]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/arm64/kernel/probes/kprobes.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / arch / arm64 / kernel / probes / kprobes.c
1 /*
2 * arch/arm64/kernel/probes/kprobes.c
3 *
4 * Kprobes support for ARM64
5 *
6 * Copyright (C) 2013 Linaro Limited.
7 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 */
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kprobes.h>
22 #include <linux/extable.h>
23 #include <linux/slab.h>
24 #include <linux/stop_machine.h>
25 #include <linux/sched/debug.h>
26 #include <linux/stringify.h>
27 #include <asm/traps.h>
28 #include <asm/ptrace.h>
29 #include <asm/cacheflush.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/system_misc.h>
32 #include <asm/insn.h>
33 #include <linux/uaccess.h>
34 #include <asm/irq.h>
35 #include <asm/sections.h>
36
37 #include "decode-insn.h"
38
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41
42 static void __kprobes
43 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
44
45 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
46 {
47 /* prepare insn slot */
48 p->ainsn.api.insn[0] = cpu_to_le32(p->opcode);
49
50 flush_icache_range((uintptr_t) (p->ainsn.api.insn),
51 (uintptr_t) (p->ainsn.api.insn) +
52 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
53
54 /*
55 * Needs restoring of return address after stepping xol.
56 */
57 p->ainsn.api.restore = (unsigned long) p->addr +
58 sizeof(kprobe_opcode_t);
59 }
60
61 static void __kprobes arch_prepare_simulate(struct kprobe *p)
62 {
63 /* This instructions is not executed xol. No need to adjust the PC */
64 p->ainsn.api.restore = 0;
65 }
66
67 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
68 {
69 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
70
71 if (p->ainsn.api.handler)
72 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
73
74 /* single step simulated, now go for post processing */
75 post_kprobe_handler(kcb, regs);
76 }
77
78 int __kprobes arch_prepare_kprobe(struct kprobe *p)
79 {
80 unsigned long probe_addr = (unsigned long)p->addr;
81 extern char __start_rodata[];
82 extern char __end_rodata[];
83
84 if (probe_addr & 0x3)
85 return -EINVAL;
86
87 /* copy instruction */
88 p->opcode = le32_to_cpu(*p->addr);
89
90 if (in_exception_text(probe_addr))
91 return -EINVAL;
92 if (probe_addr >= (unsigned long) __start_rodata &&
93 probe_addr <= (unsigned long) __end_rodata)
94 return -EINVAL;
95
96 /* decode instruction */
97 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
98 case INSN_REJECTED: /* insn not supported */
99 return -EINVAL;
100
101 case INSN_GOOD_NO_SLOT: /* insn need simulation */
102 p->ainsn.api.insn = NULL;
103 break;
104
105 case INSN_GOOD: /* instruction uses slot */
106 p->ainsn.api.insn = get_insn_slot();
107 if (!p->ainsn.api.insn)
108 return -ENOMEM;
109 break;
110 };
111
112 /* prepare the instruction */
113 if (p->ainsn.api.insn)
114 arch_prepare_ss_slot(p);
115 else
116 arch_prepare_simulate(p);
117
118 return 0;
119 }
120
121 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
122 {
123 void *addrs[1];
124 u32 insns[1];
125
126 addrs[0] = (void *)addr;
127 insns[0] = (u32)opcode;
128
129 return aarch64_insn_patch_text(addrs, insns, 1);
130 }
131
132 /* arm kprobe: install breakpoint in text */
133 void __kprobes arch_arm_kprobe(struct kprobe *p)
134 {
135 patch_text(p->addr, BRK64_OPCODE_KPROBES);
136 }
137
138 /* disarm kprobe: remove breakpoint from text */
139 void __kprobes arch_disarm_kprobe(struct kprobe *p)
140 {
141 patch_text(p->addr, p->opcode);
142 }
143
144 void __kprobes arch_remove_kprobe(struct kprobe *p)
145 {
146 if (p->ainsn.api.insn) {
147 free_insn_slot(p->ainsn.api.insn, 0);
148 p->ainsn.api.insn = NULL;
149 }
150 }
151
152 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
153 {
154 kcb->prev_kprobe.kp = kprobe_running();
155 kcb->prev_kprobe.status = kcb->kprobe_status;
156 }
157
158 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
159 {
160 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
161 kcb->kprobe_status = kcb->prev_kprobe.status;
162 }
163
164 static void __kprobes set_current_kprobe(struct kprobe *p)
165 {
166 __this_cpu_write(current_kprobe, p);
167 }
168
169 /*
170 * When PSTATE.D is set (masked), then software step exceptions can not be
171 * generated.
