]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kernel/hw_breakpoint.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / hw_breakpoint.c
1 /*
2 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
3 * using the CPU's debug registers.
4 *
5 * Copyright (C) 2012 ARM Limited
6 * Author: Will Deacon <will.deacon@arm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #define pr_fmt(fmt) "hw-breakpoint: " fmt
22
23 #include <linux/compat.h>
24 #include <linux/cpu_pm.h>
25 #include <linux/errno.h>
26 #include <linux/hw_breakpoint.h>
27 #include <linux/kprobes.h>
28 #include <linux/perf_event.h>
29 #include <linux/ptrace.h>
30 #include <linux/smp.h>
31
32 #include <asm/compat.h>
33 #include <asm/current.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/hw_breakpoint.h>
36 #include <asm/traps.h>
37 #include <asm/cputype.h>
38 #include <asm/system_misc.h>
39
40 /* Breakpoint currently in use for each BRP. */
41 static DEFINE_PER_CPU(struct perf_event *, bp_on_reg[ARM_MAX_BRP]);
42
43 /* Watchpoint currently in use for each WRP. */
44 static DEFINE_PER_CPU(struct perf_event *, wp_on_reg[ARM_MAX_WRP]);
45
46 /* Currently stepping a per-CPU kernel breakpoint. */
47 static DEFINE_PER_CPU(int, stepping_kernel_bp);
48
49 /* Number of BRP/WRP registers on this CPU. */
50 static int core_num_brps;
51 static int core_num_wrps;
52
53 int hw_breakpoint_slots(int type)
54 {
55 /*
56 * We can be called early, so don't rely on
57 * our static variables being initialised.
58 */
59 switch (type) {
60 case TYPE_INST:
61 return get_num_brps();
62 case TYPE_DATA:
63 return get_num_wrps();
64 default:
65 pr_warning("unknown slot type: %d\n", type);
66 return 0;
67 }
68 }
69
70 #define READ_WB_REG_CASE(OFF, N, REG, VAL) \
71 case (OFF + N): \
72 AARCH64_DBG_READ(N, REG, VAL); \
73 break
74
75 #define WRITE_WB_REG_CASE(OFF, N, REG, VAL) \
76 case (OFF + N): \
77 AARCH64_DBG_WRITE(N, REG, VAL); \
78 break
79
80 #define GEN_READ_WB_REG_CASES(OFF, REG, VAL) \
81 READ_WB_REG_CASE(OFF, 0, REG, VAL); \
82 READ_WB_REG_CASE(OFF, 1, REG, VAL); \
83 READ_WB_REG_CASE(OFF, 2, REG, VAL); \
84 READ_WB_REG_CASE(OFF, 3, REG, VAL); \
85 READ_WB_REG_CASE(OFF, 4, REG, VAL); \
86 READ_WB_REG_CASE(OFF, 5, REG, VAL); \
87 READ_WB_REG_CASE(OFF, 6, REG, VAL); \
88 READ_WB_REG_CASE(OFF, 7, REG, VAL); \
89 READ_WB_REG_CASE(OFF, 8, REG, VAL); \
90 READ_WB_REG_CASE(OFF, 9, REG, VAL); \
91 READ_WB_REG_CASE(OFF, 10, REG, VAL); \
92 READ_WB_REG_CASE(OFF, 11, REG, VAL); \
93 READ_WB_REG_CASE(OFF, 12, REG, VAL); \
94 READ_WB_REG_CASE(OFF, 13, REG, VAL); \
95 READ_WB_REG_CASE(OFF, 14, REG, VAL); \
96 READ_WB_REG_CASE(OFF, 15, REG, VAL)
97
98 #define GEN_WRITE_WB_REG_CASES(OFF, REG, VAL) \
99 WRITE_WB_REG_CASE(OFF, 0, REG, VAL); \
100 WRITE_WB_REG_CASE(OFF, 1, REG, VAL); \
101 WRITE_WB_REG_CASE(OFF, 2, REG, VAL); \
102 WRITE_WB_REG_CASE(OFF, 3, REG, VAL); \
103 WRITE_WB_REG_CASE(OFF, 4, REG, VAL); \
104 WRITE_WB_REG_CASE(OFF, 5, REG, VAL); \
105 WRITE_WB_REG_CASE(OFF, 6, REG, VAL); \
106 WRITE_WB_REG_CASE(OFF, 7, REG, VAL); \
107 WRITE_WB_REG_CASE(OFF, 8, REG, VAL); \
108 WRITE_WB_REG_CASE(OFF, 9, REG, VAL); \
109 WRITE_WB_REG_CASE(OFF, 10, REG, VAL); \
110 WRITE_WB_REG_CASE(OFF, 11, REG, VAL); \
111 WRITE_WB_REG_CASE(OFF, 12, REG, VAL); \
112 WRITE_WB_REG_CASE(OFF, 13, REG, VAL); \
113 WRITE_WB_REG_CASE(OFF, 14, REG, VAL); \
114 WRITE_WB_REG_CASE(OFF, 15, REG, VAL)
115
116 static u64 read_wb_reg(int reg, int n)
117 {
118 u64 val = 0;
119
120 switch (reg + n) {
121 GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_BVR, AARCH64_DBG_REG_NAME_BVR, val);
122 GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_BCR, AARCH64_DBG_REG_NAME_BCR, val);
123 GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_WVR, AARCH64_DBG_REG_NAME_WVR, val);
124 GEN_READ_WB_REG_CASES(AARCH64_DBG_REG_WCR, AARCH64_DBG_REG_NAME_WCR, val);
125 default:
126 pr_warning("attempt to read from unknown breakpoint register %d\n", n);
127 }
128
129 return val;
130 }
