
57 /* temporary el2 vectors in the __hibernate_exit_text section. */
58 extern char hibernate_el2_vectors[];
59
60 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
61 extern char __hyp_stub_vectors[];
62
63 /*
64 * The logical cpu number we should resume on, initialised to a non-cpu
65 * number.
66 */
67 static int sleep_cpu = -EINVAL;
68
69 /*
70 * Values that may not change over hibernate/resume. We put the build number
71 * and date in here so that we guarantee not to resume with a different
72 * kernel.
73 */
74 struct arch_hibernate_hdr_invariants {
75 char uts_version[__NEW_UTS_LEN + 1];
76 };
77
78 /* These values need to be know across a hibernate/restore. */
79 static struct arch_hibernate_hdr {
80 struct arch_hibernate_hdr_invariants invariants;
81
82 /* These are needed to find the relocated kernel if built with kaslr */
83 phys_addr_t ttbr1_el1;
84 void (*reenter_kernel)(void);
85
86 /*
87 * We need to know where the __hyp_stub_vectors are after restore to
88 * re-configure el2.
89 */
90 phys_addr_t __hyp_stub_vectors;
91
92 u64 sleep_cpu_mpidr;
93 } resume_hdr;
94
95 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
96 {
97 memset(i, 0, sizeof(*i));
98 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
99 }
100
101 int pfn_is_nosave(unsigned long pfn)
102 {
103 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
104 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
105
106 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
107 crash_is_nosave(pfn);
108 }
109
110 void notrace save_processor_state(void)
111 {
112 WARN_ON(num_online_cpus() != 1);
113 }
114
115 void notrace restore_processor_state(void)
116 {
117 }
118
119 int arch_hibernation_header_save(void *addr, unsigned int max_size)
120 {
121 struct arch_hibernate_hdr *hdr = addr;
122
123 if (max_size < sizeof(*hdr))
124 return -EOVERFLOW;
125
126 arch_hdr_invariants(&hdr->invariants);
127 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
128 hdr->reenter_kernel = _cpu_resume;
129
130 /* We can't use __hyp_get_vectors() because kvm may still be loaded */
131 if (el2_reset_needed())
132 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
133 else
134 hdr->__hyp_stub_vectors = 0;
135
136 /* Save the mpidr of the cpu we called cpu_suspend() on... */
137 if (sleep_cpu < 0) {
138 pr_err("Failing to hibernate on an unknown CPU.\n");
139 return -ENODEV;
140 }
141 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
142 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
143 hdr->sleep_cpu_mpidr);
144
145 return 0;
146 }
147 EXPORT_SYMBOL(arch_hibernation_header_save);
148
149 int arch_hibernation_header_restore(void *addr)
150 {
151 int ret;
152 struct arch_hibernate_hdr_invariants invariants;
153 struct arch_hibernate_hdr *hdr = addr;
154
155 arch_hdr_invariants(&invariants);
156 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
157 pr_crit("Hibernate image not generated by this kernel!\n");
158 return -EINVAL;
159 }
160
161 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
162 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
163 hdr->sleep_cpu_mpidr);
164 if (sleep_cpu < 0) {
165 pr_crit("Hibernated on a CPU not known to this kernel!\n");
166 sleep_cpu = -EINVAL;
167 return -EINVAL;
168 }
169 if (!cpu_online(sleep_cpu)) {
170 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
171 ret = cpu_up(sleep_cpu);
172 if (ret) {
173 pr_err("Failed to bring hibernate-CPU up!\n");
174 sleep_cpu = -EINVAL;
175 return ret;
176 }
177 }
178
179 resume_hdr = *hdr;
180
181 return 0;
182 }
183 EXPORT_SYMBOL(arch_hibernation_header_restore);
184
185 /*
186 * Copies length bytes, starting at src_start into an new page,
187 * perform cache maintentance, then maps it at the specified address low
188 * address as executable.
