]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/arm64/kernel/smp.c
Merge tag 'pm-4.11-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[mirror_ubuntu-eoan-kernel.git] / arch / arm64 / kernel / smp.c
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
4 *
5 * Copyright (C) 2012 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/acpi.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/sched/mm.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/interrupt.h>
28 #include <linux/cache.h>
29 #include <linux/profile.h>
30 #include <linux/errno.h>
31 #include <linux/mm.h>
32 #include <linux/err.h>
33 #include <linux/cpu.h>
34 #include <linux/smp.h>
35 #include <linux/seq_file.h>
36 #include <linux/irq.h>
37 #include <linux/percpu.h>
38 #include <linux/clockchips.h>
39 #include <linux/completion.h>
40 #include <linux/of.h>
41 #include <linux/irq_work.h>
42
43 #include <asm/alternative.h>
44 #include <asm/atomic.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpu.h>
47 #include <asm/cputype.h>
48 #include <asm/cpu_ops.h>
49 #include <asm/mmu_context.h>
50 #include <asm/numa.h>
51 #include <asm/pgtable.h>
52 #include <asm/pgalloc.h>
53 #include <asm/processor.h>
54 #include <asm/smp_plat.h>
55 #include <asm/sections.h>
56 #include <asm/tlbflush.h>
57 #include <asm/ptrace.h>
58 #include <asm/virt.h>
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ipi.h>
62
63 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
64 EXPORT_PER_CPU_SYMBOL(cpu_number);
65
66 /*
67 * as from 2.5, kernels no longer have an init_tasks structure
68 * so we need some other way of telling a new secondary core
69 * where to place its SVC stack
70 */
71 struct secondary_data secondary_data;
72 /* Number of CPUs which aren't online, but looping in kernel text. */
73 int cpus_stuck_in_kernel;
74
75 enum ipi_msg_type {
76 IPI_RESCHEDULE,
77 IPI_CALL_FUNC,
78 IPI_CPU_STOP,
79 IPI_TIMER,
80 IPI_IRQ_WORK,
81 IPI_WAKEUP
82 };
83
84 #ifdef CONFIG_ARM64_VHE
85
86 /* Whether the boot CPU is running in HYP mode or not*/
87 static bool boot_cpu_hyp_mode;
88
89 static inline void save_boot_cpu_run_el(void)
90 {
91 boot_cpu_hyp_mode = is_kernel_in_hyp_mode();
92 }
93
94 static inline bool is_boot_cpu_in_hyp_mode(void)
95 {
96 return boot_cpu_hyp_mode;
97 }
98
99 /*
100 * Verify that a secondary CPU is running the kernel at the same
101 * EL as that of the boot CPU.
102 */
103 void verify_cpu_run_el(void)
104 {
105 bool in_el2 = is_kernel_in_hyp_mode();
106 bool boot_cpu_el2 = is_boot_cpu_in_hyp_mode();
107
108 if (in_el2 ^ boot_cpu_el2) {
109 pr_crit("CPU%d: mismatched Exception Level(EL%d) with boot CPU(EL%d)\n",
110 smp_processor_id(),
111 in_el2 ? 2 : 1,
112 boot_cpu_el2 ? 2 : 1);
113 cpu_panic_kernel();
114 }
115 }
116
117 #else
118 static inline void save_boot_cpu_run_el(void) {}
119 #endif
120
121 #ifdef CONFIG_HOTPLUG_CPU
122 static int op_cpu_kill(unsigned int cpu);
123 #else
124 static inline int op_cpu_kill(unsigned int cpu)
125 {
126 return -ENOSYS;
127 }
128 #endif
129
130
131 /*
132 * Boot a secondary CPU, and assign it the specified idle task.
133 * This also gives us the initial stack to use for this CPU.
134 */
135 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
136 {
137 if (cpu_ops[cpu]->cpu_boot)
138 return cpu_ops[cpu]->cpu_boot(cpu);
139
140 return -EOPNOTSUPP;
141 }
142
143 static DECLARE_COMPLETION(cpu_running);
144
145 int __cpu_up(unsigned int cpu, struct task_struct *idle)
146 {
147 int ret;
148 long status;
149
150 /*
151 * We need to tell the secondary core where to find its stack and the
152 * page tables.
153 */
154 secondary_data.task = idle;
155 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
156 update_cpu_boot_status(CPU_MMU_OFF);
157 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
158
159 /*
160 * Now bring the CPU into our world.
