]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/arm64/kernel/setup.c
Merge branches 'acpi-fan', 'acpi-video' and 'acpi-ec'
[mirror_ubuntu-focal-kernel.git] / arch / arm64 / kernel / setup.c
1 /*
2 * Based on arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/export.h>
21 #include <linux/kernel.h>
22 #include <linux/stddef.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/utsname.h>
26 #include <linux/initrd.h>
27 #include <linux/console.h>
28 #include <linux/cache.h>
29 #include <linux/bootmem.h>
30 #include <linux/seq_file.h>
31 #include <linux/screen_info.h>
32 #include <linux/init.h>
33 #include <linux/kexec.h>
34 #include <linux/crash_dump.h>
35 #include <linux/root_dev.h>
36 #include <linux/clk-provider.h>
37 #include <linux/cpu.h>
38 #include <linux/interrupt.h>
39 #include <linux/smp.h>
40 #include <linux/fs.h>
41 #include <linux/proc_fs.h>
42 #include <linux/memblock.h>
43 #include <linux/of_fdt.h>
44 #include <linux/of_platform.h>
45 #include <linux/efi.h>
46 #include <linux/personality.h>
47
48 #include <asm/fixmap.h>
49 #include <asm/cpu.h>
50 #include <asm/cputype.h>
51 #include <asm/elf.h>
52 #include <asm/cputable.h>
53 #include <asm/cpufeature.h>
54 #include <asm/cpu_ops.h>
55 #include <asm/sections.h>
56 #include <asm/setup.h>
57 #include <asm/smp_plat.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
60 #include <asm/traps.h>
61 #include <asm/memblock.h>
62 #include <asm/psci.h>
63 #include <asm/efi.h>
64
65 unsigned int processor_id;
66 EXPORT_SYMBOL(processor_id);
67
68 unsigned long elf_hwcap __read_mostly;
69 EXPORT_SYMBOL_GPL(elf_hwcap);
70
71 #ifdef CONFIG_COMPAT
72 #define COMPAT_ELF_HWCAP_DEFAULT \
73 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
74 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
75 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
76 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
77 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
78 COMPAT_HWCAP_LPAE)
79 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
80 unsigned int compat_elf_hwcap2 __read_mostly;
81 #endif
82
83 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
84
85 static const char *cpu_name;
86 phys_addr_t __fdt_pointer __initdata;
87
88 /*
89 * Standard memory resources
90 */
91 static struct resource mem_res[] = {
92 {
93 .name = "Kernel code",
94 .start = 0,
95 .end = 0,
96 .flags = IORESOURCE_MEM
97 },
98 {
99 .name = "Kernel data",
100 .start = 0,
101 .end = 0,
102 .flags = IORESOURCE_MEM
103 }
104 };
105
106 #define kernel_code mem_res[0]
107 #define kernel_data mem_res[1]
108
109 void __init early_print(const char *str, ...)
110 {
111 char buf[256];
112 va_list ap;
113
114 va_start(ap, str);
115 vsnprintf(buf, sizeof(buf), str, ap);
116 va_end(ap);
117
118 printk("%s", buf);
119 }
120
121 void __init smp_setup_processor_id(void)
122 {
123 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
124 cpu_logical_map(0) = mpidr;
125
126 /*
127 * clear __my_cpu_offset on boot CPU to avoid hang caused by
128 * using percpu variable early, for example, lockdep will
129 * access percpu variable inside lock_release
130 */
131 set_my_cpu_offset(0);
132 pr_info("Booting Linux on physical CPU 0x%lx\n", (unsigned long)mpidr);
133 }
134
135 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
136 {
137 return phys_id == cpu_logical_map(cpu);
138 }
139
140 struct mpidr_hash mpidr_hash;
141 #ifdef CONFIG_SMP
142 /**
143 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
144 * level in order to build a linear index from an
145 * MPIDR value. Resulting algorithm is a collision
146 * free hash carried out through shifting and ORing
147 */
148 static void __init smp_build_mpidr_hash(void)
149 {
150 u32 i, affinity, fs[4], bits[4], ls;
151 u64 mask = 0;
152 /*
153 * Pre-scan the list of MPIDRS and filter out bits that do
154 * not contribute to affinity levels, ie they never toggle.
