]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/arm64/kernel/process.c
Merge tag 'kbuild-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[mirror_ubuntu-jammy-kernel.git] / arch / arm64 / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/sched.h>
22 #include <linux/stddef.h>
23 #include <linux/sysctl.h>
24 #include <linux/unistd.h>
25 #include <linux/user.h>
26 #include <linux/delay.h>
27 #include <linux/reboot.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/cpu.h>
31 #include <linux/elfcore.h>
32 #include <linux/pm.h>
33 #include <linux/tick.h>
34 #include <linux/utsname.h>
35 #include <linux/uaccess.h>
36 #include <linux/random.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/personality.h>
39 #include <linux/notifier.h>
40 #include <trace/events/power.h>
41 #include <linux/percpu.h>
42 #include <linux/thread_info.h>
43 #include <linux/prctl.h>
44
45 #include <asm/alternative.h>
46 #include <asm/compat.h>
47 #include <asm/cpufeature.h>
48 #include <asm/cacheflush.h>
49 #include <asm/exec.h>
50 #include <asm/fpsimd.h>
51 #include <asm/mmu_context.h>
52 #include <asm/mte.h>
53 #include <asm/processor.h>
54 #include <asm/pointer_auth.h>
55 #include <asm/stacktrace.h>
56 #include <asm/switch_to.h>
57 #include <asm/system_misc.h>
58
59 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
60 #include <linux/stackprotector.h>
61 unsigned long __stack_chk_guard __read_mostly;
62 EXPORT_SYMBOL(__stack_chk_guard);
63 #endif
64
65 /*
66 * Function pointers to optional machine specific functions
67 */
68 void (*pm_power_off)(void);
69 EXPORT_SYMBOL_GPL(pm_power_off);
70
71 #ifdef CONFIG_HOTPLUG_CPU
72 void arch_cpu_idle_dead(void)
73 {
74 cpu_die();
75 }
76 #endif
77
78 /*
79 * Called by kexec, immediately prior to machine_kexec().
80 *
81 * This must completely disable all secondary CPUs; simply causing those CPUs
82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
83 * kexec'd kernel to use any and all RAM as it sees fit, without having to
84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
86 */
87 void machine_shutdown(void)
88 {
89 smp_shutdown_nonboot_cpus(reboot_cpu);
90 }
91
92 /*
93 * Halting simply requires that the secondary CPUs stop performing any
94 * activity (executing tasks, handling interrupts). smp_send_stop()
95 * achieves this.
96 */
97 void machine_halt(void)
98 {
99 local_irq_disable();
100 smp_send_stop();
101 while (1);
102 }
103
104 /*
105 * Power-off simply requires that the secondary CPUs stop performing any
106 * activity (executing tasks, handling interrupts). smp_send_stop()
107 * achieves this. When the system power is turned off, it will take all CPUs
108 * with it.
109 */
110 void machine_power_off(void)
111 {
112 local_irq_disable();
113 smp_send_stop();
114 if (pm_power_off)
115 pm_power_off();
116 }
117
118 /*
119 * Restart requires that the secondary CPUs stop performing any activity
120 * while the primary CPU resets the system. Systems with multiple CPUs must
121 * provide a HW restart implementation, to ensure that all CPUs reset at once.
122 * This is required so that any code running after reset on the primary CPU
123 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
124 * executing pre-reset code, and using RAM that the primary CPU's code wishes
125 * to use. Implementing such co-ordination would be essentially impossible.
126 */
127 void machine_restart(char *cmd)
128 {
129 /* Disable interrupts first */
130 local_irq_disable();
131 smp_send_stop();
132
133 /*
134 * UpdateCapsule() depends on the system being reset via
135 * ResetSystem().
136 */
137 if (efi_enabled(EFI_RUNTIME_SERVICES))
138 efi_reboot(reboot_mode, NULL);
139
140 /* Now call the architecture specific reboot code. */
141 do_kernel_restart(cmd);
142
143 /*
144 * Whoops - the architecture was unable to reboot.
