]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/arm64/kernel/process.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-artful-kernel.git] / arch / arm64 / kernel / process.c
1 /*
2 * Based on arch/arm/kernel/process.c
3 *
4 * Original Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <stdarg.h>
22
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/sched/debug.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/user.h>
35 #include <linux/delay.h>
36 #include <linux/reboot.h>
37 #include <linux/interrupt.h>
38 #include <linux/kallsyms.h>
39 #include <linux/init.h>
40 #include <linux/cpu.h>
41 #include <linux/elfcore.h>
42 #include <linux/pm.h>
43 #include <linux/tick.h>
44 #include <linux/utsname.h>
45 #include <linux/uaccess.h>
46 #include <linux/random.h>
47 #include <linux/hw_breakpoint.h>
48 #include <linux/personality.h>
49 #include <linux/notifier.h>
50 #include <trace/events/power.h>
51 #include <linux/percpu.h>
52
53 #include <asm/alternative.h>
54 #include <asm/compat.h>
55 #include <asm/cacheflush.h>
56 #include <asm/exec.h>
57 #include <asm/fpsimd.h>
58 #include <asm/mmu_context.h>
59 #include <asm/processor.h>
60 #include <asm/stacktrace.h>
61
62 #ifdef CONFIG_CC_STACKPROTECTOR
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __read_mostly;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
67
68 /*
69 * Function pointers to optional machine specific functions
70 */
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
73
74 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
75
76 /*
77 * This is our default idle handler.
78 */
79 void arch_cpu_idle(void)
80 {
81 /*
82 * This should do all the clock switching and wait for interrupt
83 * tricks
84 */
85 trace_cpu_idle_rcuidle(1, smp_processor_id());
86 cpu_do_idle();
87 local_irq_enable();
88 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
89 }
90
91 #ifdef CONFIG_HOTPLUG_CPU
92 void arch_cpu_idle_dead(void)
93 {
94 cpu_die();
95 }
96 #endif
97
98 /*
99 * Called by kexec, immediately prior to machine_kexec().
100 *
101 * This must completely disable all secondary CPUs; simply causing those CPUs
102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
103 * kexec'd kernel to use any and all RAM as it sees fit, without having to
104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
105 * functionality embodied in disable_nonboot_cpus() to achieve this.
106 */
107 void machine_shutdown(void)
108 {
109 disable_nonboot_cpus();
110 }
111
112 /*
113 * Halting simply requires that the secondary CPUs stop performing any
114 * activity (executing tasks, handling interrupts). smp_send_stop()
115 * achieves this.
116 */
117 void machine_halt(void)
118 {
119 local_irq_disable();
120 smp_send_stop();
121 while (1);
122 }
123
124 /*
125 * Power-off simply requires that the secondary CPUs stop performing any
126 * activity (executing tasks, handling interrupts). smp_send_stop()
127 * achieves this. When the system power is turned off, it will take all CPUs
128 * with it.
129 */
130 void machine_power_off(void)
131 {
132 local_irq_disable();
133 smp_send_stop();
134 if (pm_power_off)
135 pm_power_off();
136 }
137
138 /*
139 * Restart requires that the secondary CPUs stop performing any activity
140 * while the primary CPU resets the system. Systems with multiple CPUs must
141 * provide a HW restart implementation, to ensure that all CPUs reset at once.
142 * This is required so that any code running after reset on the primary CPU
143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
144 * executing pre-reset code, and using RAM that the primary CPU's code wishes
145 * to use. Implementing such co-ordination would be essentially impossible.
146 */
147 void machine_restart(char *cmd)
148 {
149 /* Disable interrupts first */
150 local_irq_disable();
151 smp_send_stop();
152
153 /*
154 * UpdateCapsule() depends on the system being reset via
155 * ResetSystem().
156 */
157 if (efi_enabled(EFI_RUNTIME_SERVICES))
158 efi_reboot(reboot_mode, NULL);
159
160 /* Now call the architecture specific reboot code. */
161 if (arm_pm_restart)
162 arm_pm_restart(reboot_mode, cmd);
163 else
164 do_kernel_restart(cmd);
165
166 /*
167 * Whoops - the architecture was unable to reboot.
168 */
169 printk("Reboot failed -- System halted\n");
170 while (1);
171 }
172
173 void __show_regs(struct pt_regs *regs)
174 {
175 int i, top_reg;
176 u64 lr, sp;
177
178 if (compat_user_mode(regs)) {
179 lr = regs->compat_lr;
180 sp = regs->compat_sp;
181 top_reg = 12;
182 } else {
183 lr = regs->regs[30];
184 sp = regs->sp;
185 top_reg = 29;
186 }
187
188 show_regs_print_info(KERN_DEFAULT);
189 print_symbol("PC is at %s\n", instruction_pointer(regs));
190 print_symbol("LR is at %s\n", lr);
191 printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
192 regs->pc, lr, regs->pstate);
193 printk("sp : %016llx\n", sp);
194
195 i = top_reg;
196
197 while (i >= 0) {
198 printk("x%-2d: %016llx ", i, regs->regs[i]);
199 i--;
200
201 if (i % 2 == 0) {
202 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
203 i--;
204 }
205
206 pr_cont("\n");
207 }
208 }
209
210 void show_regs(struct pt_regs * regs)
211 {
212 __show_regs(regs);
213 dump_backtrace(regs, NULL);
214 }
215
216 static void tls_thread_flush(void)
217 {
218 write_sysreg(0, tpidr_el0);
219
220 if (is_compat_task()) {
221 current->thread.tp_value = 0;
222
223 /*
224 * We need to ensure ordering between the shadow state and the
225 * hardware state, so that we don't corrupt the hardware state
226 * with a stale shadow state during context switch.