131 NOKPROBE_SYMBOL(read_wb_reg);
132
133 static void write_wb_reg(int reg, int n, u64 val)
134 {
135 switch (reg + n) {
136 GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_BVR, AARCH64_DBG_REG_NAME_BVR, val);
137 GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_BCR, AARCH64_DBG_REG_NAME_BCR, val);
138 GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_WVR, AARCH64_DBG_REG_NAME_WVR, val);
139 GEN_WRITE_WB_REG_CASES(AARCH64_DBG_REG_WCR, AARCH64_DBG_REG_NAME_WCR, val);
140 default:
141 pr_warning("attempt to write to unknown breakpoint register %d\n", n);
142 }
143 isb();
144 }
145 NOKPROBE_SYMBOL(write_wb_reg);
146
147 /*
148 * Convert a breakpoint privilege level to the corresponding exception
149 * level.
150 */
151 static enum dbg_active_el debug_exception_level(int privilege)
152 {
153 switch (privilege) {
154 case AARCH64_BREAKPOINT_EL0:
155 return DBG_ACTIVE_EL0;
156 case AARCH64_BREAKPOINT_EL1:
157 return DBG_ACTIVE_EL1;
158 default:
159 pr_warning("invalid breakpoint privilege level %d\n", privilege);
160 return -EINVAL;
161 }
162 }
163 NOKPROBE_SYMBOL(debug_exception_level);
164
165 enum hw_breakpoint_ops {
166 HW_BREAKPOINT_INSTALL,
167 HW_BREAKPOINT_UNINSTALL,
168 HW_BREAKPOINT_RESTORE
169 };
170
171 static int is_compat_bp(struct perf_event *bp)
172 {
173 struct task_struct *tsk = bp->hw.target;
174
175 /*
176 * tsk can be NULL for per-cpu (non-ptrace) breakpoints.
177 * In this case, use the native interface, since we don't have
178 * the notion of a "compat CPU" and could end up relying on
179 * deprecated behaviour if we use unaligned watchpoints in
180 * AArch64 state.
181 */
182 return tsk && is_compat_thread(task_thread_info(tsk));
183 }
184
185 /**
186 * hw_breakpoint_slot_setup - Find and setup a perf slot according to
187 * operations
188 *
189 * @slots: pointer to array of slots
190 * @max_slots: max number of slots
191 * @bp: perf_event to setup
192 * @ops: operation to be carried out on the slot
193 *
194 * Return:
195 * slot index on success
196 * -ENOSPC if no slot is available/matches
197 * -EINVAL on wrong operations parameter
198 */
199 static int hw_breakpoint_slot_setup(struct perf_event **slots, int max_slots,
200 struct perf_event *bp,
201 enum hw_breakpoint_ops ops)
202 {
203 int i;
204 struct perf_event **slot;
205
206 for (i = 0; i < max_slots; ++i) {
207 slot = &slots[i];
208 switch (ops) {
209 case HW_BREAKPOINT_INSTALL:
210 if (!*slot) {
211 *slot = bp;
212 return i;
213 }
214 break;
215 case HW_BREAKPOINT_UNINSTALL:
216 if (*slot == bp) {
217 *slot = NULL;
218 return i;
219 }
220 break;
221 case HW_BREAKPOINT_RESTORE:
222 if (*slot == bp)
223 return i;
224 break;
225 default:
226 pr_warn_once("Unhandled hw breakpoint ops %d\n", ops);
227 return -EINVAL;
228 }
229 }
230 return -ENOSPC;
231 }
232
233 static int hw_breakpoint_control(struct perf_event *bp,
234 enum hw_breakpoint_ops ops)
235 {
236 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
237 struct perf_event **slots;
238 struct debug_info *debug_info = &current->thread.debug;
239 int i, max_slots, ctrl_reg, val_reg, reg_enable;
240 enum dbg_active_el dbg_el = debug_exception_level(info->ctrl.privilege);
241 u32 ctrl;
242
243 if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
244 /* Breakpoint */
245 ctrl_reg = AARCH64_DBG_REG_BCR;
246 val_reg = AARCH64_DBG_REG_BVR;
247 slots = this_cpu_ptr(bp_on_reg);
248 max_slots = core_num_brps;
249 reg_enable = !debug_info->bps_disabled;
250 } else {
251 /* Watchpoint */
252 ctrl_reg = AARCH64_DBG_REG_WCR;
253 val_reg = AARCH64_DBG_REG_WVR;
254 slots = this_cpu_ptr(wp_on_reg);
255 max_slots = core_num_wrps;
256 reg_enable = !debug_info->wps_disabled;
257 }
258
259 i = hw_breakpoint_slot_setup(slots, max_slots, bp, ops);
260
261 if (WARN_ONCE(i < 0, "Can't find any breakpoint slot"))
262 return i;
263
264 switch (ops) {
265 case HW_BREAKPOINT_INSTALL:
266 /*
267 * Ensure debug monitors are enabled at the correct exception
268 * level.