145 */
146 printk("Reboot failed -- System halted\n");
147 while (1);
148 }
149
150 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
151 static const char *const btypes[] = {
152 bstr(NONE, "--"),
153 bstr( JC, "jc"),
154 bstr( C, "-c"),
155 bstr( J , "j-")
156 };
157 #undef bstr
158
159 static void print_pstate(struct pt_regs *regs)
160 {
161 u64 pstate = regs->pstate;
162
163 if (compat_user_mode(regs)) {
164 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
165 pstate,
166 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
167 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
168 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
169 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
170 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
171 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
172 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
173 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
174 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
175 pstate & PSR_AA32_F_BIT ? 'F' : 'f',
176 pstate & PSR_AA32_DIT_BIT ? '+' : '-',
177 pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
178 } else {
179 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
180 PSR_BTYPE_SHIFT];
181
182 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
183 pstate,
184 pstate & PSR_N_BIT ? 'N' : 'n',
185 pstate & PSR_Z_BIT ? 'Z' : 'z',
186 pstate & PSR_C_BIT ? 'C' : 'c',
187 pstate & PSR_V_BIT ? 'V' : 'v',
188 pstate & PSR_D_BIT ? 'D' : 'd',
189 pstate & PSR_A_BIT ? 'A' : 'a',
190 pstate & PSR_I_BIT ? 'I' : 'i',
191 pstate & PSR_F_BIT ? 'F' : 'f',
192 pstate & PSR_PAN_BIT ? '+' : '-',
193 pstate & PSR_UAO_BIT ? '+' : '-',
194 pstate & PSR_TCO_BIT ? '+' : '-',
195 pstate & PSR_DIT_BIT ? '+' : '-',
196 pstate & PSR_SSBS_BIT ? '+' : '-',
197 btype_str);
198 }
199 }
200
201 void __show_regs(struct pt_regs *regs)
202 {
203 int i, top_reg;
204 u64 lr, sp;
205
206 if (compat_user_mode(regs)) {
207 lr = regs->compat_lr;
208 sp = regs->compat_sp;
209 top_reg = 12;
210 } else {
211 lr = regs->regs[30];
212 sp = regs->sp;
213 top_reg = 29;
214 }
215
216 show_regs_print_info(KERN_DEFAULT);
217 print_pstate(regs);
218
219 if (!user_mode(regs)) {
220 printk("pc : %pS\n", (void *)regs->pc);
221 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
222 } else {
223 printk("pc : %016llx\n", regs->pc);
224 printk("lr : %016llx\n", lr);
225 }
226
227 printk("sp : %016llx\n", sp);
228
229 if (system_uses_irq_prio_masking())
230 printk("pmr_save: %08llx\n", regs->pmr_save);
231
232 i = top_reg;
233
234 while (i >= 0) {
235 printk("x%-2d: %016llx", i, regs->regs[i]);
236
237 while (i-- % 3)
238 pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
239
240 pr_cont("\n");
241 }
242 }
243
244 void show_regs(struct pt_regs *regs)
245 {
246 __show_regs(regs);
247 dump_backtrace(regs, NULL, KERN_DEFAULT);
248 }
249
250 static void tls_thread_flush(void)
251 {
252 write_sysreg(0, tpidr_el0);
253
254 if (is_compat_task()) {
255 current->thread.uw.tp_value = 0;
256
257 /*
258 * We need to ensure ordering between the shadow state and the
259 * hardware state, so that we don't corrupt the hardware state
260 * with a stale shadow state during context switch.
261 */
262 barrier();
263 write_sysreg(0, tpidrro_el0);
264 }
265 }
266
267 static void flush_tagged_addr_state(void)
268 {
269 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
270 clear_thread_flag(TIF_TAGGED_ADDR);
271 }
272
273 void flush_thread(void)
274 {
275 fpsimd_flush_thread();
276 tls_thread_flush();
277 flush_ptrace_hw_breakpoint(current);
278 flush_tagged_addr_state();
279 }
280
281 void release_thread(struct task_struct *dead_task)
282 {
283 }
284
285 void arch_release_task_struct(struct task_struct *tsk)
286 {
287 fpsimd_release_task(tsk);
288 }
289
290 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
291 {
292 if (current->mm)
293 fpsimd_preserve_current_state();
294 *dst = *src;
295
296 /* We rely on the above assignment to initialize dst's thread_flags: */
297 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
298
299 /*
300 * Detach src's sve_state (if any) from dst so that it does not
301 * get erroneously used or freed prematurely. dst's sve_state
302 * will be allocated on demand later on if dst uses SVE.