227 */
228 barrier();
229 write_sysreg(0, tpidrro_el0);
230 }
231 }
232
233 void flush_thread(void)
234 {
235 fpsimd_flush_thread();
236 tls_thread_flush();
237 flush_ptrace_hw_breakpoint(current);
238 }
239
240 void release_thread(struct task_struct *dead_task)
241 {
242 }
243
244 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
245 {
246 if (current->mm)
247 fpsimd_preserve_current_state();
248 *dst = *src;
249 return 0;
250 }
251
252 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
253
254 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
255 unsigned long stk_sz, struct task_struct *p)
256 {
257 struct pt_regs *childregs = task_pt_regs(p);
258
259 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
260
261 if (likely(!(p->flags & PF_KTHREAD))) {
262 *childregs = *current_pt_regs();
263 childregs->regs[0] = 0;
264
265 /*
266 * Read the current TLS pointer from tpidr_el0 as it may be
267 * out-of-sync with the saved value.
268 */
269 *task_user_tls(p) = read_sysreg(tpidr_el0);
270
271 if (stack_start) {
272 if (is_compat_thread(task_thread_info(p)))
273 childregs->compat_sp = stack_start;
274 else
275 childregs->sp = stack_start;
276 }
277
278 /*
279 * If a TLS pointer was passed to clone (4th argument), use it
280 * for the new thread.
281 */
282 if (clone_flags & CLONE_SETTLS)
283 p->thread.tp_value = childregs->regs[3];
284 } else {
285 memset(childregs, 0, sizeof(struct pt_regs));
286 childregs->pstate = PSR_MODE_EL1h;
287 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
288 cpus_have_const_cap(ARM64_HAS_UAO))
289 childregs->pstate |= PSR_UAO_BIT;
290 p->thread.cpu_context.x19 = stack_start;
291 p->thread.cpu_context.x20 = stk_sz;
292 }
293 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
294 p->thread.cpu_context.sp = (unsigned long)childregs;
295
296 ptrace_hw_copy_thread(p);
297
298 return 0;
299 }
300
301 void tls_preserve_current_state(void)
302 {
303 *task_user_tls(current) = read_sysreg(tpidr_el0);
304 }
305
306 static void tls_thread_switch(struct task_struct *next)
307 {
308 unsigned long tpidr, tpidrro;
309
310 tls_preserve_current_state();
311
312 tpidr = *task_user_tls(next);
313 tpidrro = is_compat_thread(task_thread_info(next)) ?
314 next->thread.tp_value : 0;
315
316 write_sysreg(tpidr, tpidr_el0);
317 write_sysreg(tpidrro, tpidrro_el0);
318 }
319
320 /* Restore the UAO state depending on next's addr_limit */
321 void uao_thread_switch(struct task_struct *next)
322 {
323 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
324 if (task_thread_info(next)->addr_limit == KERNEL_DS)
325 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
326 else
327 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
328 }
329 }
330
331 /*
332 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
333 * shadow copy so that we can restore this upon entry from userspace.
334 *
335 * This is *only* for exception entry from EL0, and is not valid until we
336 * __switch_to() a user task.
337 */
338 DEFINE_PER_CPU(struct task_struct *, __entry_task);
339
340 static void entry_task_switch(struct task_struct *next)
341 {
342 __this_cpu_write(__entry_task, next);
343 }
344
345 /*
346 * Thread switching.
347 */
348 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
349 struct task_struct *next)
350 {
351 struct task_struct *last;
352
353 fpsimd_thread_switch(next);
354 tls_thread_switch(next);
355 hw_breakpoint_thread_switch(next);
356 contextidr_thread_switch(next);
357 entry_task_switch(next);
358 uao_thread_switch(next);
359
360 /*
361 * Complete any pending TLB or cache maintenance on this CPU in case
362 * the thread migrates to a different CPU.
363 */
364 dsb(ish);
365
366 /* the actual thread switch */
367 last = cpu_switch_to(prev, next);
368
369 return last;
370 }
371
372 unsigned long get_wchan(struct task_struct *p)
373 {
374 struct stackframe frame;
375 unsigned long stack_page, ret = 0;
376 int count = 0;
377 if (!p || p == current || p->state == TASK_RUNNING)
378 return 0;
379
380 stack_page = (unsigned long)try_get_task_stack(p);
381 if (!stack_page)
382 return 0;
383
384 frame.fp = thread_saved_fp(p);
385 frame.sp = thread_saved_sp(p);
386 frame.pc = thread_saved_pc(p);
387 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
388 frame.graph = p->curr_ret_stack;
389 #endif
390 do {
391 if (frame.sp < stack_page ||
392 frame.sp >= stack_page + THREAD_SIZE ||
393 unwind_frame(p, &frame))
394 goto out;
395 if (!in_sched_functions(frame.pc)) {
396 ret = frame.pc;
397 goto out;
398 }
399 } while (count ++ < 16);
400
401 out:
402 put_task_stack(p);
403 return ret;
404 }
405
406 unsigned long arch_align_stack(unsigned long sp)
407 {
408 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
409 sp -= get_random_int() & ~PAGE_MASK;
410 return sp & ~0xf;
411 }
412
413 unsigned long arch_randomize_brk(struct mm_struct *mm)
414 {
415 if (is_compat_task())
416 return randomize_page(mm->brk, SZ_32M);
417 else
418 return randomize_page(mm->brk, SZ_1G);
419 }