172 * SPSR's D bit shows the value of PSTATE.D immediately before the
173 * exception was taken. PSTATE.D is set while entering into any exception
174 * mode, however software clears it for any normal (none-debug-exception)
175 * mode in the exception entry. Therefore, when we are entering into kprobe
176 * breakpoint handler from any normal mode then SPSR.D bit is already
177 * cleared, however it is set when we are entering from any debug exception
178 * mode.
179 * Since we always need to generate single step exception after a kprobe
180 * breakpoint exception therefore we need to clear it unconditionally, when
181 * we become sure that the current breakpoint exception is for kprobe.
182 */
183 static void __kprobes
184 spsr_set_debug_flag(struct pt_regs *regs, int mask)
185 {
186 unsigned long spsr = regs->pstate;
187
188 if (mask)
189 spsr |= PSR_D_BIT;
190 else
191 spsr &= ~PSR_D_BIT;
192
193 regs->pstate = spsr;
194 }
195
196 /*
197 * Interrupts need to be disabled before single-step mode is set, and not
198 * reenabled until after single-step mode ends.
199 * Without disabling interrupt on local CPU, there is a chance of
200 * interrupt occurrence in the period of exception return and start of
201 * out-of-line single-step, that result in wrongly single stepping
202 * into the interrupt handler.
203 */
204 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
205 struct pt_regs *regs)
206 {
207 kcb->saved_irqflag = regs->pstate;
208 regs->pstate |= PSR_I_BIT;
209 }
210
211 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
212 struct pt_regs *regs)
213 {
214 if (kcb->saved_irqflag & PSR_I_BIT)
215 regs->pstate |= PSR_I_BIT;
216 else
217 regs->pstate &= ~PSR_I_BIT;
218 }
219
220 static void __kprobes
221 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
222 {
223 kcb->ss_ctx.ss_pending = true;
224 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
225 }
226
227 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
228 {
229 kcb->ss_ctx.ss_pending = false;
230 kcb->ss_ctx.match_addr = 0;
231 }
232
233 static void __kprobes setup_singlestep(struct kprobe *p,
234 struct pt_regs *regs,
235 struct kprobe_ctlblk *kcb, int reenter)
236 {
237 unsigned long slot;
238
239 if (reenter) {
240 save_previous_kprobe(kcb);
241 set_current_kprobe(p);
242 kcb->kprobe_status = KPROBE_REENTER;
243 } else {
244 kcb->kprobe_status = KPROBE_HIT_SS;
245 }
246
247
248 if (p->ainsn.api.insn) {
249 /* prepare for single stepping */
250 slot = (unsigned long)p->ainsn.api.insn;
251
252 set_ss_context(kcb, slot); /* mark pending ss */
253
254 spsr_set_debug_flag(regs, 0);
255
256 /* IRQs and single stepping do not mix well. */
257 kprobes_save_local_irqflag(kcb, regs);
258 kernel_enable_single_step(regs);
259 instruction_pointer_set(regs, slot);
260 } else {
261 /* insn simulation */
262 arch_simulate_insn(p, regs);
263 }
264 }
265
266 static int __kprobes reenter_kprobe(struct kprobe *p,
267 struct pt_regs *regs,
268 struct kprobe_ctlblk *kcb)
269 {
270 switch (kcb->kprobe_status) {
271 case KPROBE_HIT_SSDONE:
272 case KPROBE_HIT_ACTIVE:
273 kprobes_inc_nmissed_count(p);
274 setup_singlestep(p, regs, kcb, 1);
275 break;
276 case KPROBE_HIT_SS:
277 case KPROBE_REENTER:
278 pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
279 dump_kprobe(p);
280 BUG();
281 break;
282 default:
283 WARN_ON(1);
284 return 0;
285 }
286
287 return 1;
288 }
289
290 static void __kprobes
291 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
292 {
293 struct kprobe *cur = kprobe_running();
294
295 if (!cur)
296 return;
297
298 /* return addr restore if non-branching insn */
299 if (cur->ainsn.api.restore != 0)
300 instruction_pointer_set(regs, cur->ainsn.api.restore);
301
302 /* restore back original saved kprobe variables and continue */
303 if (kcb->kprobe_status == KPROBE_REENTER) {
304 restore_previous_kprobe(kcb);
305 return;
306 }
307 /* call post handler */
308 kcb->kprobe_status = KPROBE_HIT_SSDONE;
309 if (cur->post_handler) {
310 /* post_handler can hit breakpoint and single step
311 * again, so we enable D-flag for recursive exception.
312 */
313 cur->post_handler(cur, regs, 0);
314 }
315
316 reset_current_kprobe();
317 }
318
319 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
320 {
321 struct kprobe *cur = kprobe_running();
322 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
323
324 switch (kcb->kprobe_status) {
325 case KPROBE_HIT_SS:
326 case KPROBE_REENTER:
327 /*
328 * We are here because the instruction being single
329 * stepped caused a page fault. We reset the current
330 * kprobe and the ip points back to the probe address
331 * and allow the page fault handler to continue as a
332 * normal page fault.
333 */
334 instruction_pointer_set(regs, (unsigned long) cur->addr);
335 if (!instruction_pointer(regs))
336 BUG();
337
338 kernel_disable_single_step();
339
340 if (kcb->kprobe_status == KPROBE_REENTER)
341 restore_previous_kprobe(kcb);
342 else
343 reset_current_kprobe();
344
345 break;
346 case KPROBE_HIT_ACTIVE:
347 case KPROBE_HIT_SSDONE:
348 /*
349 * We increment the nmissed count for accounting,
350 * we can also use npre/npostfault count for accounting
351 * these specific fault cases.
352 */
353 kprobes_inc_nmissed_count(cur);
354
355 /*
356 * We come here because instructions in the pre/post
357 * handler caused the page_fault, this could happen
358 * if handler tries to access user space by
359 * copy_from_user(), get_user() etc. Let the
360 * user-specified handler try to fix it first.
361 */
362 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
363 return 1;
364
365 /*
366 * In case the user-specified fault handler returned
367 * zero, try to fix up.
368 */
369 if (fixup_exception(regs))
370 return 1;
371 }
372 return 0;
373 }
374
375 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
376 unsigned long val, void *data)
377 {
378 return NOTIFY_DONE;
379 }
380
381 static void __kprobes kprobe_handler(struct pt_regs *regs)
382 {
383 struct kprobe *p, *cur_kprobe;
384 struct kprobe_ctlblk *kcb;
385 unsigned long addr = instruction_pointer(regs);
386
387 kcb = get_kprobe_ctlblk();
388 cur_kprobe = kprobe_running();
389
390 p = get_kprobe((kprobe_opcode_t *) addr);
391
392 if (p) {
393 if (cur_kprobe) {
394 if (reenter_kprobe(p, regs, kcb))
395 return;
396 } else {
397 /* Probe hit */
398 set_current_kprobe(p);
399 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
400
401 /*
402 * If we have no pre-handler or it returned 0, we
403 * continue with normal processing. If we have a
404 * pre-handler and it returned non-zero, it prepped
405 * for calling the break_handler below on re-entry,
406 * so get out doing nothing more here.