303 * For consistency, also clear TIF_SVE here: this could be done
304 * later in copy_process(), but to avoid tripping up future
305 * maintainers it is best not to leave TIF_SVE and sve_state in
306 * an inconsistent state, even temporarily.
307 */
308 dst->thread.sve_state = NULL;
309 clear_tsk_thread_flag(dst, TIF_SVE);
310
311 /* clear any pending asynchronous tag fault raised by the parent */
312 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
313
314 return 0;
315 }
316
317 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
318
319 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
320 unsigned long stk_sz, struct task_struct *p, unsigned long tls)
321 {
322 struct pt_regs *childregs = task_pt_regs(p);
323
324 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
325
326 /*
327 * In case p was allocated the same task_struct pointer as some
328 * other recently-exited task, make sure p is disassociated from
329 * any cpu that may have run that now-exited task recently.
330 * Otherwise we could erroneously skip reloading the FPSIMD
331 * registers for p.
332 */
333 fpsimd_flush_task_state(p);
334
335 ptrauth_thread_init_kernel(p);
336
337 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
338 *childregs = *current_pt_regs();
339 childregs->regs[0] = 0;
340
341 /*
342 * Read the current TLS pointer from tpidr_el0 as it may be
343 * out-of-sync with the saved value.
344 */
345 *task_user_tls(p) = read_sysreg(tpidr_el0);
346
347 if (stack_start) {
348 if (is_compat_thread(task_thread_info(p)))
349 childregs->compat_sp = stack_start;
350 else
351 childregs->sp = stack_start;
352 }
353
354 /*
355 * If a TLS pointer was passed to clone, use it for the new
356 * thread.
357 */
358 if (clone_flags & CLONE_SETTLS)
359 p->thread.uw.tp_value = tls;
360 } else {
361 /*
362 * A kthread has no context to ERET to, so ensure any buggy
363 * ERET is treated as an illegal exception return.
364 *
365 * When a user task is created from a kthread, childregs will
366 * be initialized by start_thread() or start_compat_thread().
367 */
368 memset(childregs, 0, sizeof(struct pt_regs));
369 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
370
371 p->thread.cpu_context.x19 = stack_start;
372 p->thread.cpu_context.x20 = stk_sz;
373 }
374 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
375 p->thread.cpu_context.sp = (unsigned long)childregs;
376 /*
377 * For the benefit of the unwinder, set up childregs->stackframe
378 * as the final frame for the new task.
379 */
380 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
381
382 ptrace_hw_copy_thread(p);
383
384 return 0;
385 }
386
387 void tls_preserve_current_state(void)
388 {
389 *task_user_tls(current) = read_sysreg(tpidr_el0);
390 }
391
392 static void tls_thread_switch(struct task_struct *next)
393 {
394 tls_preserve_current_state();
395
396 if (is_compat_thread(task_thread_info(next)))
397 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
398 else if (!arm64_kernel_unmapped_at_el0())
399 write_sysreg(0, tpidrro_el0);
400
401 write_sysreg(*task_user_tls(next), tpidr_el0);
402 }
403
404 /*
405 * Force SSBS state on context-switch, since it may be lost after migrating
406 * from a CPU which treats the bit as RES0 in a heterogeneous system.
407 */
408 static void ssbs_thread_switch(struct task_struct *next)
409 {
410 /*
411 * Nothing to do for kernel threads, but 'regs' may be junk
412 * (e.g. idle task) so check the flags and bail early.
413 */
414 if (unlikely(next->flags & PF_KTHREAD))
415 return;
416
417 /*
418 * If all CPUs implement the SSBS extension, then we just need to
419 * context-switch the PSTATE field.
