]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/arm64/kernel/setup.c
cbeaa2f3844b6c3a1fc72a2c45174593b11cf69d
[mirror_ubuntu-zesty-kernel.git] / arch / arm64 / kernel / setup.c
1 /*
2 * Based on arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/export.h>
21 #include <linux/kernel.h>
22 #include <linux/stddef.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/utsname.h>
26 #include <linux/initrd.h>
27 #include <linux/console.h>
28 #include <linux/cache.h>
29 #include <linux/bootmem.h>
30 #include <linux/seq_file.h>
31 #include <linux/screen_info.h>
32 #include <linux/init.h>
33 #include <linux/kexec.h>
34 #include <linux/crash_dump.h>
35 #include <linux/root_dev.h>
36 #include <linux/clk-provider.h>
37 #include <linux/cpu.h>
38 #include <linux/interrupt.h>
39 #include <linux/smp.h>
40 #include <linux/fs.h>
41 #include <linux/proc_fs.h>
42 #include <linux/memblock.h>
43 #include <linux/of_fdt.h>
44 #include <linux/of_platform.h>
45 #include <linux/efi.h>
46
47 #include <asm/fixmap.h>
48 #include <asm/cpu.h>
49 #include <asm/cputype.h>
50 #include <asm/elf.h>
51 #include <asm/cputable.h>
52 #include <asm/cpu_ops.h>
53 #include <asm/sections.h>
54 #include <asm/setup.h>
55 #include <asm/smp_plat.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
58 #include <asm/traps.h>
59 #include <asm/memblock.h>
60 #include <asm/psci.h>
61 #include <asm/efi.h>
62
63 unsigned int processor_id;
64 EXPORT_SYMBOL(processor_id);
65
66 unsigned long elf_hwcap __read_mostly;
67 EXPORT_SYMBOL_GPL(elf_hwcap);
68
69 #ifdef CONFIG_COMPAT
70 #define COMPAT_ELF_HWCAP_DEFAULT \
71 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
72 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
73 COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
74 COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
75 COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV)
76 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
77 unsigned int compat_elf_hwcap2 __read_mostly;
78 #endif
79
80 static const char *cpu_name;
81 static const char *machine_name;
82 phys_addr_t __fdt_pointer __initdata;
83
84 /*
85 * Standard memory resources
86 */
87 static struct resource mem_res[] = {
88 {
89 .name = "Kernel code",
90 .start = 0,
91 .end = 0,
92 .flags = IORESOURCE_MEM
93 },
94 {
95 .name = "Kernel data",
96 .start = 0,
97 .end = 0,
98 .flags = IORESOURCE_MEM
99 }
100 };
101
102 #define kernel_code mem_res[0]
103 #define kernel_data mem_res[1]
104
105 void __init early_print(const char *str, ...)
106 {
107 char buf[256];
108 va_list ap;
109
110 va_start(ap, str);
111 vsnprintf(buf, sizeof(buf), str, ap);
112 va_end(ap);
113
114 printk("%s", buf);
115 }
116
117 void __init smp_setup_processor_id(void)
118 {
119 /*
120 * clear __my_cpu_offset on boot CPU to avoid hang caused by
121 * using percpu variable early, for example, lockdep will
122 * access percpu variable inside lock_release
123 */
124 set_my_cpu_offset(0);
125 }
126
127 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
128 {
129 return phys_id == cpu_logical_map(cpu);
130 }
131
132 struct mpidr_hash mpidr_hash;
133 #ifdef CONFIG_SMP
134 /**
135 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
136 * level in order to build a linear index from an
137 * MPIDR value. Resulting algorithm is a collision
138 * free hash carried out through shifting and ORing
139 */
140 static void __init smp_build_mpidr_hash(void)
141 {
142 u32 i, affinity, fs[4], bits[4], ls;
143 u64 mask = 0;
144 /*
145 * Pre-scan the list of MPIDRS and filter out bits that do
146 * not contribute to affinity levels, ie they never toggle.
147 */
148 for_each_possible_cpu(i)
149 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
150 pr_debug("mask of set bits %#llx\n", mask);
151 /*
152 * Find and stash the last and first bit set at all affinity levels to
153 * check how many bits are required to represent them.
154 */
155 for (i = 0; i < 4; i++) {
156 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
157 /*
158 * Find the MSB bit and LSB bits position
159 * to determine how many bits are required
160 * to express the affinity level.