407 *
408 * pre_handler can hit a breakpoint and can step thru
409 * before return, keep PSTATE D-flag enabled until
410 * pre_handler return back.
411 */
412 if (!p->pre_handler || !p->pre_handler(p, regs)) {
413 setup_singlestep(p, regs, kcb, 0);
414 return;
415 }
416 }
417 } else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
418 BRK64_OPCODE_KPROBES) && cur_kprobe) {
419 /* We probably hit a jprobe. Call its break handler. */
420 if (cur_kprobe->break_handler &&
421 cur_kprobe->break_handler(cur_kprobe, regs)) {
422 setup_singlestep(cur_kprobe, regs, kcb, 0);
423 return;
424 }
425 }
426 /*
427 * The breakpoint instruction was removed right
428 * after we hit it. Another cpu has removed
429 * either a probepoint or a debugger breakpoint
430 * at this address. In either case, no further
431 * handling of this interrupt is appropriate.
432 * Return back to original instruction, and continue.
433 */
434 }
435
436 static int __kprobes
437 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
438 {
439 if ((kcb->ss_ctx.ss_pending)
440 && (kcb->ss_ctx.match_addr == addr)) {
441 clear_ss_context(kcb); /* clear pending ss */
442 return DBG_HOOK_HANDLED;
443 }
444 /* not ours, kprobes should ignore it */
445 return DBG_HOOK_ERROR;
446 }
447
448 int __kprobes
449 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
450 {
451 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
452 int retval;
453
454 /* return error if this is not our step */
455 retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
456
457 if (retval == DBG_HOOK_HANDLED) {
458 kprobes_restore_local_irqflag(kcb, regs);
459 kernel_disable_single_step();
460
461 post_kprobe_handler(kcb, regs);
462 }
463
464 return retval;
465 }
466
467 int __kprobes
468 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
469 {
470 kprobe_handler(regs);
471 return DBG_HOOK_HANDLED;
472 }
473
474 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
475 {
476 struct jprobe *jp = container_of(p, struct jprobe, kp);
477 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
478
479 kcb->jprobe_saved_regs = *regs;
480 /*
481 * Since we can't be sure where in the stack frame "stacked"
482 * pass-by-value arguments are stored we just don't try to
483 * duplicate any of the stack. Do not use jprobes on functions that
484 * use more than 64 bytes (after padding each to an 8 byte boundary)
485 * of arguments, or pass individual arguments larger than 16 bytes.
486 */
487
488 instruction_pointer_set(regs, (unsigned long) jp->entry);
489 preempt_disable();
490 pause_graph_tracing();
491 return 1;
492 }
493
494 void __kprobes jprobe_return(void)
495 {
496 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
497
498 /*
499 * Jprobe handler return by entering break exception,
500 * encoded same as kprobe, but with following conditions
501 * -a special PC to identify it from the other kprobes.