420 */
421 if (cpus_have_const_cap(ARM64_SSBS))
422 return;
423
424 spectre_v4_enable_task_mitigation(next);
425 }
426
427 /*
428 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
429 * shadow copy so that we can restore this upon entry from userspace.
430 *
431 * This is *only* for exception entry from EL0, and is not valid until we
432 * __switch_to() a user task.
433 */
434 DEFINE_PER_CPU(struct task_struct *, __entry_task);
435
436 static void entry_task_switch(struct task_struct *next)
437 {
438 __this_cpu_write(__entry_task, next);
439 }
440
441 /*
442 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
443 * Assuming the virtual counter is enabled at the beginning of times:
444 *
445 * - disable access when switching from a 64bit task to a 32bit task
446 * - enable access when switching from a 32bit task to a 64bit task
447 */
448 static void erratum_1418040_thread_switch(struct task_struct *prev,
449 struct task_struct *next)
450 {
451 bool prev32, next32;
452 u64 val;
453
454 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
455 return;
456
457 prev32 = is_compat_thread(task_thread_info(prev));
458 next32 = is_compat_thread(task_thread_info(next));
459
460 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
461 return;
462
463 val = read_sysreg(cntkctl_el1);
464
465 if (!next32)
466 val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
467 else
468 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
469
470 write_sysreg(val, cntkctl_el1);
471 }
472
473 /*
474 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
475 * this function must be called with preemption disabled and the update to
476 * sctlr_user must be made in the same preemption disabled block so that
477 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
478 */
479 void update_sctlr_el1(u64 sctlr)
480 {
481 /*
482 * EnIA must not be cleared while in the kernel as this is necessary for
483 * in-kernel PAC. It will be cleared on kernel exit if needed.
484 */
485 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
486
487 /* ISB required for the kernel uaccess routines when setting TCF0. */
488 isb();
489 }
490
491 /*
492 * Thread switching.
493 */
494 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
495 struct task_struct *next)
496 {
497 struct task_struct *last;
498
499 fpsimd_thread_switch(next);
500 tls_thread_switch(next);
501 hw_breakpoint_thread_switch(next);
502 contextidr_thread_switch(next);
503 entry_task_switch(next);
504 ssbs_thread_switch(next);
505 erratum_1418040_thread_switch(prev, next);
506 ptrauth_thread_switch_user(next);
507
508 /*
509 * Complete any pending TLB or cache maintenance on this CPU in case
510 * the thread migrates to a different CPU.
511 * This full barrier is also required by the membarrier system
512 * call.
513 */
514 dsb(ish);
515
516 /*
517 * MTE thread switching must happen after the DSB above to ensure that
518 * any asynchronous tag check faults have been logged in the TFSR*_EL1
519 * registers.
520 */
521 mte_thread_switch(next);
522 /* avoid expensive SCTLR_EL1 accesses if no change */
523 if (prev->thread.sctlr_user != next->thread.sctlr_user)
524 update_sctlr_el1(next->thread.sctlr_user);
525
526 /* the actual thread switch */
527 last = cpu_switch_to(prev, next);
528
529 return last;
530 }
531
532 unsigned long get_wchan(struct task_struct *p)
533 {
534 struct stackframe frame;
535 unsigned long stack_page, ret = 0;
536 int count = 0;
537 if (!p || p == current || task_is_running(p))
538 return 0;
539
540 stack_page = (unsigned long)try_get_task_stack(p);
541 if (!stack_page)
542 return 0;
543
544 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
545
546 do {
547 if (unwind_frame(p, &frame))
548 goto out;
549 if (!in_sched_functions(frame.pc)) {
550 ret = frame.pc;
551 goto out;
552 }
553 } while (count++ < 16);
554
555 out:
556 put_task_stack(p);
557 return ret;
558 }
559
560 unsigned long arch_align_stack(unsigned long sp)
561 {
562 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
563 sp -= get_random_int() & ~PAGE_MASK;
564 return sp & ~0xf;
565 }
566
567 #ifdef CONFIG_COMPAT
568 int compat_elf_check_arch(const struct elf32_hdr *hdr)
569 {
570 if (!system_supports_32bit_el0())
571 return false;
572
573 if ((hdr)->e_machine != EM_ARM)
574 return false;
575
576 if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
577 return false;
578
579 /*
580 * Prevent execve() of a 32-bit program from a deadline task
581 * if the restricted affinity mask would be inadmissible on an
582 * asymmetric system.