161 */
162 ret = boot_secondary(cpu, idle);
163 if (ret == 0) {
164 /*
165 * CPU was successfully started, wait for it to come online or
166 * time out.
167 */
168 wait_for_completion_timeout(&cpu_running,
169 msecs_to_jiffies(1000));
170
171 if (!cpu_online(cpu)) {
172 pr_crit("CPU%u: failed to come online\n", cpu);
173 ret = -EIO;
174 }
175 } else {
176 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
177 }
178
179 secondary_data.task = NULL;
180 secondary_data.stack = NULL;
181 status = READ_ONCE(secondary_data.status);
182 if (ret && status) {
183
184 if (status == CPU_MMU_OFF)
185 status = READ_ONCE(__early_cpu_boot_status);
186
187 switch (status) {
188 default:
189 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
190 cpu, status);
191 break;
192 case CPU_KILL_ME:
193 if (!op_cpu_kill(cpu)) {
194 pr_crit("CPU%u: died during early boot\n", cpu);
195 break;
196 }
197 /* Fall through */
198 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
199 case CPU_STUCK_IN_KERNEL:
200 pr_crit("CPU%u: is stuck in kernel\n", cpu);
201 cpus_stuck_in_kernel++;
202 break;
203 case CPU_PANIC_KERNEL:
204 panic("CPU%u detected unsupported configuration\n", cpu);
205 }
206 }
207
208 return ret;
209 }
210
211 /*
212 * This is the secondary CPU boot entry. We're using this CPUs
213 * idle thread stack, but a set of temporary page tables.
214 */
215 asmlinkage void secondary_start_kernel(void)
216 {
217 struct mm_struct *mm = &init_mm;
218 unsigned int cpu;
219
220 cpu = task_cpu(current);
221 set_my_cpu_offset(per_cpu_offset(cpu));
222
223 /*
224 * All kernel threads share the same mm context; grab a
225 * reference and switch to it.
226 */
227 mmgrab(mm);
228 current->active_mm = mm;
229
230 /*
231 * TTBR0 is only used for the identity mapping at this stage. Make it
232 * point to zero page to avoid speculatively fetching new entries.
233 */
234 cpu_uninstall_idmap();
235
236 preempt_disable();
237 trace_hardirqs_off();
238
239 /*
240 * If the system has established the capabilities, make sure
241 * this CPU ticks all of those. If it doesn't, the CPU will
242 * fail to come online.
243 */
244 check_local_cpu_capabilities();
245
246 if (cpu_ops[cpu]->cpu_postboot)
247 cpu_ops[cpu]->cpu_postboot();
248
249 /*
250 * Log the CPU info before it is marked online and might get read.
251 */
252 cpuinfo_store_cpu();
253
254 /*
255 * Enable GIC and timers.
256 */
257 notify_cpu_starting(cpu);
258
259 store_cpu_topology(cpu);
260
261 /*
262 * OK, now it's safe to let the boot CPU continue. Wait for
263 * the CPU migration code to notice that the CPU is online
264 * before we continue.
265 */
266 pr_info("CPU%u: Booted secondary processor [%08x]\n",
267 cpu, read_cpuid_id());
268 update_cpu_boot_status(CPU_BOOT_SUCCESS);
269 set_cpu_online(cpu, true);
270 complete(&cpu_running);
271
272 local_irq_enable();
273 local_async_enable();
274
275 /*
276 * OK, it's off to the idle thread for us
277 */
278 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
279 }
280
281 #ifdef CONFIG_HOTPLUG_CPU
282 static int op_cpu_disable(unsigned int cpu)
283 {
284 /*
285 * If we don't have a cpu_die method, abort before we reach the point
286 * of no return. CPU0 may not have an cpu_ops, so test for it.
287 */
288 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
289 return -EOPNOTSUPP;
290
291 /*
292 * We may need to abort a hot unplug for some other mechanism-specific
293 * reason.
294 */
295 if (cpu_ops[cpu]->cpu_disable)
296 return cpu_ops[cpu]->cpu_disable(cpu);
297
298 return 0;
299 }
300
301 /*
302 * __cpu_disable runs on the processor to be shutdown.
303 */
304 int __cpu_disable(void)
305 {
306 unsigned int cpu = smp_processor_id();
307 int ret;
308
309 ret = op_cpu_disable(cpu);
310 if (ret)
311 return ret;
312
313 /*
314 * Take this CPU offline. Once we clear this, we can't return,
315 * and we must not schedule until we're ready to give up the cpu.