155 */
156 for_each_possible_cpu(i)
157 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
158 pr_debug("mask of set bits %#llx\n", mask);
159 /*
160 * Find and stash the last and first bit set at all affinity levels to
161 * check how many bits are required to represent them.
162 */
163 for (i = 0; i < 4; i++) {
164 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
165 /*
166 * Find the MSB bit and LSB bits position
167 * to determine how many bits are required
168 * to express the affinity level.
169 */
170 ls = fls(affinity);
171 fs[i] = affinity ? ffs(affinity) - 1 : 0;
172 bits[i] = ls - fs[i];
173 }
174 /*
175 * An index can be created from the MPIDR_EL1 by isolating the
176 * significant bits at each affinity level and by shifting
177 * them in order to compress the 32 bits values space to a
178 * compressed set of values. This is equivalent to hashing
179 * the MPIDR_EL1 through shifting and ORing. It is a collision free
180 * hash though not minimal since some levels might contain a number
181 * of CPUs that is not an exact power of 2 and their bit
182 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
183 */
184 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
185 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
186 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
187 (bits[1] + bits[0]);
188 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
189 fs[3] - (bits[2] + bits[1] + bits[0]);
190 mpidr_hash.mask = mask;
191 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
192 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
193 mpidr_hash.shift_aff[0],
194 mpidr_hash.shift_aff[1],
195 mpidr_hash.shift_aff[2],
196 mpidr_hash.shift_aff[3],
197 mpidr_hash.mask,
198 mpidr_hash.bits);
199 /*
200 * 4x is an arbitrary value used to warn on a hash table much bigger
201 * than expected on most systems.
202 */
203 if (mpidr_hash_size() > 4 * num_possible_cpus())
204 pr_warn("Large number of MPIDR hash buckets detected\n");
205 __flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash));
206 }
207 #endif
208
209 static void __init setup_processor(void)
210 {
211 struct cpu_info *cpu_info;
212 u64 features, block;
213 u32 cwg;
214 int cls;
215
216 cpu_info = lookup_processor_type(read_cpuid_id());
217 if (!cpu_info) {
218 printk("CPU configuration botched (ID %08x), unable to continue.\n",
219 read_cpuid_id());
220 while (1);
221 }
222
223 cpu_name = cpu_info->cpu_name;
224
225 printk("CPU: %s [%08x] revision %d\n",
226 cpu_name, read_cpuid_id(), read_cpuid_id() & 15);
227
228 sprintf(init_utsname()->machine, ELF_PLATFORM);
229 elf_hwcap = 0;
230
231 cpuinfo_store_boot_cpu();
232
233 /*
234 * Check for sane CTR_EL0.CWG value.
235 */
236 cwg = cache_type_cwg();
237 cls = cache_line_size();
238 if (!cwg)
239 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
240 cls);
241 if (L1_CACHE_BYTES < cls)
242 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
243 L1_CACHE_BYTES, cls);
244
245 /*
246 * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks.
247 * The blocks we test below represent incremental functionality
248 * for non-negative values. Negative values are reserved.
249 */
250 features = read_cpuid(ID_AA64ISAR0_EL1);
251 block = (features >> 4) & 0xf;
252 if (!(block & 0x8)) {
253 switch (block) {
254 default:
255 case 2:
256 elf_hwcap |= HWCAP_PMULL;
257 case 1:
258 elf_hwcap |= HWCAP_AES;
259 case 0:
260 break;
261 }
262 }
263
264 block = (features >> 8) & 0xf;
265 if (block && !(block & 0x8))
266 elf_hwcap |= HWCAP_SHA1;
267
268 block = (features >> 12) & 0xf;
269 if (block && !(block & 0x8))
270 elf_hwcap |= HWCAP_SHA2;
271
272 block = (features >> 16) & 0xf;
273 if (block && !(block & 0x8))
274 elf_hwcap |= HWCAP_CRC32;
275
276 #ifdef CONFIG_COMPAT
277 /*
278 * ID_ISAR5_EL1 carries similar information as above, but pertaining to
279 * the Aarch32 32-bit execution state.