269 */
270 enable_debug_monitors(dbg_el);
271 /* Fall through */
272 case HW_BREAKPOINT_RESTORE:
273 /* Setup the address register. */
274 write_wb_reg(val_reg, i, info->address);
275
276 /* Setup the control register. */
277 ctrl = encode_ctrl_reg(info->ctrl);
278 write_wb_reg(ctrl_reg, i,
279 reg_enable ? ctrl | 0x1 : ctrl & ~0x1);
280 break;
281 case HW_BREAKPOINT_UNINSTALL:
282 /* Reset the control register. */
283 write_wb_reg(ctrl_reg, i, 0);
284
285 /*
286 * Release the debug monitors for the correct exception
287 * level.
288 */
289 disable_debug_monitors(dbg_el);
290 break;
291 }
292
293 return 0;
294 }
295
296 /*
297 * Install a perf counter breakpoint.
298 */
299 int arch_install_hw_breakpoint(struct perf_event *bp)
300 {
301 return hw_breakpoint_control(bp, HW_BREAKPOINT_INSTALL);
302 }
303
304 void arch_uninstall_hw_breakpoint(struct perf_event *bp)
305 {
306 hw_breakpoint_control(bp, HW_BREAKPOINT_UNINSTALL);
307 }
308
309 static int get_hbp_len(u8 hbp_len)
310 {
311 unsigned int len_in_bytes = 0;
312
313 switch (hbp_len) {
314 case ARM_BREAKPOINT_LEN_1:
315 len_in_bytes = 1;
316 break;
317 case ARM_BREAKPOINT_LEN_2:
318 len_in_bytes = 2;
319 break;
320 case ARM_BREAKPOINT_LEN_3:
321 len_in_bytes = 3;
322 break;
323 case ARM_BREAKPOINT_LEN_4:
324 len_in_bytes = 4;
325 break;
326 case ARM_BREAKPOINT_LEN_5:
327 len_in_bytes = 5;
328 break;
329 case ARM_BREAKPOINT_LEN_6:
330 len_in_bytes = 6;
331 break;
332 case ARM_BREAKPOINT_LEN_7:
333 len_in_bytes = 7;
334 break;
335 case ARM_BREAKPOINT_LEN_8:
336 len_in_bytes = 8;
337 break;
338 }
339
340 return len_in_bytes;
341 }
342
343 /*
344 * Check whether bp virtual address is in kernel space.
345 */
346 int arch_check_bp_in_kernelspace(struct perf_event *bp)
347 {
348 unsigned int len;
349 unsigned long va;
350 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
351
352 va = info->address;
353 len = get_hbp_len(info->ctrl.len);
354
355 return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE);
356 }
357
358 /*
359 * Extract generic type and length encodings from an arch_hw_breakpoint_ctrl.
360 * Hopefully this will disappear when ptrace can bypass the conversion
361 * to generic breakpoint descriptions.