316 */
317 set_cpu_online(cpu, false);
318
319 /*
320 * OK - migrate IRQs away from this CPU
321 */
322 irq_migrate_all_off_this_cpu();
323
324 return 0;
325 }
326
327 static int op_cpu_kill(unsigned int cpu)
328 {
329 /*
330 * If we have no means of synchronising with the dying CPU, then assume
331 * that it is really dead. We can only wait for an arbitrary length of
332 * time and hope that it's dead, so let's skip the wait and just hope.
333 */
334 if (!cpu_ops[cpu]->cpu_kill)
335 return 0;
336
337 return cpu_ops[cpu]->cpu_kill(cpu);
338 }
339
340 /*
341 * called on the thread which is asking for a CPU to be shutdown -
342 * waits until shutdown has completed, or it is timed out.
343 */
344 void __cpu_die(unsigned int cpu)
345 {
346 int err;
347
348 if (!cpu_wait_death(cpu, 5)) {
349 pr_crit("CPU%u: cpu didn't die\n", cpu);
350 return;
351 }
352 pr_notice("CPU%u: shutdown\n", cpu);
353
354 /*
355 * Now that the dying CPU is beyond the point of no return w.r.t.
356 * in-kernel synchronisation, try to get the firwmare to help us to
357 * verify that it has really left the kernel before we consider
358 * clobbering anything it might still be using.
359 */
360 err = op_cpu_kill(cpu);
361 if (err)
362 pr_warn("CPU%d may not have shut down cleanly: %d\n",
363 cpu, err);
364 }
365
366 /*
367 * Called from the idle thread for the CPU which has been shutdown.
368 *
369 * Note that we disable IRQs here, but do not re-enable them
370 * before returning to the caller. This is also the behaviour
371 * of the other hotplug-cpu capable cores, so presumably coming
372 * out of idle fixes this.
373 */
374 void cpu_die(void)
375 {
376 unsigned int cpu = smp_processor_id();
377
378 idle_task_exit();
379
380 local_irq_disable();
381
382 /* Tell __cpu_die() that this CPU is now safe to dispose of */
383 (void)cpu_report_death();
384
385 /*
386 * Actually shutdown the CPU. This must never fail. The specific hotplug
387 * mechanism must perform all required cache maintenance to ensure that
388 * no dirty lines are lost in the process of shutting down the CPU.
389 */
390 cpu_ops[cpu]->cpu_die(cpu);
391
392 BUG();
393 }
394 #endif
395
396 /*
397 * Kill the calling secondary CPU, early in bringup before it is turned
398 * online.
399 */
400 void cpu_die_early(void)
401 {
402 int cpu = smp_processor_id();
403
404 pr_crit("CPU%d: will not boot\n", cpu);
405
406 /* Mark this CPU absent */
407 set_cpu_present(cpu, 0);
408
409 #ifdef CONFIG_HOTPLUG_CPU
410 update_cpu_boot_status(CPU_KILL_ME);
411 /* Check if we can park ourselves */
412 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
413 cpu_ops[cpu]->cpu_die(cpu);
414 #endif
415 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
416
417 cpu_park_loop();
418 }
419
420 static void __init hyp_mode_check(void)
421 {
422 if (is_hyp_mode_available())
423 pr_info("CPU: All CPU(s) started at EL2\n");
424 else if (is_hyp_mode_mismatched())
425 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
426 "CPU: CPUs started in inconsistent modes");
427 else
428 pr_info("CPU: All CPU(s) started at EL1\n");
429 }
430
431 void __init smp_cpus_done(unsigned int max_cpus)
432 {
433 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
434 setup_cpu_features();
435 hyp_mode_check();
436 apply_alternatives_all();
437 }
438
439 void __init smp_prepare_boot_cpu(void)
440 {
441 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
442 /*
443 * Initialise the static keys early as they may be enabled by the
444 * cpufeature code.
445 */
446 jump_label_init();
447 cpuinfo_store_boot_cpu();
448 save_boot_cpu_run_el();
449 /*
450 * Run the errata work around checks on the boot CPU, once we have
451 * initialised the cpu feature infrastructure from
452 * cpuinfo_store_boot_cpu() above.
453 */
454 update_cpu_errata_workarounds();
455 }
456
457 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
458 {
459 const __be32 *cell;
460 u64 hwid;
461
462 /*
463 * A cpu node with missing "reg" property is
464 * considered invalid to build a cpu_logical_map
465 * entry.