280 */
281 features = read_cpuid(ID_ISAR5_EL1);
282 block = (features >> 4) & 0xf;
283 if (!(block & 0x8)) {
284 switch (block) {
285 default:
286 case 2:
287 compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL;
288 case 1:
289 compat_elf_hwcap2 |= COMPAT_HWCAP2_AES;
290 case 0:
291 break;
292 }
293 }
294
295 block = (features >> 8) & 0xf;
296 if (block && !(block & 0x8))
297 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1;
298
299 block = (features >> 12) & 0xf;
300 if (block && !(block & 0x8))
301 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2;
302
303 block = (features >> 16) & 0xf;
304 if (block && !(block & 0x8))
305 compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32;
306 #endif
307 }
308
309 static void __init setup_machine_fdt(phys_addr_t dt_phys)
310 {
311 if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) {
312 early_print("\n"
313 "Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n"
314 "The dtb must be 8-byte aligned and passed in the first 512MB of memory\n"
315 "\nPlease check your bootloader.\n",
316 dt_phys, phys_to_virt(dt_phys));
317
318 while (true)
319 cpu_relax();
320 }
321
322 dump_stack_set_arch_desc("%s (DT)", of_flat_dt_get_machine_name());
323 }
324
325 /*
326 * Limit the memory size that was specified via FDT.
327 */
328 static int __init early_mem(char *p)
329 {
330 phys_addr_t limit;
331
332 if (!p)
333 return 1;
334
335 limit = memparse(p, &p) & PAGE_MASK;
336 pr_notice("Memory limited to %lldMB\n", limit >> 20);
337
338 memblock_enforce_memory_limit(limit);
339
340 return 0;
341 }
342 early_param("mem", early_mem);
343
344 static void __init request_standard_resources(void)
345 {
346 struct memblock_region *region;
347 struct resource *res;
348
349 kernel_code.start = virt_to_phys(_text);
350 kernel_code.end = virt_to_phys(_etext - 1);
351 kernel_data.start = virt_to_phys(_sdata);
352 kernel_data.end = virt_to_phys(_end - 1);
353
354 for_each_memblock(memory, region) {
355 res = alloc_bootmem_low(sizeof(*res));
356 res->name = "System RAM";
357 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
358 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
359 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
360
361 request_resource(&iomem_resource, res);
362
363 if (kernel_code.start >= res->start &&
364 kernel_code.end <= res->end)
365 request_resource(res, &kernel_code);
366 if (kernel_data.start >= res->start &&
367 kernel_data.end <= res->end)
368 request_resource(res, &kernel_data);
369 }
370 }
371
372 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
373
374 void __init setup_arch(char **cmdline_p)
375 {
376 setup_processor();
377
378 setup_machine_fdt(__fdt_pointer);
379
380 init_mm.start_code = (unsigned long) _text;
381 init_mm.end_code = (unsigned long) _etext;
382 init_mm.end_data = (unsigned long) _edata;
383 init_mm.brk = (unsigned long) _end;
384
385 *cmdline_p = boot_command_line;
386
387 early_fixmap_init();
388 early_ioremap_init();
389
390 parse_early_param();
391
392 /*
393 * Unmask asynchronous aborts after bringing up possible earlycon.