362 */
363 int arch_bp_generic_fields(struct arch_hw_breakpoint_ctrl ctrl,
364 int *gen_len, int *gen_type, int *offset)
365 {
366 /* Type */
367 switch (ctrl.type) {
368 case ARM_BREAKPOINT_EXECUTE:
369 *gen_type = HW_BREAKPOINT_X;
370 break;
371 case ARM_BREAKPOINT_LOAD:
372 *gen_type = HW_BREAKPOINT_R;
373 break;
374 case ARM_BREAKPOINT_STORE:
375 *gen_type = HW_BREAKPOINT_W;
376 break;
377 case ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE:
378 *gen_type = HW_BREAKPOINT_RW;
379 break;
380 default:
381 return -EINVAL;
382 }
383
384 if (!ctrl.len)
385 return -EINVAL;
386 *offset = __ffs(ctrl.len);
387
388 /* Len */
389 switch (ctrl.len >> *offset) {
390 case ARM_BREAKPOINT_LEN_1:
391 *gen_len = HW_BREAKPOINT_LEN_1;
392 break;
393 case ARM_BREAKPOINT_LEN_2:
394 *gen_len = HW_BREAKPOINT_LEN_2;
395 break;
396 case ARM_BREAKPOINT_LEN_3:
397 *gen_len = HW_BREAKPOINT_LEN_3;
398 break;
399 case ARM_BREAKPOINT_LEN_4:
400 *gen_len = HW_BREAKPOINT_LEN_4;
401 break;
402 case ARM_BREAKPOINT_LEN_5:
403 *gen_len = HW_BREAKPOINT_LEN_5;
404 break;
405 case ARM_BREAKPOINT_LEN_6:
406 *gen_len = HW_BREAKPOINT_LEN_6;
407 break;
408 case ARM_BREAKPOINT_LEN_7:
409 *gen_len = HW_BREAKPOINT_LEN_7;
410 break;
411 case ARM_BREAKPOINT_LEN_8:
412 *gen_len = HW_BREAKPOINT_LEN_8;
413 break;
414 default:
415 return -EINVAL;
416 }
417
418 return 0;
419 }
420
421 /*
422 * Construct an arch_hw_breakpoint from a perf_event.
423 */
424 static int arch_build_bp_info(struct perf_event *bp)
425 {
426 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
427
428 /* Type */
429 switch (bp->attr.bp_type) {
430 case HW_BREAKPOINT_X:
431 info->ctrl.type = ARM_BREAKPOINT_EXECUTE;
432 break;
433 case HW_BREAKPOINT_R:
434 info->ctrl.type = ARM_BREAKPOINT_LOAD;
435 break;
436 case HW_BREAKPOINT_W:
437 info->ctrl.type = ARM_BREAKPOINT_STORE;
438 break;
439 case HW_BREAKPOINT_RW:
440 info->ctrl.type = ARM_BREAKPOINT_LOAD | ARM_BREAKPOINT_STORE;
441 break;
442 default:
443 return -EINVAL;
444 }
445
446 /* Len */
447 switch (bp->attr.bp_len) {
448 case HW_BREAKPOINT_LEN_1:
449 info->ctrl.len = ARM_BREAKPOINT_LEN_1;
450 break;
451 case HW_BREAKPOINT_LEN_2:
452 info->ctrl.len = ARM_BREAKPOINT_LEN_2;
453 break;
454 case HW_BREAKPOINT_LEN_3:
455 info->ctrl.len = ARM_BREAKPOINT_LEN_3;
456 break;
457 case HW_BREAKPOINT_LEN_4:
458 info->ctrl.len = ARM_BREAKPOINT_LEN_4;
459 break;
460 case HW_BREAKPOINT_LEN_5:
461 info->ctrl.len = ARM_BREAKPOINT_LEN_5;
462 break;
463 case HW_BREAKPOINT_LEN_6:
464 info->ctrl.len = ARM_BREAKPOINT_LEN_6;
465 break;
466 case HW_BREAKPOINT_LEN_7:
467 info->ctrl.len = ARM_BREAKPOINT_LEN_7;
468 break;
469 case HW_BREAKPOINT_LEN_8:
470 info->ctrl.len = ARM_BREAKPOINT_LEN_8;
471 break;
472 default:
473 return -EINVAL;
474 }
475
476 /*
477 * On AArch64, we only permit breakpoints of length 4, whereas
478 * AArch32 also requires breakpoints of length 2 for Thumb.
479 * Watchpoints can be of length 1, 2, 4 or 8 bytes.
480 */
481 if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE) {
482 if (is_compat_bp(bp)) {
483 if (info->ctrl.len != ARM_BREAKPOINT_LEN_2 &&
484 info->ctrl.len != ARM_BREAKPOINT_LEN_4)
485 return -EINVAL;
486 } else if (info->ctrl.len != ARM_BREAKPOINT_LEN_4) {
487 /*
488 * FIXME: Some tools (I'm looking at you perf) assume
489 * that breakpoints should be sizeof(long). This
490 * is nonsense. For now, we fix up the parameter
491 * but we should probably return -EINVAL instead.