502 * -restore stack addr to original saved pt_regs
503 */
504 asm volatile(" mov sp, %0 \n"
505 "jprobe_return_break: brk %1 \n"
506 :
507 : "r" (kcb->jprobe_saved_regs.sp),
508 "I" (BRK64_ESR_KPROBES)
509 : "memory");
510
511 unreachable();
512 }
513
514 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
515 {
516 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
517 long stack_addr = kcb->jprobe_saved_regs.sp;
518 long orig_sp = kernel_stack_pointer(regs);
519 struct jprobe *jp = container_of(p, struct jprobe, kp);
520 extern const char jprobe_return_break[];
521
522 if (instruction_pointer(regs) != (u64) jprobe_return_break)
523 return 0;
524
525 if (orig_sp != stack_addr) {
526 struct pt_regs *saved_regs =
527 (struct pt_regs *)kcb->jprobe_saved_regs.sp;
528 pr_err("current sp %lx does not match saved sp %lx\n",
529 orig_sp, stack_addr);
530 pr_err("Saved registers for jprobe %p\n", jp);
531 show_regs(saved_regs);
532 pr_err("Current registers\n");
533 show_regs(regs);
534 BUG();
535 }
536 unpause_graph_tracing();
537 *regs = kcb->jprobe_saved_regs;
538 preempt_enable_no_resched();
539 return 1;
540 }
541
542 bool arch_within_kprobe_blacklist(unsigned long addr)
543 {
544 if ((addr >= (unsigned long)__kprobes_text_start &&
545 addr < (unsigned long)__kprobes_text_end) ||
546 (addr >= (unsigned long)__entry_text_start &&
547 addr < (unsigned long)__entry_text_end) ||
548 (addr >= (unsigned long)__idmap_text_start &&
549 addr < (unsigned long)__idmap_text_end) ||
550 !!search_exception_tables(addr))
551 return true;
552
553 if (!is_kernel_in_hyp_mode()) {
554 if ((addr >= (unsigned long)__hyp_text_start &&
555 addr < (unsigned long)__hyp_text_end) ||
556 (addr >= (unsigned long)__hyp_idmap_text_start &&
557 addr < (unsigned long)__hyp_idmap_text_end))
558 return true;
559 }
560
561 return false;
562 }
563
564 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
565 {
566 struct kretprobe_instance *ri = NULL;
567 struct hlist_head *head, empty_rp;
568 struct hlist_node *tmp;
569 unsigned long flags, orig_ret_address = 0;
570 unsigned long trampoline_address =
571 (unsigned long)&kretprobe_trampoline;
572 kprobe_opcode_t *correct_ret_addr = NULL;
573
574 INIT_HLIST_HEAD(&empty_rp);
575 kretprobe_hash_lock(current, &head, &flags);
576
577 /*
578 * It is possible to have multiple instances associated with a given
579 * task either because multiple functions in the call path have
580 * return probes installed on them, and/or more than one
581 * return probe was registered for a target function.
582 *
583 * We can handle this because:
584 * - instances are always pushed into the head of the list
585 * - when multiple return probes are registered for the same
586 * function, the (chronologically) first instance's ret_addr
587 * will be the real return address, and all the rest will
588 * point to kretprobe_trampoline.
589 */
590 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
591 if (ri->task != current)
592 /* another task is sharing our hash bucket */
593 continue;
594
595 orig_ret_address = (unsigned long)ri->ret_addr;
596
597 if (orig_ret_address != trampoline_address)
598 /*
599 * This is the real return address. Any other
600 * instances associated with this task are for
601 * other calls deeper on the call stack
602 */
603 break;
604 }
605
606 kretprobe_assert(ri, orig_ret_address, trampoline_address);
607
608 correct_ret_addr = ri->ret_addr;
609 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
610 if (ri->task != current)
611 /* another task is sharing our hash bucket */
612 continue;
613
614 orig_ret_address = (unsigned long)ri->ret_addr;
615 if (ri->rp && ri->rp->handler) {
616 __this_cpu_write(current_kprobe, &ri->rp->kp);
617 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
618 ri->ret_addr = correct_ret_addr;
619 ri->rp->handler(ri, regs);
620 __this_cpu_write(current_kprobe, NULL);
621 }
622
623 recycle_rp_inst(ri, &empty_rp);
624
625 if (orig_ret_address != trampoline_address)
626 /*
627 * This is the real return address. Any other
628 * instances associated with this task are for
629 * other calls deeper on the call stack
630 */
631 break;
632 }
633
634 kretprobe_hash_unlock(current, &flags);
635
636 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
637 hlist_del(&ri->hlist);
638 kfree(ri);
639 }
640 return (void *)orig_ret_address;
641 }
642
643 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
644 struct pt_regs *regs)
645 {
646 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
647
648 /* replace return addr (x30) with trampoline */
649 regs->regs[30] = (long)&kretprobe_trampoline;
650 }
651
652 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
653 {
654 return 0;
655 }
656
657 int __init arch_init_kprobes(void)
658 {
659 return 0;
660 }