161 */
162 ls = fls(affinity);
163 fs[i] = affinity ? ffs(affinity) - 1 : 0;
164 bits[i] = ls - fs[i];
165 }
166 /*
167 * An index can be created from the MPIDR_EL1 by isolating the
168 * significant bits at each affinity level and by shifting
169 * them in order to compress the 32 bits values space to a
170 * compressed set of values. This is equivalent to hashing
171 * the MPIDR_EL1 through shifting and ORing. It is a collision free
172 * hash though not minimal since some levels might contain a number
173 * of CPUs that is not an exact power of 2 and their bit
174 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
175 */
176 mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
177 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
178 mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
179 (bits[1] + bits[0]);
180 mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
181 fs[3] - (bits[2] + bits[1] + bits[0]);
182 mpidr_hash.mask = mask;
183 mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
184 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
185 mpidr_hash.shift_aff[0],
186 mpidr_hash.shift_aff[1],
187 mpidr_hash.shift_aff[2],
188 mpidr_hash.shift_aff[3],
189 mpidr_hash.mask,
190 mpidr_hash.bits);
191 /*
192 * 4x is an arbitrary value used to warn on a hash table much bigger
193 * than expected on most systems.
194 */
195 if (mpidr_hash_size() > 4 * num_possible_cpus())
196 pr_warn("Large number of MPIDR hash buckets detected\n");
197 __flush_dcache_area(&mpidr_hash, sizeof(struct mpidr_hash));
198 }
199 #endif
200
201 static void __init setup_processor(void)
202 {
203 struct cpu_info *cpu_info;
204 u64 features, block;
205 u32 cwg;
206 int cls;
207
208 cpu_info = lookup_processor_type(read_cpuid_id());
209 if (!cpu_info) {
210 printk("CPU configuration botched (ID %08x), unable to continue.\n",
211 read_cpuid_id());
212 while (1);
213 }
214
215 cpu_name = cpu_info->cpu_name;
216
217 printk("CPU: %s [%08x] revision %d\n",
218 cpu_name, read_cpuid_id(), read_cpuid_id() & 15);
219
220 sprintf(init_utsname()->machine, ELF_PLATFORM);
221 elf_hwcap = 0;
222
223 cpuinfo_store_boot_cpu();
224
225 /*
226 * Check for sane CTR_EL0.CWG value.
227 */
228 cwg = cache_type_cwg();
229 cls = cache_line_size();
230 if (!cwg)
231 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
232 cls);
233 if (L1_CACHE_BYTES < cls)
234 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
235 L1_CACHE_BYTES, cls);
236
237 /*
238 * ID_AA64ISAR0_EL1 contains 4-bit wide signed feature blocks.
239 * The blocks we test below represent incremental functionality
240 * for non-negative values. Negative values are reserved.
241 */
242 features = read_cpuid(ID_AA64ISAR0_EL1);
243 block = (features >> 4) & 0xf;
244 if (!(block & 0x8)) {
245 switch (block) {
246 default:
247 case 2:
248 elf_hwcap |= HWCAP_PMULL;
249 case 1:
250 elf_hwcap |= HWCAP_AES;
251 case 0:
252 break;
253 }
254 }
255
256 block = (features >> 8) & 0xf;
257 if (block && !(block & 0x8))
258 elf_hwcap |= HWCAP_SHA1;
259
260 block = (features >> 12) & 0xf;
261 if (block && !(block & 0x8))
262 elf_hwcap |= HWCAP_SHA2;
263
264 block = (features >> 16) & 0xf;
265 if (block && !(block & 0x8))
266 elf_hwcap |= HWCAP_CRC32;
267
268 #ifdef CONFIG_COMPAT
269 /*
270 * ID_ISAR5_EL1 carries similar information as above, but pertaining to
271 * the Aarch32 32-bit execution state.
272 */
273 features = read_cpuid(ID_ISAR5_EL1);
274 block = (features >> 4) & 0xf;
275 if (!(block & 0x8)) {
276 switch (block) {
277 default:
278 case 2:
279 compat_elf_hwcap2 |= COMPAT_HWCAP2_PMULL;
280 case 1:
281 compat_elf_hwcap2 |= COMPAT_HWCAP2_AES;
282 case 0:
283 break;
284 }
285 }
286
287 block = (features >> 8) & 0xf;
288 if (block && !(block & 0x8))
289 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA1;
290
291 block = (features >> 12) & 0xf;
292 if (block && !(block & 0x8))
293 compat_elf_hwcap2 |= COMPAT_HWCAP2_SHA2;
294
295 block = (features >> 16) & 0xf;
296 if (block && !(block & 0x8))
297 compat_elf_hwcap2 |= COMPAT_HWCAP2_CRC32;
298 #endif
299 }
300
301 static void __init setup_machine_fdt(phys_addr_t dt_phys)
302 {
303 if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) {
304 early_print("\n"
305 "Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n"
306 "The dtb must be 8-byte aligned and passed in the first 512MB of memory\n"
307 "\nPlease check your bootloader.\n",
308 dt_phys, phys_to_virt(dt_phys));
309
310 while (true)
311 cpu_relax();
312 }
313
314 machine_name = of_flat_dt_get_machine_name();
315 dump_stack_set_arch_desc("%s (DT)", machine_name);
316 }
317
318 /*
319 * Limit the memory size that was specified via FDT.