492 */
493 info->ctrl.len = ARM_BREAKPOINT_LEN_4;
494 }
495 }
496
497 /* Address */
498 info->address = bp->attr.bp_addr;
499
500 /*
501 * Privilege
502 * Note that we disallow combined EL0/EL1 breakpoints because
503 * that would complicate the stepping code.
504 */
505 if (arch_check_bp_in_kernelspace(bp))
506 info->ctrl.privilege = AARCH64_BREAKPOINT_EL1;
507 else
508 info->ctrl.privilege = AARCH64_BREAKPOINT_EL0;
509
510 /* Enabled? */
511 info->ctrl.enabled = !bp->attr.disabled;
512
513 return 0;
514 }
515
516 /*
517 * Validate the arch-specific HW Breakpoint register settings.
518 */
519 int arch_validate_hwbkpt_settings(struct perf_event *bp)
520 {
521 struct arch_hw_breakpoint *info = counter_arch_bp(bp);
522 int ret;
523 u64 alignment_mask, offset;
524
525 /* Build the arch_hw_breakpoint. */
526 ret = arch_build_bp_info(bp);
527 if (ret)
528 return ret;
529
530 /*
531 * Check address alignment.
532 * We don't do any clever alignment correction for watchpoints
533 * because using 64-bit unaligned addresses is deprecated for
534 * AArch64.
535 *
536 * AArch32 tasks expect some simple alignment fixups, so emulate
537 * that here.
538 */
539 if (is_compat_bp(bp)) {
540 if (info->ctrl.len == ARM_BREAKPOINT_LEN_8)
541 alignment_mask = 0x7;
542 else
543 alignment_mask = 0x3;
544 offset = info->address & alignment_mask;
545 switch (offset) {
546 case 0:
547 /* Aligned */
548 break;
549 case 1:
550 /* Allow single byte watchpoint. */
551 if (info->ctrl.len == ARM_BREAKPOINT_LEN_1)
552 break;
553 case 2:
554 /* Allow halfword watchpoints and breakpoints. */
555 if (info->ctrl.len == ARM_BREAKPOINT_LEN_2)
556 break;
557 default:
558 return -EINVAL;
559 }
560 } else {
561 if (info->ctrl.type == ARM_BREAKPOINT_EXECUTE)
562 alignment_mask = 0x3;
563 else
564 alignment_mask = 0x7;
565 offset = info->address & alignment_mask;
566 }
567
568 info->address &= ~alignment_mask;
569 info->ctrl.len <<= offset;
570
571 /*
572 * Disallow per-task kernel breakpoints since these would
573 * complicate the stepping code.
574 */
575 if (info->ctrl.privilege == AARCH64_BREAKPOINT_EL1 && bp->hw.target)
576 return -EINVAL;
577
578 return 0;
579 }
580
581 /*
582 * Enable/disable all of the breakpoints active at the specified
583 * exception level at the register level.
584 * This is used when single-stepping after a breakpoint exception.
585 */
586 static void toggle_bp_registers(int reg, enum dbg_active_el el, int enable)
587 {
588 int i, max_slots, privilege;
589 u32 ctrl;
590 struct perf_event **slots;
591
592 switch (reg) {
593 case AARCH64_DBG_REG_BCR:
594 slots = this_cpu_ptr(bp_on_reg);
595 max_slots = core_num_brps;
596 break;
597 case AARCH64_DBG_REG_WCR:
598 slots = this_cpu_ptr(wp_on_reg);
599 max_slots = core_num_wrps;
600 break;
601 default:
602 return;
603 }
604
605 for (i = 0; i < max_slots; ++i) {
606 if (!slots[i])
607 continue;
608
609 privilege = counter_arch_bp(slots[i])->ctrl.privilege;
610 if (debug_exception_level(privilege) != el)
611 continue;
612
613 ctrl = read_wb_reg(reg, i);
614 if (enable)
615 ctrl |= 0x1;
616 else
617 ctrl &= ~0x1;
618 write_wb_reg(reg, i, ctrl);
619 }
620 }
621 NOKPROBE_SYMBOL(toggle_bp_registers);
622
623 /*
624 * Debug exception handlers.