189 *
190 * This is used by hibernate to copy the code it needs to execute when
191 * overwriting the kernel text. This function generates a new set of page
192 * tables, which it loads into ttbr0.
193 *
194 * Length is provided as we probably only want 4K of data, even on a 64K
195 * page system.
196 */
197 static int create_safe_exec_page(void *src_start, size_t length,
198 unsigned long dst_addr,
199 phys_addr_t *phys_dst_addr,
200 void *(*allocator)(gfp_t mask),
201 gfp_t mask)
202 {
203 int rc = 0;
204 pgd_t *pgd;
205 pud_t *pud;
206 pmd_t *pmd;
207 pte_t *pte;
208 unsigned long dst = (unsigned long)allocator(mask);
209
210 if (!dst) {
211 rc = -ENOMEM;
212 goto out;
213 }
214
215 memcpy((void *)dst, src_start, length);
216 flush_icache_range(dst, dst + length);
217
218 pgd = pgd_offset_raw(allocator(mask), dst_addr);
219 if (pgd_none(*pgd)) {
220 pud = allocator(mask);
221 if (!pud) {
222 rc = -ENOMEM;
223 goto out;
224 }
225 pgd_populate(&init_mm, pgd, pud);
226 }
227
228 pud = pud_offset(pgd, dst_addr);
229 if (pud_none(*pud)) {
230 pmd = allocator(mask);
231 if (!pmd) {
232 rc = -ENOMEM;
233 goto out;
234 }
235 pud_populate(&init_mm, pud, pmd);
236 }
237
238 pmd = pmd_offset(pud, dst_addr);
239 if (pmd_none(*pmd)) {
240 pte = allocator(mask);
241 if (!pte) {
242 rc = -ENOMEM;
243 goto out;
244 }
245 pmd_populate_kernel(&init_mm, pmd, pte);
246 }
247
248 pte = pte_offset_kernel(pmd, dst_addr);
249 set_pte(pte, __pte(virt_to_phys((void *)dst) |
250 pgprot_val(PAGE_KERNEL_EXEC)));
251
252 /*
253 * Load our new page tables. A strict BBM approach requires that we
254 * ensure that TLBs are free of any entries that may overlap with the
255 * global mappings we are about to install.
256 *
257 * For a real hibernate/resume cycle TTBR0 currently points to a zero
258 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
259 * runtime services), while for a userspace-driven test_resume cycle it
260 * points to userspace page tables (and we must point it at a zero page
261 * ourselves). Elsewhere we only (un)install the idmap with preemption
262 * disabled, so T0SZ should be as required regardless.
263 */
264 cpu_set_reserved_ttbr0();
265 local_flush_tlb_all();
266 write_sysreg(virt_to_phys(pgd), ttbr0_el1);
267 isb();
268
269 *phys_dst_addr = virt_to_phys((void *)dst);
270
271 out:
272 return rc;
273 }
274
275 #define dcache_clean_range(start, end) __flush_dcache_area(start, (end - start))
276
277 int swsusp_arch_suspend(void)
278 {
279 int ret = 0;
280 unsigned long flags;
281 struct sleep_stack_data state;
282
283 if (cpus_are_stuck_in_kernel()) {
284 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
285 return -EBUSY;
286 }
287
288 local_dbg_save(flags);
289
290 if (__cpu_suspend_enter(&state)) {
291 /* make the crash dump kernel image visible/saveable */
292 crash_prepare_suspend();
293
294 sleep_cpu = smp_processor_id();
295 ret = swsusp_save();
296 } else {
297 /* Clean kernel core startup/idle code to PoC*/
298 dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
299 dcache_clean_range(__idmap_text_start, __idmap_text_end);
300
301 /* Clean kvm setup code to PoC? */
302 if (el2_reset_needed())
303 dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
304
305 /* make the crash dump kernel image protected again */
306 crash_post_resume();
307
308 /*
309 * Tell the hibernation core that we've just restored
310 * the memory
311 */
312 in_suspend = 0;
313
314 sleep_cpu = -EINVAL;
315 __cpu_suspend_exit();
316 }
317
318 local_dbg_restore(flags);
319
320 return ret;
321 }
322
323 static void _copy_pte(pte_t *dst_pte, pte_t *src_pte, unsigned long addr)
324 {
325 pte_t pte = *src_pte;
326
327 if (pte_valid(pte)) {
328 /*
329 * Resume will overwrite areas that may be marked
330 * read only (code, rodata). Clear the RDONLY bit from
331 * the temporary mappings we use during restore.