320 */
321 static int __init early_mem(char *p)
322 {
323 phys_addr_t limit;
324
325 if (!p)
326 return 1;
327
328 limit = memparse(p, &p) & PAGE_MASK;
329 pr_notice("Memory limited to %lldMB\n", limit >> 20);
330
331 memblock_enforce_memory_limit(limit);
332
333 return 0;
334 }
335 early_param("mem", early_mem);
336
337 static void __init request_standard_resources(void)
338 {
339 struct memblock_region *region;
340 struct resource *res;
341
342 kernel_code.start = virt_to_phys(_text);
343 kernel_code.end = virt_to_phys(_etext - 1);
344 kernel_data.start = virt_to_phys(_sdata);
345 kernel_data.end = virt_to_phys(_end - 1);
346
347 for_each_memblock(memory, region) {
348 res = alloc_bootmem_low(sizeof(*res));
349 res->name = "System RAM";
350 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
351 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
352 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
353
354 request_resource(&iomem_resource, res);
355
356 if (kernel_code.start >= res->start &&
357 kernel_code.end <= res->end)
358 request_resource(res, &kernel_code);
359 if (kernel_data.start >= res->start &&
360 kernel_data.end <= res->end)
361 request_resource(res, &kernel_data);
362 }
363 }
364
365 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
366
367 void __init setup_arch(char **cmdline_p)
368 {
369 setup_processor();
370
371 setup_machine_fdt(__fdt_pointer);
372
373 init_mm.start_code = (unsigned long) _text;
374 init_mm.end_code = (unsigned long) _etext;
375 init_mm.end_data = (unsigned long) _edata;
376 init_mm.brk = (unsigned long) _end;
377
378 *cmdline_p = boot_command_line;
379
380 early_ioremap_init();
381
382 parse_early_param();
383
384 /*
385 * Unmask asynchronous aborts after bringing up possible earlycon.
386 * (Report possible System Errors once we can report this occurred)
387 */
388 local_async_enable();
389
390 efi_init();
391 arm64_memblock_init();
392
393 paging_init();
394 request_standard_resources();
395
396 efi_idmap_init();
397
398 unflatten_device_tree();
399
400 psci_init();
401
402 cpu_logical_map(0) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
403 cpu_read_bootcpu_ops();
404 #ifdef CONFIG_SMP
405 smp_init_cpus();
406 smp_build_mpidr_hash();
407 #endif
408
409 #ifdef CONFIG_VT
410 #if defined(CONFIG_VGA_CONSOLE)
411 conswitchp = &vga_con;
412 #elif defined(CONFIG_DUMMY_CONSOLE)
413 conswitchp = &dummy_con;
414 #endif
415 #endif
416 }
417
418 static int __init arm64_device_init(void)
419 {
420 of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);
421 return 0;
422 }
423 arch_initcall_sync(arm64_device_init);
424
425 static int __init topology_init(void)
426 {
427 int i;
428
429 for_each_possible_cpu(i) {
430 struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
431 cpu->hotpluggable = 1;
432 register_cpu(cpu, i);
433 }
434
435 return 0;
436 }
437 subsys_initcall(topology_init);
438
439 static const char *hwcap_str[] = {
440 "fp",
441 "asimd",
442 "evtstrm",
443 "aes",
444 "pmull",
445 "sha1",
446 "sha2",
447 "crc32",
448 NULL
449 };
450
451 static int c_show(struct seq_file *m, void *v)
452 {
453 int i;
454
455 seq_printf(m, "Processor\t: %s rev %d (%s)\n",
456 cpu_name, read_cpuid_id() & 15, ELF_PLATFORM);
457
458 for_each_online_cpu(i) {
459 /*
460 * glibc reads /proc/cpuinfo to determine the number of
461 * online processors, looking for lines beginning with
462 * "processor". Give glibc what it expects.
463 */
464 #ifdef CONFIG_SMP
465 seq_printf(m, "processor\t: %d\n", i);
466 #endif
467 }
468
469 /* dump out the processor features */
470 seq_puts(m, "Features\t: ");
471
472 for (i = 0; hwcap_str[i]; i++)
473 if (elf_hwcap & (1 << i))
474 seq_printf(m, "%s ", hwcap_str[i]);
475
476 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
477 seq_printf(m, "CPU architecture: AArch64\n");
478 seq_printf(m, "CPU variant\t: 0x%x\n", (read_cpuid_id() >> 20) & 15);
479 seq_printf(m, "CPU part\t: 0x%03x\n", (read_cpuid_id() >> 4) & 0xfff);
480 seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
481
482 seq_puts(m, "\n");
483
484 seq_printf(m, "Hardware\t: %s\n", machine_name);
485
486 return 0;
487 }
488
489 static void *c_start(struct seq_file *m, loff_t *pos)
490 {
491 return *pos < 1 ? (void *)1 : NULL;
492 }
493
494 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
495 {
496 ++*pos;
497 return NULL;
498 }
499
500 static void c_stop(struct seq_file *m, void *v)
501 {
502 }
503
504 const struct seq_operations cpuinfo_op = {
505 .start = c_start,
506 .next = c_next,
507 .stop = c_stop,
508 .show = c_show
509 };