466 */
467 cell = of_get_property(dn, "reg", NULL);
468 if (!cell) {
469 pr_err("%s: missing reg property\n", dn->full_name);
470 return INVALID_HWID;
471 }
472
473 hwid = of_read_number(cell, of_n_addr_cells(dn));
474 /*
475 * Non affinity bits must be set to 0 in the DT
476 */
477 if (hwid & ~MPIDR_HWID_BITMASK) {
478 pr_err("%s: invalid reg property\n", dn->full_name);
479 return INVALID_HWID;
480 }
481 return hwid;
482 }
483
484 /*
485 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
486 * entries and check for duplicates. If any is found just ignore the
487 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
488 * matching valid MPIDR values.
489 */
490 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
491 {
492 unsigned int i;
493
494 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
495 if (cpu_logical_map(i) == hwid)
496 return true;
497 return false;
498 }
499
500 /*
501 * Initialize cpu operations for a logical cpu and
502 * set it in the possible mask on success
503 */
504 static int __init smp_cpu_setup(int cpu)
505 {
506 if (cpu_read_ops(cpu))
507 return -ENODEV;
508
509 if (cpu_ops[cpu]->cpu_init(cpu))
510 return -ENODEV;
511
512 set_cpu_possible(cpu, true);
513
514 return 0;
515 }
516
517 static bool bootcpu_valid __initdata;
518 static unsigned int cpu_count = 1;
519
520 #ifdef CONFIG_ACPI
521 /*
522 * acpi_map_gic_cpu_interface - parse processor MADT entry
523 *
524 * Carry out sanity checks on MADT processor entry and initialize
525 * cpu_logical_map on success
526 */
527 static void __init
528 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
529 {
530 u64 hwid = processor->arm_mpidr;
531
532 if (!(processor->flags & ACPI_MADT_ENABLED)) {
533 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
534 return;
535 }
536
537 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
538 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
539 return;
540 }
541
542 if (is_mpidr_duplicate(cpu_count, hwid)) {
543 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
544 return;
545 }
546
547 /* Check if GICC structure of boot CPU is available in the MADT */
548 if (cpu_logical_map(0) == hwid) {
549 if (bootcpu_valid) {
550 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
551 hwid);
552 return;
553 }
554 bootcpu_valid = true;
555 early_map_cpu_to_node(0, acpi_numa_get_nid(0, hwid));
556 return;
557 }
558
559 if (cpu_count >= NR_CPUS)
560 return;
561
562 /* map the logical cpu id to cpu MPIDR */
563 cpu_logical_map(cpu_count) = hwid;
564
565 /*
566 * Set-up the ACPI parking protocol cpu entries
567 * while initializing the cpu_logical_map to
568 * avoid parsing MADT entries multiple times for
569 * nothing (ie a valid cpu_logical_map entry should
570 * contain a valid parking protocol data set to
571 * initialize the cpu if the parking protocol is
572 * the only available enable method).
573 */
574 acpi_set_mailbox_entry(cpu_count, processor);
575
576 early_map_cpu_to_node(cpu_count, acpi_numa_get_nid(cpu_count, hwid));
577
578 cpu_count++;
579 }
580
581 static int __init
582 acpi_parse_gic_cpu_interface(struct acpi_subtable_header *header,
583 const unsigned long end)
584 {
585 struct acpi_madt_generic_interrupt *processor;
586
587 processor = (struct acpi_madt_generic_interrupt *)header;
588 if (BAD_MADT_GICC_ENTRY(processor, end))
589 return -EINVAL;
590
591 acpi_table_print_madt_entry(header);
592
593 acpi_map_gic_cpu_interface(processor);
594
595 return 0;
596 }
597 #else
598 #define acpi_table_parse_madt(...) do { } while (0)
599 #endif
600
601 /*
602 * Enumerate the possible CPU set from the device tree and build the
603 * cpu logical map array containing MPIDR values related to logical
604 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
605 */
606 static void __init of_parse_and_init_cpus(void)
607 {
608 struct device_node *dn;
609
610 for_each_node_by_type(dn, "cpu") {
611 u64 hwid = of_get_cpu_mpidr(dn);
612
613 if (hwid == INVALID_HWID)
614 goto next;
615
616 if (is_mpidr_duplicate(cpu_count, hwid)) {
617 pr_err("%s: duplicate cpu reg properties in the DT\n",
618 dn->full_name);
619 goto next;
620 }
621
622 /*
623 * The numbering scheme requires that the boot CPU
624 * must be assigned logical id 0. Record it so that
625 * the logical map built from DT is validated and can
626 * be used.