332 */
333 set_pte(dst_pte, pte_clear_rdonly(pte));
334 } else if (debug_pagealloc_enabled() && !pte_none(pte)) {
335 /*
336 * debug_pagealloc will removed the PTE_VALID bit if
337 * the page isn't in use by the resume kernel. It may have
338 * been in use by the original kernel, in which case we need
339 * to put it back in our copy to do the restore.
340 *
341 * Before marking this entry valid, check the pfn should
342 * be mapped.
343 */
344 BUG_ON(!pfn_valid(pte_pfn(pte)));
345
346 set_pte(dst_pte, pte_mkpresent(pte_clear_rdonly(pte)));
347 }
348 }
349
350 static int copy_pte(pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long start,
351 unsigned long end)
352 {
353 pte_t *src_pte;
354 pte_t *dst_pte;
355 unsigned long addr = start;
356
357 dst_pte = (pte_t *)get_safe_page(GFP_ATOMIC);
358 if (!dst_pte)
359 return -ENOMEM;
360 pmd_populate_kernel(&init_mm, dst_pmd, dst_pte);
361 dst_pte = pte_offset_kernel(dst_pmd, start);
362
363 src_pte = pte_offset_kernel(src_pmd, start);
364 do {
365 _copy_pte(dst_pte, src_pte, addr);
366 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
367
368 return 0;
369 }
370
371 static int copy_pmd(pud_t *dst_pud, pud_t *src_pud, unsigned long start,
372 unsigned long end)
373 {
374 pmd_t *src_pmd;
375 pmd_t *dst_pmd;
376 unsigned long next;
377 unsigned long addr = start;
378
379 if (pud_none(*dst_pud)) {
380 dst_pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
381 if (!dst_pmd)
382 return -ENOMEM;
383 pud_populate(&init_mm, dst_pud, dst_pmd);
384 }
385 dst_pmd = pmd_offset(dst_pud, start);
386
387 src_pmd = pmd_offset(src_pud, start);
388 do {
389 next = pmd_addr_end(addr, end);
390 if (pmd_none(*src_pmd))
391 continue;
392 if (pmd_table(*src_pmd)) {
393 if (copy_pte(dst_pmd, src_pmd, addr, next))
394 return -ENOMEM;
395 } else {
396 set_pmd(dst_pmd,
397 __pmd(pmd_val(*src_pmd) & ~PMD_SECT_RDONLY));
398 }
399 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
400
401 return 0;
402 }
403
404 static int copy_pud(pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long start,
405 unsigned long end)
406 {
407 pud_t *dst_pud;
408 pud_t *src_pud;
409 unsigned long next;
410 unsigned long addr = start;
411
412 if (pgd_none(*dst_pgd)) {
413 dst_pud = (pud_t *)get_safe_page(GFP_ATOMIC);
414 if (!dst_pud)
415 return -ENOMEM;
416 pgd_populate(&init_mm, dst_pgd, dst_pud);
417 }
418 dst_pud = pud_offset(dst_pgd, start);
419
420 src_pud = pud_offset(src_pgd, start);
421 do {
422 next = pud_addr_end(addr, end);
423 if (pud_none(*src_pud))
424 continue;
425 if (pud_table(*(src_pud))) {
426 if (copy_pmd(dst_pud, src_pud, addr, next))
427 return -ENOMEM;
428 } else {
429 set_pud(dst_pud,
430 __pud(pud_val(*src_pud) & ~PMD_SECT_RDONLY));
431 }
432 } while (dst_pud++, src_pud++, addr = next, addr != end);
433
434 return 0;
435 }
436
437 static int copy_page_tables(pgd_t *dst_pgd, unsigned long start,
438 unsigned long end)
439 {
440 unsigned long next;
441 unsigned long addr = start;
442 pgd_t *src_pgd = pgd_offset_k(start);
443
444 dst_pgd = pgd_offset_raw(dst_pgd, start);
445 do {
446 next = pgd_addr_end(addr, end);
447 if (pgd_none(*src_pgd))
448 continue;
449 if (copy_pud(dst_pgd, src_pgd, addr, next))
450 return -ENOMEM;
451 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
452
453 return 0;
454 }
455
456 /*
457 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
458 *
459 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
460 * we don't need to free it here.