625 */
626 static int breakpoint_handler(unsigned long unused, unsigned int esr,
627 struct pt_regs *regs)
628 {
629 int i, step = 0, *kernel_step;
630 u32 ctrl_reg;
631 u64 addr, val;
632 struct perf_event *bp, **slots;
633 struct debug_info *debug_info;
634 struct arch_hw_breakpoint_ctrl ctrl;
635
636 slots = this_cpu_ptr(bp_on_reg);
637 addr = instruction_pointer(regs);
638 debug_info = &current->thread.debug;
639
640 for (i = 0; i < core_num_brps; ++i) {
641 rcu_read_lock();
642
643 bp = slots[i];
644
645 if (bp == NULL)
646 goto unlock;
647
648 /* Check if the breakpoint value matches. */
649 val = read_wb_reg(AARCH64_DBG_REG_BVR, i);
650 if (val != (addr & ~0x3))
651 goto unlock;
652
653 /* Possible match, check the byte address select to confirm. */
654 ctrl_reg = read_wb_reg(AARCH64_DBG_REG_BCR, i);
655 decode_ctrl_reg(ctrl_reg, &ctrl);
656 if (!((1 << (addr & 0x3)) & ctrl.len))
657 goto unlock;
658
659 counter_arch_bp(bp)->trigger = addr;
660 perf_bp_event(bp, regs);
661
662 /* Do we need to handle the stepping? */
663 if (is_default_overflow_handler(bp))
664 step = 1;
665 unlock:
666 rcu_read_unlock();
667 }
668
669 if (!step)
670 return 0;
671
672 if (user_mode(regs)) {
673 debug_info->bps_disabled = 1;
674 toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL0, 0);
675
676 /* If we're already stepping a watchpoint, just return. */
677 if (debug_info->wps_disabled)
678 return 0;
679
680 if (test_thread_flag(TIF_SINGLESTEP))
681 debug_info->suspended_step = 1;
682 else
683 user_enable_single_step(current);
684 } else {
685 toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL1, 0);
686 kernel_step = this_cpu_ptr(&stepping_kernel_bp);
687
688 if (*kernel_step != ARM_KERNEL_STEP_NONE)
689 return 0;
690
691 if (kernel_active_single_step()) {
692 *kernel_step = ARM_KERNEL_STEP_SUSPEND;
693 } else {
694 *kernel_step = ARM_KERNEL_STEP_ACTIVE;
695 kernel_enable_single_step(regs);
696 }
697 }
698
699 return 0;
700 }
701 NOKPROBE_SYMBOL(breakpoint_handler);
702
703 /*
704 * Arm64 hardware does not always report a watchpoint hit address that matches
705 * one of the watchpoints set. It can also report an address "near" the
706 * watchpoint if a single instruction access both watched and unwatched
707 * addresses. There is no straight-forward way, short of disassembling the
708 * offending instruction, to map that address back to the watchpoint. This
709 * function computes the distance of the memory access from the watchpoint as a
710 * heuristic for the likelyhood that a given access triggered the watchpoint.
711 *
712 * See Section D2.10.5 "Determining the memory location that caused a Watchpoint
713 * exception" of ARMv8 Architecture Reference Manual for details.
714 *
715 * The function returns the distance of the address from the bytes watched by
716 * the watchpoint. In case of an exact match, it returns 0.
717 */
718 static u64 get_distance_from_watchpoint(unsigned long addr, u64 val,
719 struct arch_hw_breakpoint_ctrl *ctrl)
720 {
721 u64 wp_low, wp_high;
722 u32 lens, lene;
723
724 lens = __ffs(ctrl->len);
725 lene = __fls(ctrl->len);
726
727 wp_low = val + lens;
728 wp_high = val + lene;
729 if (addr < wp_low)
730 return wp_low - addr;
731 else if (addr > wp_high)
732 return addr - wp_high;
733 else
734 return 0;
735 }
736
737 static int watchpoint_handler(unsigned long addr, unsigned int esr,
738 struct pt_regs *regs)
739 {
740 int i, step = 0, *kernel_step, access, closest_match = 0;
741 u64 min_dist = -1, dist;
742 u32 ctrl_reg;
743 u64 val;
744 struct perf_event *wp, **slots;
745 struct debug_info *debug_info;
746 struct arch_hw_breakpoint *info;
747 struct arch_hw_breakpoint_ctrl ctrl;
748
749 slots = this_cpu_ptr(wp_on_reg);
750 debug_info = &current->thread.debug;
751
752 /*
753 * Find all watchpoints that match the reported address. If no exact
754 * match is found. Attribute the hit to the closest watchpoint.
755 */
756 rcu_read_lock();
757 for (i = 0; i < core_num_wrps; ++i) {
758 wp = slots[i];
759 if (wp == NULL)
760 continue;
761
762 /*
763 * Check that the access type matches.