627 */
628 if (hwid == cpu_logical_map(0)) {
629 if (bootcpu_valid) {
630 pr_err("%s: duplicate boot cpu reg property in DT\n",
631 dn->full_name);
632 goto next;
633 }
634
635 bootcpu_valid = true;
636 early_map_cpu_to_node(0, of_node_to_nid(dn));
637
638 /*
639 * cpu_logical_map has already been
640 * initialized and the boot cpu doesn't need
641 * the enable-method so continue without
642 * incrementing cpu.
643 */
644 continue;
645 }
646
647 if (cpu_count >= NR_CPUS)
648 goto next;
649
650 pr_debug("cpu logical map 0x%llx\n", hwid);
651 cpu_logical_map(cpu_count) = hwid;
652
653 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
654 next:
655 cpu_count++;
656 }
657 }
658
659 /*
660 * Enumerate the possible CPU set from the device tree or ACPI and build the
661 * cpu logical map array containing MPIDR values related to logical
662 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
663 */
664 void __init smp_init_cpus(void)
665 {
666 int i;
667
668 if (acpi_disabled)
669 of_parse_and_init_cpus();
670 else
671 /*
672 * do a walk of MADT to determine how many CPUs
673 * we have including disabled CPUs, and get information
674 * we need for SMP init
675 */
676 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
677 acpi_parse_gic_cpu_interface, 0);
678
679 if (cpu_count > nr_cpu_ids)
680 pr_warn("Number of cores (%d) exceeds configured maximum of %d - clipping\n",
681 cpu_count, nr_cpu_ids);
682
683 if (!bootcpu_valid) {
684 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
685 return;
686 }
687
688 /*
689 * We need to set the cpu_logical_map entries before enabling
690 * the cpus so that cpu processor description entries (DT cpu nodes
691 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
692 * with entries in cpu_logical_map while initializing the cpus.
693 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
694 */
695 for (i = 1; i < nr_cpu_ids; i++) {
696 if (cpu_logical_map(i) != INVALID_HWID) {
697 if (smp_cpu_setup(i))
698 cpu_logical_map(i) = INVALID_HWID;
699 }
700 }
701 }
702
703 void __init smp_prepare_cpus(unsigned int max_cpus)
704 {
705 int err;
706 unsigned int cpu;
707 unsigned int this_cpu;
708
709 init_cpu_topology();
710
711 this_cpu = smp_processor_id();
712 store_cpu_topology(this_cpu);
713 numa_store_cpu_info(this_cpu);
714
715 /*
716 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
717 * secondary CPUs present.
718 */
719 if (max_cpus == 0)
720 return;
721
722 /*
723 * Initialise the present map (which describes the set of CPUs
724 * actually populated at the present time) and release the
725 * secondaries from the bootloader.
726 */
727 for_each_possible_cpu(cpu) {
728
729 per_cpu(cpu_number, cpu) = cpu;
730
731 if (cpu == smp_processor_id())
732 continue;
733
734 if (!cpu_ops[cpu])
735 continue;
736
737 err = cpu_ops[cpu]->cpu_prepare(cpu);
738 if (err)
739 continue;
740
741 set_cpu_present(cpu, true);
742 numa_store_cpu_info(cpu);
743 }
744 }
745
746 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
747
748 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
749 {
750 __smp_cross_call = fn;
751 }
752
753 static const char *ipi_types[NR_IPI] __tracepoint_string = {
754 #define S(x,s) [x] = s
755 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
756 S(IPI_CALL_FUNC, "Function call interrupts"),
757 S(IPI_CPU_STOP, "CPU stop interrupts"),
758 S(IPI_TIMER, "Timer broadcast interrupts"),
759 S(IPI_IRQ_WORK, "IRQ work interrupts"),
760 S(IPI_WAKEUP, "CPU wake-up interrupts"),
761 };
762
763 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
764 {
765 trace_ipi_raise(target, ipi_types[ipinr]);
766 __smp_cross_call(target, ipinr);
767 }
768
769 void show_ipi_list(struct seq_file *p, int prec)
770 {
771 unsigned int cpu, i;
772
773 for (i = 0; i < NR_IPI; i++) {
774 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
775 prec >= 4 ? " " : "");
776 for_each_online_cpu(cpu)
777 seq_printf(p, "%10u ",
778 __get_irq_stat(cpu, ipi_irqs[i]));