461 */
462 int swsusp_arch_resume(void)
463 {
464 int rc = 0;
465 void *zero_page;
466 size_t exit_size;
467 pgd_t *tmp_pg_dir;
468 phys_addr_t phys_hibernate_exit;
469 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
470 void *, phys_addr_t, phys_addr_t);
471
472 /*
473 * Restoring the memory image will overwrite the ttbr1 page tables.
474 * Create a second copy of just the linear map, and use this when
475 * restoring.
476 */
477 tmp_pg_dir = (pgd_t *)get_safe_page(GFP_ATOMIC);
478 if (!tmp_pg_dir) {
479 pr_err("Failed to allocate memory for temporary page tables.\n");
480 rc = -ENOMEM;
481 goto out;
482 }
483 rc = copy_page_tables(tmp_pg_dir, PAGE_OFFSET, 0);
484 if (rc)
485 goto out;
486
487 /*
488 * We need a zero page that is zero before & after resume in order to
489 * to break before make on the ttbr1 page tables.
490 */
491 zero_page = (void *)get_safe_page(GFP_ATOMIC);
492 if (!zero_page) {
493 pr_err("Failed to allocate zero page.\n");
494 rc = -ENOMEM;
495 goto out;
496 }
497
498 /*
499 * Locate the exit code in the bottom-but-one page, so that *NULL
500 * still has disastrous affects.
501 */
502 hibernate_exit = (void *)PAGE_SIZE;
503 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
504 /*
505 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
506 * a new set of ttbr0 page tables and load them.
507 */
508 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
509 (unsigned long)hibernate_exit,
510 &phys_hibernate_exit,
511 (void *)get_safe_page, GFP_ATOMIC);
512 if (rc) {
513 pr_err("Failed to create safe executable page for hibernate_exit code.\n");
514 goto out;
515 }
516
517 /*
518 * The hibernate exit text contains a set of el2 vectors, that will
519 * be executed at el2 with the mmu off in order to reload hyp-stub.
520 */
521 __flush_dcache_area(hibernate_exit, exit_size);
522
523 /*
524 * KASLR will cause the el2 vectors to be in a different location in
525 * the resumed kernel. Load hibernate's temporary copy into el2.
526 *
527 * We can skip this step if we booted at EL1, or are running with VHE.
528 */
529 if (el2_reset_needed()) {
530 phys_addr_t el2_vectors = phys_hibernate_exit; /* base */
531 el2_vectors += hibernate_el2_vectors -
532 __hibernate_exit_text_start; /* offset */
533
534 __hyp_set_vectors(el2_vectors);
535 }
536
537 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
538 resume_hdr.reenter_kernel, restore_pblist,
539 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
540
541 out:
542 return rc;
543 }
544
545 int hibernate_resume_nonboot_cpu_disable(void)
546 {
547 if (sleep_cpu < 0) {
548 pr_err("Failing to resume from hibernate on an unknown CPU.\n");
549 return -ENODEV;
550 }
551
552 return freeze_secondary_cpus(sleep_cpu);
553 }