583 */
584 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
585 !dl_task_check_affinity(current, system_32bit_el0_cpumask());
586 }
587 #endif
588
589 /*
590 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
591 */
592 void arch_setup_new_exec(void)
593 {
594 unsigned long mmflags = 0;
595
596 if (is_compat_task()) {
597 mmflags = MMCF_AARCH32;
598
599 /*
600 * Restrict the CPU affinity mask for a 32-bit task so that
601 * it contains only 32-bit-capable CPUs.
602 *
603 * From the perspective of the task, this looks similar to
604 * what would happen if the 64-bit-only CPUs were hot-unplugged
605 * at the point of execve(), although we try a bit harder to
606 * honour the cpuset hierarchy.
607 */
608 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
609 force_compatible_cpus_allowed_ptr(current);
610 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
611 relax_compatible_cpus_allowed_ptr(current);
612 }
613
614 current->mm->context.flags = mmflags;
615 ptrauth_thread_init_user();
616 mte_thread_init_user();
617
618 if (task_spec_ssb_noexec(current)) {
619 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
620 PR_SPEC_ENABLE);
621 }
622 }
623
624 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
625 /*
626 * Control the relaxed ABI allowing tagged user addresses into the kernel.
627 */
628 static unsigned int tagged_addr_disabled;
629
630 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
631 {
632 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
633 struct thread_info *ti = task_thread_info(task);
634
635 if (is_compat_thread(ti))
636 return -EINVAL;
637
638 if (system_supports_mte())
639 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
640
641 if (arg & ~valid_mask)
642 return -EINVAL;
643
644 /*
645 * Do not allow the enabling of the tagged address ABI if globally
646 * disabled via sysctl abi.tagged_addr_disabled.
647 */
648 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
649 return -EINVAL;
650
651 if (set_mte_ctrl(task, arg) != 0)
652 return -EINVAL;
653
654 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
655
656 return 0;
657 }
658
659 long get_tagged_addr_ctrl(struct task_struct *task)
660 {
661 long ret = 0;
662 struct thread_info *ti = task_thread_info(task);
663
664 if (is_compat_thread(ti))
665 return -EINVAL;
666
667 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
668 ret = PR_TAGGED_ADDR_ENABLE;
669
670 ret |= get_mte_ctrl(task);
671
672 return ret;
673 }
674
675 /*
676 * Global sysctl to disable the tagged user addresses support. This control
677 * only prevents the tagged address ABI enabling via prctl() and does not
678 * disable it for tasks that already opted in to the relaxed ABI.
679 */
680
681 static struct ctl_table tagged_addr_sysctl_table[] = {
682 {
683 .procname = "tagged_addr_disabled",
684 .mode = 0644,
685 .data = &tagged_addr_disabled,
686 .maxlen = sizeof(int),
687 .proc_handler = proc_dointvec_minmax,
688 .extra1 = SYSCTL_ZERO,
689 .extra2 = SYSCTL_ONE,
690 },
691 { }
692 };
693
694 static int __init tagged_addr_init(void)
695 {
696 if (!register_sysctl("abi", tagged_addr_sysctl_table))
697 return -EINVAL;
698 return 0;
699 }
700
701 core_initcall(tagged_addr_init);
702 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
703
704 #ifdef CONFIG_BINFMT_ELF
705 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
706 bool has_interp, bool is_interp)
707 {
708 /*
709 * For dynamically linked executables the interpreter is
710 * responsible for setting PROT_BTI on everything except
711 * itself.
712 */
713 if (is_interp != has_interp)
714 return prot;
715
716 if (!(state->flags & ARM64_ELF_BTI))
717 return prot;
718
719 if (prot & PROT_EXEC)
720 prot |= PROT_BTI;
721
722 return prot;
723 }
724 #endif