764 * 0 => load, otherwise => store
765 */
766 access = (esr & AARCH64_ESR_ACCESS_MASK) ? HW_BREAKPOINT_W :
767 HW_BREAKPOINT_R;
768 if (!(access & hw_breakpoint_type(wp)))
769 continue;
770
771 /* Check if the watchpoint value and byte select match. */
772 val = read_wb_reg(AARCH64_DBG_REG_WVR, i);
773 ctrl_reg = read_wb_reg(AARCH64_DBG_REG_WCR, i);
774 decode_ctrl_reg(ctrl_reg, &ctrl);
775 dist = get_distance_from_watchpoint(addr, val, &ctrl);
776 if (dist < min_dist) {
777 min_dist = dist;
778 closest_match = i;
779 }
780 /* Is this an exact match? */
781 if (dist != 0)
782 continue;
783
784 info = counter_arch_bp(wp);
785 info->trigger = addr;
786 perf_bp_event(wp, regs);
787
788 /* Do we need to handle the stepping? */
789 if (is_default_overflow_handler(wp))
790 step = 1;
791 }
792 if (min_dist > 0 && min_dist != -1) {
793 /* No exact match found. */
794 wp = slots[closest_match];
795 info = counter_arch_bp(wp);
796 info->trigger = addr;
797 perf_bp_event(wp, regs);
798
799 /* Do we need to handle the stepping? */
800 if (is_default_overflow_handler(wp))
801 step = 1;
802 }
803 rcu_read_unlock();
804
805 if (!step)
806 return 0;
807
808 /*
809 * We always disable EL0 watchpoints because the kernel can
810 * cause these to fire via an unprivileged access.
811 */
812 toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 0);
813
814 if (user_mode(regs)) {
815 debug_info->wps_disabled = 1;
816
817 /* If we're already stepping a breakpoint, just return. */
818 if (debug_info->bps_disabled)
819 return 0;
820
821 if (test_thread_flag(TIF_SINGLESTEP))
822 debug_info->suspended_step = 1;
823 else
824 user_enable_single_step(current);
825 } else {
826 toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL1, 0);
827 kernel_step = this_cpu_ptr(&stepping_kernel_bp);
828
829 if (*kernel_step != ARM_KERNEL_STEP_NONE)
830 return 0;
831
832 if (kernel_active_single_step()) {
833 *kernel_step = ARM_KERNEL_STEP_SUSPEND;
834 } else {
835 *kernel_step = ARM_KERNEL_STEP_ACTIVE;
836 kernel_enable_single_step(regs);
837 }
838 }
839
840 return 0;
841 }
842 NOKPROBE_SYMBOL(watchpoint_handler);
843
844 /*
845 * Handle single-step exception.
846 */
847 int reinstall_suspended_bps(struct pt_regs *regs)
848 {
849 struct debug_info *debug_info = &current->thread.debug;
850 int handled_exception = 0, *kernel_step;
851
852 kernel_step = this_cpu_ptr(&stepping_kernel_bp);
853
854 /*
855 * Called from single-step exception handler.
856 * Return 0 if execution can resume, 1 if a SIGTRAP should be
857 * reported.
858 */
859 if (user_mode(regs)) {
860 if (debug_info->bps_disabled) {
861 debug_info->bps_disabled = 0;
862 toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL0, 1);
863 handled_exception = 1;
864 }
865
866 if (debug_info->wps_disabled) {
867 debug_info->wps_disabled = 0;
868 toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 1);
869 handled_exception = 1;
870 }
871
872 if (handled_exception) {
873 if (debug_info->suspended_step) {
874 debug_info->suspended_step = 0;
875 /* Allow exception handling to fall-through. */
876 handled_exception = 0;
877 } else {
878 user_disable_single_step(current);
879 }
880 }
881 } else if (*kernel_step != ARM_KERNEL_STEP_NONE) {
882 toggle_bp_registers(AARCH64_DBG_REG_BCR, DBG_ACTIVE_EL1, 1);
883 toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL1, 1);
884
885 if (!debug_info->wps_disabled)
886 toggle_bp_registers(AARCH64_DBG_REG_WCR, DBG_ACTIVE_EL0, 1);
887
888 if (*kernel_step != ARM_KERNEL_STEP_SUSPEND) {
889 kernel_disable_single_step();
890 handled_exception = 1;
891 } else {
892 handled_exception = 0;
893 }
894
895 *kernel_step = ARM_KERNEL_STEP_NONE;
896 }
897
898 return !handled_exception;
899 }
900 NOKPROBE_SYMBOL(reinstall_suspended_bps);
901
902 /*
903 * Context-switcher for restoring suspended breakpoints.
904 */
905 void hw_breakpoint_thread_switch(struct task_struct *next)
906 {
907 /*
908 * current next
909 * disabled: 0 0 => The usual case, NOTIFY_DONE
910 * 0 1 => Disable the registers
911 * 1 0 => Enable the registers
912 * 1 1 => NOTIFY_DONE. per-task bps will
913 * get taken care of by perf.
