]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kernel/process.c
Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / process.c
1 /*
2 * Based on arch/arm/kernel/process.c
3 *
4 * Original Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <stdarg.h>
22
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/stddef.h>
30 #include <linux/unistd.h>
31 #include <linux/user.h>
32 #include <linux/delay.h>
33 #include <linux/reboot.h>
34 #include <linux/interrupt.h>
35 #include <linux/kallsyms.h>
36 #include <linux/init.h>
37 #include <linux/cpu.h>
38 #include <linux/elfcore.h>
39 #include <linux/pm.h>
40 #include <linux/tick.h>
41 #include <linux/utsname.h>
42 #include <linux/uaccess.h>
43 #include <linux/random.h>
44 #include <linux/hw_breakpoint.h>
45 #include <linux/personality.h>
46 #include <linux/notifier.h>
47 #include <trace/events/power.h>
48
49 #include <asm/alternative.h>
50 #include <asm/compat.h>
51 #include <asm/cacheflush.h>
52 #include <asm/exec.h>
53 #include <asm/fpsimd.h>
54 #include <asm/mmu_context.h>
55 #include <asm/processor.h>
56 #include <asm/stacktrace.h>
57
58 #ifdef CONFIG_CC_STACKPROTECTOR
59 #include <linux/stackprotector.h>
60 unsigned long __stack_chk_guard __read_mostly;
61 EXPORT_SYMBOL(__stack_chk_guard);
62 #endif
63
64 /*
65 * Function pointers to optional machine specific functions
66 */
67 void (*pm_power_off)(void);
68 EXPORT_SYMBOL_GPL(pm_power_off);
69
70 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
71
72 /*
73 * This is our default idle handler.
74 */
75 void arch_cpu_idle(void)
76 {
77 /*
78 * This should do all the clock switching and wait for interrupt
79 * tricks
80 */
81 trace_cpu_idle_rcuidle(1, smp_processor_id());
82 cpu_do_idle();
83 local_irq_enable();
84 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
85 }
86
87 #ifdef CONFIG_HOTPLUG_CPU
88 void arch_cpu_idle_dead(void)
89 {
90 cpu_die();
91 }
92 #endif
93
94 /*
95 * Called by kexec, immediately prior to machine_kexec().
96 *
97 * This must completely disable all secondary CPUs; simply causing those CPUs
98 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
99 * kexec'd kernel to use any and all RAM as it sees fit, without having to
100 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
101 * functionality embodied in disable_nonboot_cpus() to achieve this.
102 */
103 void machine_shutdown(void)
104 {
105 disable_nonboot_cpus();
106 }
107
108 /*
109 * Halting simply requires that the secondary CPUs stop performing any
110 * activity (executing tasks, handling interrupts). smp_send_stop()
111 * achieves this.
112 */
113 void machine_halt(void)
114 {
115 local_irq_disable();
116 smp_send_stop();
117 while (1);
118 }
119
120 /*
121 * Power-off simply requires that the secondary CPUs stop performing any
122 * activity (executing tasks, handling interrupts). smp_send_stop()
123 * achieves this. When the system power is turned off, it will take all CPUs
124 * with it.
125 */
126 void machine_power_off(void)
127 {
128 local_irq_disable();
129 smp_send_stop();
130 if (pm_power_off)
131 pm_power_off();
132 }
133
134 /*
135 * Restart requires that the secondary CPUs stop performing any activity
136 * while the primary CPU resets the system. Systems with multiple CPUs must
137 * provide a HW restart implementation, to ensure that all CPUs reset at once.
138 * This is required so that any code running after reset on the primary CPU
139 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
140 * executing pre-reset code, and using RAM that the primary CPU's code wishes
141 * to use. Implementing such co-ordination would be essentially impossible.
142 */
143 void machine_restart(char *cmd)
144 {
145 /* Disable interrupts first */
146 local_irq_disable();
147 smp_send_stop();
148
149 /*
150 * UpdateCapsule() depends on the system being reset via
151 * ResetSystem().
152 */
153 if (efi_enabled(EFI_RUNTIME_SERVICES))
154 efi_reboot(reboot_mode, NULL);
155
156 /* Now call the architecture specific reboot code. */
157 if (arm_pm_restart)
158 arm_pm_restart(reboot_mode, cmd);
159 else
160 do_kernel_restart(cmd);
161
162 /*
163 * Whoops - the architecture was unable to reboot.
164 */
165 printk("Reboot failed -- System halted\n");
166 while (1);
167 }
168
169 void __show_regs(struct pt_regs *regs)
170 {
171 int i, top_reg;
172 u64 lr, sp;
173
174 if (compat_user_mode(regs)) {
175 lr = regs->compat_lr;
176 sp = regs->compat_sp;
177 top_reg = 12;
178 } else {
179 lr = regs->regs[30];
180 sp = regs->sp;
181 top_reg = 29;
182 }
183
184 show_regs_print_info(KERN_DEFAULT);
185 print_symbol("PC is at %s\n", instruction_pointer(regs));
186 print_symbol("LR is at %s\n", lr);
187 printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
188 regs->pc, lr, regs->pstate);
189 printk("sp : %016llx\n", sp);
190
191 i = top_reg;
192
193 while (i >= 0) {
194 printk("x%-2d: %016llx ", i, regs->regs[i]);
195 i--;
196
197 if (i % 2 == 0) {
198 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
199 i--;
200 }
201
202 pr_cont("\n");
203 }
204 printk("\n");
205 }
206
207 void show_regs(struct pt_regs * regs)
208 {
209 printk("\n");
210 __show_regs(regs);
211 }
212
213 static void tls_thread_flush(void)
214 {
215 write_sysreg(0, tpidr_el0);
216
217 if (is_compat_task()) {
218 current->thread.tp_value = 0;
219
220 /*
221 * We need to ensure ordering between the shadow state and the
222 * hardware state, so that we don't corrupt the hardware state
223 * with a stale shadow state during context switch.