394 * (Report possible System Errors once we can report this occurred)
395 */
396 local_async_enable();
397
398 efi_init();
399 arm64_memblock_init();
400
401 paging_init();
402 request_standard_resources();
403
404 efi_idmap_init();
405
406 unflatten_device_tree();
407
408 psci_init();
409
410 cpu_read_bootcpu_ops();
411 #ifdef CONFIG_SMP
412 smp_init_cpus();
413 smp_build_mpidr_hash();
414 #endif
415
416 #ifdef CONFIG_VT
417 #if defined(CONFIG_VGA_CONSOLE)
418 conswitchp = &vga_con;
419 #elif defined(CONFIG_DUMMY_CONSOLE)
420 conswitchp = &dummy_con;
421 #endif
422 #endif
423 }
424
425 static int __init arm64_device_init(void)
426 {
427 of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
428 return 0;
429 }
430 arch_initcall_sync(arm64_device_init);
431
432 static int __init topology_init(void)
433 {
434 int i;
435
436 for_each_possible_cpu(i) {
437 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
438 cpu->hotpluggable = 1;
439 register_cpu(cpu, i);
440 }
441
442 return 0;
443 }
444 subsys_initcall(topology_init);
445
446 static const char *hwcap_str[] = {
447 "fp",
448 "asimd",
449 "evtstrm",
450 "aes",
451 "pmull",
452 "sha1",
453 "sha2",
454 "crc32",
455 NULL
456 };
457
458 #ifdef CONFIG_COMPAT
459 static const char *compat_hwcap_str[] = {
460 "swp",
461 "half",
462 "thumb",
463 "26bit",
464 "fastmult",
465 "fpa",
466 "vfp",
467 "edsp",
468 "java",
469 "iwmmxt",
470 "crunch",
471 "thumbee",
472 "neon",
473 "vfpv3",
474 "vfpv3d16",
475 "tls",
476 "vfpv4",
477 "idiva",
478 "idivt",
479 "vfpd32",
480 "lpae",
481 "evtstrm"
482 };
483
484 static const char *compat_hwcap2_str[] = {
485 "aes",
486 "pmull",
487 "sha1",
488 "sha2",
489 "crc32",
490 NULL
491 };
492 #endif /* CONFIG_COMPAT */
493
494 static int c_show(struct seq_file *m, void *v)
495 {
496 int i, j;
497
498 for_each_online_cpu(i) {
499 struct cpuinfo_arm64 *cpuinfo = &per_cpu(cpu_data, i);
500 u32 midr = cpuinfo->reg_midr;
501
502 /*
503 * glibc reads /proc/cpuinfo to determine the number of
504 * online processors, looking for lines beginning with
505 * "processor". Give glibc what it expects.
506 */
507 #ifdef CONFIG_SMP
508 seq_printf(m, "processor\t: %d\n", i);
509 #endif
510
511 /*
512 * Dump out the common processor features in a single line.
513 * Userspace should read the hwcaps with getauxval(AT_HWCAP)
514 * rather than attempting to parse this, but there's a body of
515 * software which does already (at least for 32-bit).
516 */
517 seq_puts(m, "Features\t:");
518 if (personality(current->personality) == PER_LINUX32) {
519 #ifdef CONFIG_COMPAT
520 for (j = 0; compat_hwcap_str[j]; j++)
521 if (compat_elf_hwcap & (1 << j))
522 seq_printf(m, " %s", compat_hwcap_str[j]);
523
524 for (j = 0; compat_hwcap2_str[j]; j++)
525 if (compat_elf_hwcap2 & (1 << j))
526 seq_printf(m, " %s", compat_hwcap2_str[j]);
527 #endif /* CONFIG_COMPAT */
528 } else {
529 for (j = 0; hwcap_str[j]; j++)
530 if (elf_hwcap & (1 << j))
531 seq_printf(m, " %s", hwcap_str[j]);
532 }
533 seq_puts(m, "\n");
534
535 seq_printf(m, "CPU implementer\t: 0x%02x\n",
536 MIDR_IMPLEMENTOR(midr));
537 seq_printf(m, "CPU architecture: 8\n");
538 seq_printf(m, "CPU variant\t: 0x%x\n", MIDR_VARIANT(midr));
539 seq_printf(m, "CPU part\t: 0x%03x\n", MIDR_PARTNUM(midr));
540 seq_printf(m, "CPU revision\t: %d\n\n", MIDR_REVISION(midr));
541 }
542
543 return 0;
544 }
545
546 static void *c_start(struct seq_file *m, loff_t *pos)
547 {
548 return *pos < 1 ? (void *)1 : NULL;
549 }
550
551 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
552 {
553 ++*pos;
554 return NULL;
555 }
556
557 static void c_stop(struct seq_file *m, void *v)
558 {
559 }
560
561 const struct seq_operations cpuinfo_op = {
562 .start = c_start,
563 .next = c_next,
564 .stop = c_stop,
565 .show = c_show
566 };