914 */
915
916 struct debug_info *current_debug_info, *next_debug_info;
917
918 current_debug_info = &current->thread.debug;
919 next_debug_info = &next->thread.debug;
920
921 /* Update breakpoints. */
922 if (current_debug_info->bps_disabled != next_debug_info->bps_disabled)
923 toggle_bp_registers(AARCH64_DBG_REG_BCR,
924 DBG_ACTIVE_EL0,
925 !next_debug_info->bps_disabled);
926
927 /* Update watchpoints. */
928 if (current_debug_info->wps_disabled != next_debug_info->wps_disabled)
929 toggle_bp_registers(AARCH64_DBG_REG_WCR,
930 DBG_ACTIVE_EL0,
931 !next_debug_info->wps_disabled);
932 }
933
934 /*
935 * CPU initialisation.
936 */
937 static int hw_breakpoint_reset(unsigned int cpu)
938 {
939 int i;
940 struct perf_event **slots;
941 /*
942 * When a CPU goes through cold-boot, it does not have any installed
943 * slot, so it is safe to share the same function for restoring and
944 * resetting breakpoints; when a CPU is hotplugged in, it goes
945 * through the slots, which are all empty, hence it just resets control
946 * and value for debug registers.
947 * When this function is triggered on warm-boot through a CPU PM
948 * notifier some slots might be initialized; if so they are
949 * reprogrammed according to the debug slots content.
950 */
951 for (slots = this_cpu_ptr(bp_on_reg), i = 0; i < core_num_brps; ++i) {
952 if (slots[i]) {
953 hw_breakpoint_control(slots[i], HW_BREAKPOINT_RESTORE);
954 } else {
955 write_wb_reg(AARCH64_DBG_REG_BCR, i, 0UL);
956 write_wb_reg(AARCH64_DBG_REG_BVR, i, 0UL);
957 }
958 }
959
960 for (slots = this_cpu_ptr(wp_on_reg), i = 0; i < core_num_wrps; ++i) {
961 if (slots[i]) {
962 hw_breakpoint_control(slots[i], HW_BREAKPOINT_RESTORE);
963 } else {
964 write_wb_reg(AARCH64_DBG_REG_WCR, i, 0UL);
965 write_wb_reg(AARCH64_DBG_REG_WVR, i, 0UL);
966 }
967 }
968
969 return 0;
970 }
971
972 #ifdef CONFIG_CPU_PM
973 extern void cpu_suspend_set_dbg_restorer(int (*hw_bp_restore)(unsigned int));
974 #else
975 static inline void cpu_suspend_set_dbg_restorer(int (*hw_bp_restore)(unsigned int))
976 {
977 }
978 #endif
979
980 /*
981 * One-time initialisation.
982 */
983 static int __init arch_hw_breakpoint_init(void)
984 {
985 int ret;
986
987 core_num_brps = get_num_brps();
988 core_num_wrps = get_num_wrps();
989
990 pr_info("found %d breakpoint and %d watchpoint registers.\n",
991 core_num_brps, core_num_wrps);
992
993 /* Register debug fault handlers. */
994 hook_debug_fault_code(DBG_ESR_EVT_HWBP, breakpoint_handler, SIGTRAP,
995 TRAP_HWBKPT, "hw-breakpoint handler");
996 hook_debug_fault_code(DBG_ESR_EVT_HWWP, watchpoint_handler, SIGTRAP,
997 TRAP_HWBKPT, "hw-watchpoint handler");
998
999 /*
1000 * Reset the breakpoint resources. We assume that a halting
1001 * debugger will leave the world in a nice state for us.
1002 */
1003 ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_HW_BREAKPOINT_STARTING,
1004 "perf/arm64/hw_breakpoint:starting",
1005 hw_breakpoint_reset, NULL);
1006 if (ret)
1007 pr_err("failed to register CPU hotplug notifier: %d\n", ret);
1008
1009 /* Register cpu_suspend hw breakpoint restore hook */
1010 cpu_suspend_set_dbg_restorer(hw_breakpoint_reset);
1011
1012 return ret;
1013 }
1014 arch_initcall(arch_hw_breakpoint_init);
1015
1016 void hw_breakpoint_pmu_read(struct perf_event *bp)
1017 {
1018 }
1019
1020 /*
1021 * Dummy function to register with die_notifier.
1022 */
1023 int hw_breakpoint_exceptions_notify(struct notifier_block *unused,
1024 unsigned long val, void *data)
1025 {
1026 return NOTIFY_DONE;
1027 }