779 seq_printf(p, " %s\n", ipi_types[i]);
780 }
781 }
782
783 u64 smp_irq_stat_cpu(unsigned int cpu)
784 {
785 u64 sum = 0;
786 int i;
787
788 for (i = 0; i < NR_IPI; i++)
789 sum += __get_irq_stat(cpu, ipi_irqs[i]);
790
791 return sum;
792 }
793
794 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
795 {
796 smp_cross_call(mask, IPI_CALL_FUNC);
797 }
798
799 void arch_send_call_function_single_ipi(int cpu)
800 {
801 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
802 }
803
804 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
805 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
806 {
807 smp_cross_call(mask, IPI_WAKEUP);
808 }
809 #endif
810
811 #ifdef CONFIG_IRQ_WORK
812 void arch_irq_work_raise(void)
813 {
814 if (__smp_cross_call)
815 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
816 }
817 #endif
818
819 /*
820 * ipi_cpu_stop - handle IPI from smp_send_stop()
821 */
822 static void ipi_cpu_stop(unsigned int cpu)
823 {
824 set_cpu_online(cpu, false);
825
826 local_irq_disable();
827
828 while (1)
829 cpu_relax();
830 }
831
832 /*
833 * Main handler for inter-processor interrupts
834 */
835 void handle_IPI(int ipinr, struct pt_regs *regs)
836 {
837 unsigned int cpu = smp_processor_id();
838 struct pt_regs *old_regs = set_irq_regs(regs);
839
840 if ((unsigned)ipinr < NR_IPI) {
841 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
842 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
843 }
844
845 switch (ipinr) {
846 case IPI_RESCHEDULE:
847 scheduler_ipi();
848 break;
849
850 case IPI_CALL_FUNC:
851 irq_enter();
852 generic_smp_call_function_interrupt();
853 irq_exit();
854 break;
855
856 case IPI_CPU_STOP:
857 irq_enter();
858 ipi_cpu_stop(cpu);
859 irq_exit();
860 break;
861
862 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
863 case IPI_TIMER:
864 irq_enter();
865 tick_receive_broadcast();
866 irq_exit();
867 break;
868 #endif
869
870 #ifdef CONFIG_IRQ_WORK
871 case IPI_IRQ_WORK:
872 irq_enter();
873 irq_work_run();
874 irq_exit();
875 break;
876 #endif
877
878 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
879 case IPI_WAKEUP:
880 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
881 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
882 cpu);
883 break;
884 #endif
885
886 default:
887 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
888 break;
889 }
890
891 if ((unsigned)ipinr < NR_IPI)
892 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
893 set_irq_regs(old_regs);
894 }
895
896 void smp_send_reschedule(int cpu)
897 {
898 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
899 }
900
901 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
902 void tick_broadcast(const struct cpumask *mask)
903 {
904 smp_cross_call(mask, IPI_TIMER);
905 }
906 #endif
907
908 void smp_send_stop(void)
909 {
910 unsigned long timeout;
911
912 if (num_online_cpus() > 1) {
913 cpumask_t mask;
914
915 cpumask_copy(&mask, cpu_online_mask);
916 cpumask_clear_cpu(smp_processor_id(), &mask);
917
918 if (system_state == SYSTEM_BOOTING ||
919 system_state == SYSTEM_RUNNING)
920 pr_crit("SMP: stopping secondary CPUs\n");
921 smp_cross_call(&mask, IPI_CPU_STOP);
922 }
923
924 /* Wait up to one second for other CPUs to stop */
925 timeout = USEC_PER_SEC;
926 while (num_online_cpus() > 1 && timeout--)
927 udelay(1);
928
929 if (num_online_cpus() > 1)
930 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
931 cpumask_pr_args(cpu_online_mask));
932 }
933
934 /*
935 * not supported here
936 */
937 int setup_profiling_timer(unsigned int multiplier)
938 {
939 return -EINVAL;
940 }
941
942 static bool have_cpu_die(void)
943 {
944 #ifdef CONFIG_HOTPLUG_CPU
945 int any_cpu = raw_smp_processor_id();
946
947 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
948 return true;
949 #endif
950 return false;
951 }
952
953 bool cpus_are_stuck_in_kernel(void)
954 {
955 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
956
957 return !!cpus_stuck_in_kernel || smp_spin_tables;
958 }