224 */
225 barrier();
226 write_sysreg(0, tpidrro_el0);
227 }
228 }
229
230 void flush_thread(void)
231 {
232 fpsimd_flush_thread();
233 tls_thread_flush();
234 flush_ptrace_hw_breakpoint(current);
235 }
236
237 void release_thread(struct task_struct *dead_task)
238 {
239 }
240
241 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
242 {
243 if (current->mm)
244 fpsimd_preserve_current_state();
245 *dst = *src;
246 return 0;
247 }
248
249 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
250
251 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
252 unsigned long stk_sz, struct task_struct *p)
253 {
254 struct pt_regs *childregs = task_pt_regs(p);
255
256 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
257
258 if (likely(!(p->flags & PF_KTHREAD))) {
259 *childregs = *current_pt_regs();
260 childregs->regs[0] = 0;
261
262 /*
263 * Read the current TLS pointer from tpidr_el0 as it may be
264 * out-of-sync with the saved value.
265 */
266 *task_user_tls(p) = read_sysreg(tpidr_el0);
267
268 if (stack_start) {
269 if (is_compat_thread(task_thread_info(p)))
270 childregs->compat_sp = stack_start;
271 else
272 childregs->sp = stack_start;
273 }
274
275 /*
276 * If a TLS pointer was passed to clone (4th argument), use it
277 * for the new thread.
278 */
279 if (clone_flags & CLONE_SETTLS)
280 p->thread.tp_value = childregs->regs[3];
281 } else {
282 memset(childregs, 0, sizeof(struct pt_regs));
283 childregs->pstate = PSR_MODE_EL1h;
284 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
285 cpus_have_cap(ARM64_HAS_UAO))
286 childregs->pstate |= PSR_UAO_BIT;
287 p->thread.cpu_context.x19 = stack_start;
288 p->thread.cpu_context.x20 = stk_sz;
289 }
290 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
291 p->thread.cpu_context.sp = (unsigned long)childregs;
292
293 ptrace_hw_copy_thread(p);
294
295 return 0;
296 }
297
298 static void tls_thread_switch(struct task_struct *next)
299 {
300 unsigned long tpidr, tpidrro;
301
302 tpidr = read_sysreg(tpidr_el0);
303 *task_user_tls(current) = tpidr;
304
305 tpidr = *task_user_tls(next);
306 tpidrro = is_compat_thread(task_thread_info(next)) ?
307 next->thread.tp_value : 0;
308
309 write_sysreg(tpidr, tpidr_el0);
310 write_sysreg(tpidrro, tpidrro_el0);
311 }
312
313 /* Restore the UAO state depending on next's addr_limit */
314 void uao_thread_switch(struct task_struct *next)
315 {
316 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
317 if (task_thread_info(next)->addr_limit == KERNEL_DS)
318 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
319 else
320 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
321 }
322 }
323
324 /*
325 * Thread switching.
326 */
327 struct task_struct *__switch_to(struct task_struct *prev,
328 struct task_struct *next)
329 {
330 struct task_struct *last;
331
332 fpsimd_thread_switch(next);
333 tls_thread_switch(next);
334 hw_breakpoint_thread_switch(next);
335 contextidr_thread_switch(next);
336 uao_thread_switch(next);
337
338 /*
339 * Complete any pending TLB or cache maintenance on this CPU in case
340 * the thread migrates to a different CPU.
341 */
342 dsb(ish);
343
344 /* the actual thread switch */
345 last = cpu_switch_to(prev, next);
346
347 return last;
348 }
349
350 unsigned long get_wchan(struct task_struct *p)
351 {
352 struct stackframe frame;
353 unsigned long stack_page;
354 int count = 0;
355 if (!p || p == current || p->state == TASK_RUNNING)
356 return 0;
357
358 frame.fp = thread_saved_fp(p);
359 frame.sp = thread_saved_sp(p);
360 frame.pc = thread_saved_pc(p);
361 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
362 frame.graph = p->curr_ret_stack;
363 #endif
364 stack_page = (unsigned long)task_stack_page(p);
365 do {
366 if (frame.sp < stack_page ||
367 frame.sp >= stack_page + THREAD_SIZE ||
368 unwind_frame(p, &frame))
369 return 0;
370 if (!in_sched_functions(frame.pc))
371 return frame.pc;
372 } while (count ++ < 16);
373 return 0;
374 }
375
376 unsigned long arch_align_stack(unsigned long sp)
377 {
378 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
379 sp -= get_random_int() & ~PAGE_MASK;
380 return sp & ~0xf;
381 }
382
383 unsigned long arch_randomize_brk(struct mm_struct *mm)
384 {
385 if (is_compat_task())
386 return randomize_page(mm->brk, 0x02000000);
387 else
388 return randomize_page(mm->brk, 0x40000000);
389 }